

1 Microbial Synthesis and characterization of silver nanoparticles
2 using the Endophytic bacterium *Bacillus cereus* A novel source in
3 the benign synthesis

4 Dr. Swetha Sunkar¹

5 ¹ Sathyabama University

6 *Received: 7 January 2012 Accepted: 2 February 2012 Published: 13 February 2012*

7

8 **Abstract**

9 The influx of nanoparticles into the living systems especially for medical purposes has opened
10 up a new challenge of synthesizing them in a benign fashion. Green synthesis of nanoparticles
11 is looked upon as an alternative to the existing physical and chemical methods of syntheses as
12 they are associated with undeniable disadvantages. This initiated the biogenic synthesis of
13 nanoparticles by using various microorganisms and plants. In this study we report the use of
14 endophytic bacterium *Bacillus cereus* isolated from the *Adhatoda beddomei* to synthesize the
15 silver nanoparticles (AgNPs). The AgNPs were synthesized by reduction of silver nitrate
16 (AgNO₃) solution by the endophytic bacterium after incubation for 3 days at room
17 temperature. The synthesis was initially observed by colour change from pale white to brown
18 which was further confirmed by UV - Vis spectroscopy. The AgNPs were characterized using
19 FTIR, SEM ?? EDAX and TEM. The synthesized nanoparticles were found to be spherical
20 and uniformly distributed with the size in the range of 11-16 nm. The energy-dispersive
21 spectroscopy of the nanoparticle dispersion confirmed the presence of elemental silver. The
22 AgNPs were found to have reasonable antibacterial activity against a few pathogenic bacteria
23 like *Escherichia coli*, *Pseudomonas aeruginosa* and *Staphylococcus aureus*. Determining the
24 minimum inhibitory concentration leading to inhibition of bacterial growth is still under way.

25

26 **Index terms**— Endophytic bacteria, *Bacillus cereus*, silver nanoparticles, UV -Vis Spectra, TEM, antibacterial activity.

27 The last decade had witnessed an enormous focus on nanoparticles and nanomaterials because of their unique
28 size dependent physical and chemical properties. Their widespread uses in various fields had made their study
29 more challenging. Nanoparticles are of great scientific interest as they bridge the gap between bulk materials
30 and atomic or molecular structures as they deal with materials at nanoscale levels (Saifuddin 2009). Some of the
31 physical properties exhibited by nanomaterials are due to large surface atom, large surface energy and spatial
32 confinement and reduced imperfections.

33 The applications of nanoparticles are innumerable ranging from fluorescent biological labels (Bruchez
34 1998;Chan 1998;Wang 2002) to drug and gene delivery (Mah 2000;Panatarotto 2003), bio detection of pathogens
35 (Edelstein 2000), detection of proteins (Nam 2003), probing of DNA structure ??Mahtab 1995), tissue
36 engineering ??Ma 2003;De La 2003), tumor destruction via heating (hyperthermia) (Yoshida 1999), separation
37 and purification of biological molecules and cells (Molday 1982), MRI contrast enhancement (Weissleder1990),
38 phagokinetic studies (Parak 2002) makes their synthesis an important area of research.

39 Owing to the growing usability of nanoparticles in biological systems especially as drug delivery vehicles into the
40 cellular world, questions concerning the development of rapid, reliable and nature friendly experimental protocols
41 is on the rise. A wide variety of physical and chemical methods to synthesize nanoparticles are in practice but

43 their inherent flaws that include contamination from precursor chemicals, use of toxic solvents and generation
44 of hazardous by-products (Thakkar 2010) that makes their use inappropriate in biological systems. These
45 disadvantages demanded the development of nanoparticles using novel and well refined methods in experimental
46 processes. This paved the way to explore for new benign -green? routes for synthesizing high-yielding, low
47 cost, non-toxic and environment friendly nanoparticles. Nature by itself has offered an answer by being a store
48 house of diverse biological species including plant and plant products, algae, fungi, yeast, bacteria and viruses
49 that could be employed in the biosynthesis of nanoparticles. This has been earlier confirmed by various reports
50 that advocate the production of intra-cellular or extracellular organic material by unicellular and multicellular
51 organisms (Mann 1996).

52 The biosynthesis of nanoparticles emerging as an intersection between nanotechnology and biotechnology
53 has been receiving increasing attention in the recent past. First evidence of biosynthesis was reported using
54 *Pseudomonas stutzeri* (Klaus 1999) where the nanoparticles were deposited on the cell T

55 1 Global Journal of 56 2 Medical Research

57 membrane. This study was followed by various other reports that demonstrated the use of different microor-
58 ganisms that include *Bacillus licheniformis* (Kalimuthu 2008), *Lactobacillus* strains (Nair 2002), *Bacillus subtilis*
59 (Saifuddin 2009), *Corynebacterium* sp. (Zhang 2005), *E. coli* (Gurunathan 2009a;Gurunathan 2009b) in the
60 extra and intracellular synthesis of nanoparticles. Minaeian and coworkers have reported the synthesis of silver
61 nanoparticles in the size range 50-100 nm *Klebsiella pneumoniae*, *Escherichia coli*, *Enterobacter doaceae* (Minaeian
62 2008).

63 Certain investigations also revealed that formation of nanoparticles using fungi like *Fusarium oxysporum* and
64 *Aspergillus fumigatus* (Bhainsa 2006).

65 While a number of reports are available on the biological synthesis of silver nanoparticles, the potential
66 of endophytic microorganisms -microbes that colonize living internal tissues of plants without causing any
67 immediate, overt negative effects (Bacon 2000) has not yet been tapped. Very few reports are available where in
68 endophytic fungi were used for the synthesis of nanoparticles. One such study employed an endophytic fungus
69 (*Colletotrichum* sp.) isolated from geranium leaves (*Pelargonium graveolens*) for the extracellular synthesis of
70 gold nanoparticles (Shiv Shankar 2003).

71 Another study revealed the use of *Aspergillus clavatus* (AzS-275), an endophytic fungus isolated from sterilized
72 stem tissues of *Azadirachta indica* and reported about the antibacterial effect of silver nanoparticles synthesised
73 by it (Vijay C Verma 2010).

74 To the best of our knowledge, there were no reports on the synthesis of silver nanoparticles using endophytic
75 bacteria. The present investigation was carried out to synthesize silver nanoparticles from endophytic bacterium
76 that is identified as *Bacillus cereus* isolated from *Adhatoda beddomei*. The potential antibacterial activity of the
77 nanoparticles has also been evaluated.

78 The medicinal plant *Adhatoda beddomei*, under study, was obtained from Siddha Institute, Chennai, India.
79 This is an evergreen herb used in Ayurveda where the leaves, seeds and the roots are administered for treatment
80 of cough and asthma. Silver nitrate was obtained from SISCO Research Laboratories, India. The test organisms
81 used for antibacterial assay were *Escherichia coli* ATCC 35218, *Pseudomonas aeruginosa* ATCC 27853 and
82 *Staphylococcus aureus* ATCC 25923.

83 3 a) Isolation of Endophytic Bacteria

84 Leaf samples of *Adhatoda beddomei* were cleaned under running tap water to remove debris and then air dried
85 and processed within 5 hrs of collection.

86 From each leaf sample, 4 segments of 1 cm length were separated and treated as replicates. Surface sterilization
87 was carried out by submerging them in 75% ethanol for 2 min. The explants were further sterilized sequentially
88 in 5.3% sodium hypochlorite (NaOCl) solution for 5 min and 75% ethanol for 0.5 min (Ravi Raja 2006). Samples
89 were allowed to dry on paper towel in a laminar air flow chamber. Four segments per plant were placed horizontally
90 on separate Petri dishes containing Nutrient Agar. After incubation at 32°C for three days, the endophytic
91 bacteria was collected and placed onto nutrient agar and incubated for 3 days and checked for culture purity.
92 Eventually, pure cultures were transferred to nutrient agar slant tubes and subcultured regularly.

93 4 b) Molecular Characterization of Endophytic Bacteria

94 The sequence of the 16s rRNA gene has been widely used as a phylogenetic marker to study genetic relationships
95 between different strains of bacteria. The analysis of this gene can therefore be considered as a standard method
96 for the identification of bacteria at the family, genus and species levels (Woese 1987;Weisburg 1991), and has
97 infact been included in the latest edition of Bergey's Manual of Systematic Bacteriology (Garrity 2005). Genomic
98 DNA was isolated from the pure culture pellet and the approximately 1.4 kb fragments corresponding to 16s
99 rRNA was amplified using universal primers, high -fidelity PCR polymerase. The PCR product was sequenced
100 bi-directionally using the forward, reverse primers. This sequence was compared with the 16s rDNA sequence

101 data from strains available at the public databases (Genbank, EMBL and DDBJ) using BLASTN sequence
102 match routines (Procópio 2009). The sequences are aligned using CLUSTALW2 program and phylogenetic and
103 molecular evolutionary analysis were conducted.

104 **5 c) Culture Conditions**

105 The endophytic bacterial culture was maintained on nutrient agar slants by subculturing at monthly intervals.
106 100 mL of Luria Broth medium was prepared, sterilized and inoculated with 12 hr old cultures of the endophytic
107 bacterium. The culture flasks were incubated for 36 hrs at 37°C with shaking at 150 rpm. After incubation
108 period, the bacterial cell pellet was collected by centrifugation at 10,000 rpm for 10 min. This was used as the
109 starting material for the synthesis of nanoparticles.

110 **6 d) Synthesis of Silver Nanoparticles**

111 After 36 hrs of incubation, the biomass is separated from the medium by centrifugation and was washed three
112 times in sterile distilled water to remove any adhering nutrient media that might interact with the silver ions.
113 The bacterial biomass obtained, about 1g wet weight was then resuspended into 20 mL of 1mM Silver nitrate
114 solution and incubated for 72 -120 hrs at room temperature (Shiying 2007).

115 **7 e) Characterization Techniques**

116 The formation of AgNPs was followed by visual observation of color change from pale white to brown and was
117 further confirmed by the sharp peaks given by the AgNPs in the visible region from UV -vis spectrum of the
118 reacting solution using Perkin-Elmer Lamda-45 spectrophotometer, in a 1cm path quartz cell at a resolution of 1
119 nm from 250 to 800 nm. The studies on morphology, size, composition and the distribution of nanoparticles were
120 performed by Transmission Electron Microscopic (TEM) analysis using a TEM, JEM-1200EX, JEOL Ltd., Japan,
121 Scanning Electron Microscope (SEM) using Hitachi S-4500 SEM and energy dispersive spectroscopy (EDAX) as
122 an attachment on SEM. The probable biomolecules involved in the synthesis and stabilization of nanoparticles
123 was recorded by FTIR spectrum using FTIR Nicolet Avatar 660 (Nicolet, USA).

124 **8 f) Antibacterial Screening**

125 Though different types of nanomaterials have come up, silver nanoparticles have proved to be the most effective
126 antimicrobial agents. Hence the potential of the synthesized silver nanoparticles was determined, using the agar
127 well diffusion assay method (Perez 1990). The test organisms used were gram negative bacteria Escherichia coli
128 ATCC 35218, Pseudomonas aeruginosa ATCC 27853 and gram positive bacteria Staphylococcus aureus ATCC
129 25923. Two replicas of respective test organisms were prepared spreading 100 μ L of revived culture on the nutrient
130 agar plate. Wells were cut with the help of a sterilized stainless steel cork borer into which 100 μ L of AgNP
131 solution was loaded and incubated at 37 °C. The plates were examined for evidence of zones of inhibition, which
132 appear as a clear area around the wells. The diameter of such zones of inhibition was measured for each organism
133 and expressed in millimeter.

134 The intersection of nanotechnology and biology referred to as nanobiotechnology is a recently emerging field.
135 The applications of this merger have spread across widely, extending its arms into the biological world at a rapid
136 pace. This technical approach to biology allows the scientists to imagine and create systems that can be used
137 for biological research. Nanoparticles that form the crux of nanotechnology have the innate ability to penetrate
138 into the living systems owing to their size and properties. This insists a need to develop a greener route of
139 synthesizing them thus making the process facile and ecofriendly. Biological systems possess unique ability to
140 be selforganized and to synthesize molecules that have highly selective properties. This opened a new possibility
141 of using microorganisms as the nanoparticle factories. This study demonstrates the capability of endophytic
142 bacteria to synthesize silver nanoparticles in a more environment friendly manner.

143 **9 a) Isolation and Molecular Characterization of Endophytic 144 Bacteria**

145 One endophytic bacterium was isolated from surfaced sterilized leaf fragments of Adhatoda beddomei after
146 24 hrs of incubation and appreciable growth was noticed after 48 hrs. Basic microbiological and biochemical
147 characteristics of the endophytic bacteria identified the organism to be gram positive Bacilli sp. This was further
148 confirmed by 16s rDNA analysis.

149 16S rRNA gene sequences contain hypervariable regions that can provide species-specific signature sequences
150 useful for bacterial identification. As a result, 16S rRNA gene sequencing has become prevalent in medical
151 microbiology as a rapid, accurate alternative to phenotypic methods of bacterial identification (Procópio 2009).

152 The endophytic bacterial DNA was isolated and the 16s rDNA sequence was amplified and sequenced and has
153 been deposited in GENBANK with the accession number HM998898.1.

154 The 16s rDNA sequence of the endophytic bacterium obtained was compared with the non-redundant BLAST
155 database to obtain the sequences that displayed maximum similarity.

9 A) ISOLATION AND MOLECULAR CHARACTERIZATION OF ENDOPHYTIC BACTERIA

156 All the sequences reported by BLAST revealed that the endophytic bacterial species showed a very high
157 percentage of similarity (99%) with the sequence of *Bacillus cereus*, with a reasonably high score and e-value
158 being zero. The sequences showing the maximum similarity were used for alignment using CLUSTAL W2 to
159 arrive at phylogenetic relationship represented by a phylogenetic tree (Fig. 1) showing the evolutionary relationship
160 that was constructed from the alignment using the neighbor-joining algorithm. There exists a clear evolutionary
161 relation between all the 16s rDNA sequences as this is a highly conserved sequence. The tree derived by distance
162 based, neighbor joining method is an unrooted tree inferring that the sequences do not come from a common
163 ancestor.

164 But they exhibit cladistic relationship which could be due to the similarities within the sequences. All the taxa
165 under comparison belong to the genera *Bacillus* and species *cereus* except for a few. This bioreduction of Silver
166 nitrate ions was followed by UV-vis spectroscopy. The spectrum showed a strong surface plasmon absorption
167 band at around 425 nm (Fig. 2B) indicating the presence of spherical or roughly spherical AgNPs that remained
168 the same throughout the reaction period, suggesting that the particles are dispersed in the aqueous solution with
169 no evidence for aggregation (Saifuddin 2009). Observation of this sharp clear peak, assigned to a surface plasmon,
170 was well documented for various metal nanoparticles with sizes ranging from 2 to 100 nm (Kowshik 2003; Henglein
171 1993). A long tailing on the large-wavelength side may be due to small amount of particle aggregation (Minaeian
172 2008). The same process when repeated with culture supernatant was unable to show any color change that
173 states that the bacterial biomass was responsible for the bioreduction of AgNO₃.

174 Controls (organism and reagent) showed no change in color when incubated under the same conditions
175 indicating the role of the bacteria in the reduction of silver (Saifuddin 2009). When tested for stability, the
176 silver nanoparticle solution was stable for two months which is evident from UV -Vis spectra after which the
177 particles started to show aggregation (data not shown).

178 The stability of the AgNPs may be conferred by the proteins that may be involved in their synthesis. This is
179 evident from the FTIR spectrum of AgNPs (Fig. 3) which gave peaks at 3442 cm⁻¹ corresponding to the OH
180 stretch of carboxylic acid and the peak at 2350 cm⁻¹ corresponding to aldehydic C-H stretching and 1641 cm
181 ⁻¹ corresponding to N-H bending of primary amines amide I bonds of proteins that may arise due to carboxyl
182 stretch and N-H deformation vibrations (Sathyavati 2010; Mann 1996). The proteins function as capping agents
183 as the carbonyl group from the aminoacid residues show stronger ability to bind to metals (Sathyavati 2010). It
184 has already been reported that the biological molecules perform dual functions of formation and stabilization of
185 silver nanoparticles in the aqueous medium (Mallikarjuna 2011).

186 The morphology, size and the distribution of nanoparticles was observed through the SEM and TEM
187 micrographs (Fig. 4A & B). The SEM micrographs recorded showed comparatively spherical or roughly
188 spherical nanoparticles which were observed to be uniformly distributed. This was further confirmed by the
189 representative TEM images recorded from the dropcoated film of the silver nanoparticles that exposed spherical
190 silver nanoparticles that were distributed on the surface and were uniformly dispersed without much traces of
191 aggregation.

192 The size of the silver nanoparticles ranged from 11 -16 nm. The presence of elemental silver in the biologically
193 synthesised nanoparticle solution was confirmed by EDX analysis (Fig. 5) where strong optical absorption peaks
194 were observed approximately at 3 keV, which is typical for the absorption of metallic silver nanocrystallites
195 (28%) due to surface plasmon resonance (Mouxing 2006). Few weaker signals from C, O and N were also
196 recorded which may be due to X-ray emissions from the organism (Mouxing 2006). The bactericidal activity of
197 AgNPs was studied using the pathogenic strains of bacteria namely gram negative *Escherichia coli* ATCC 35218,
198 *Pseudomonas aeruginosa* ATCC 27853 and gram positive bacteria *Staphylococcus aureus* ATCC 25923 using agar
199 well diffusion method. After the incubation time, clear zones were observed against all the test organisms by
200 AgNPs and were recorded in millimetres (Table 1). The efficacy of silver nanoparticles can be attributed to the fact
201 that their larger surface area enables them a better contact with the microorganisms. This is further supported
202 by the revelation that size dependent interaction of silver nanoparticles with bacteria leads to its antibacterial
203 activity (Pal 2007).

204 The toxicity of silver ions, though not very clearly understood, could be by their adhesion to the cell membrane
205 and further penetration inside or by interaction with phosphorus containing compounds like DNA disturbing the
206 replication process or preferably by their attack on the respiratory chain. It has also been suggested that a
207 strong reaction takes place between the silver ions and thiol groups of vital enzymes thus inactivating them.
208 Some studies reported that the attachment of the nanoparticles on to the surface of the cell membrane disturbs
209 the permeability and respiration functions of the cell. Experimental evidence advocated the loss of replication
210 ability by the DNA when treated with silver ions (Mahendra Rai 2009). The effect of the silver nanoparticles
211 was observed to be more in gram negative bacteria than gram positive bacteria which are attributed to the fact
212 that the relative abundance of negative charges on gram negative bacteria facilitated the interaction between the
213 nanoparticles and the cell wall (Siddhartha 2007).

214 A novel approach for the green synthesis of silver nanoparticles was carried out using the endophytic bacteria,
215 *bacillus cereus* isolated from *adathoda beddomei*. the ability of the bacteria to reduce ag⁺ to ag⁰ was harnessed
216 with the size of nanoparticles ranging between 11-16 nm. they were found to be spherical and uniformly
217 distributed and extracellularly synthesised. additionally the agnps were found to have antibacterial activity
218 against the test organisms, more profound against gram negative

1

Figure 1: Fig. 1 .

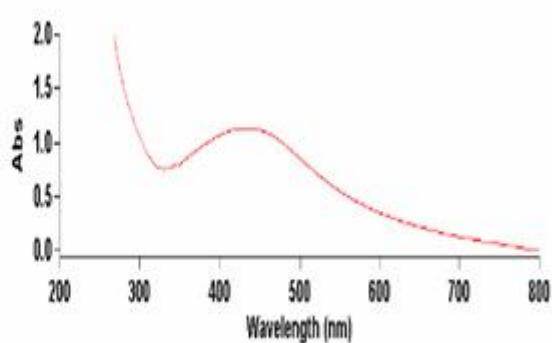
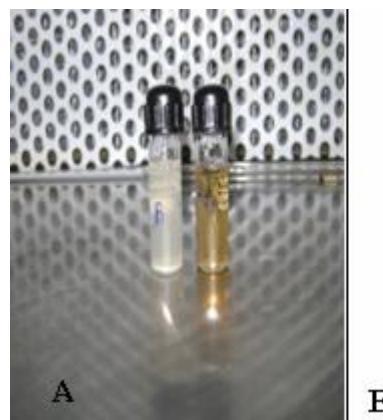
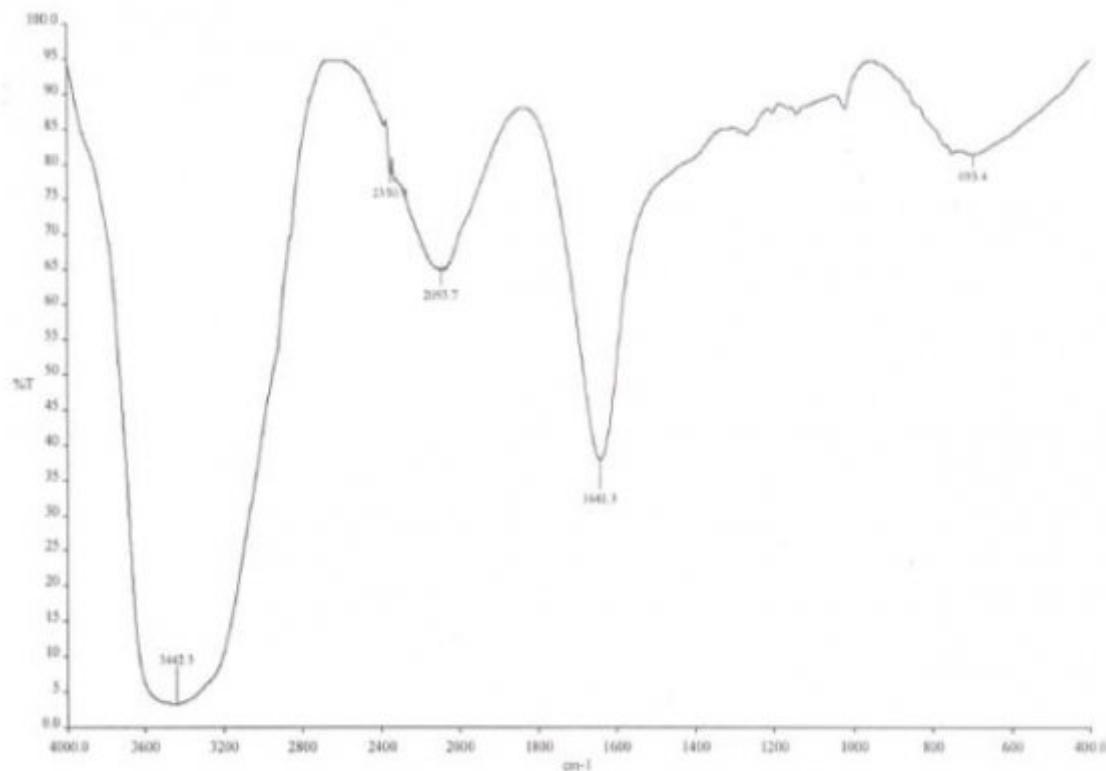




Figure 2:

9 A) ISOLATION AND MOLECULAR CHARACTERIZATION OF ENDOPHYTIC BACTERIA

2

Figure 3: Fig 2 .

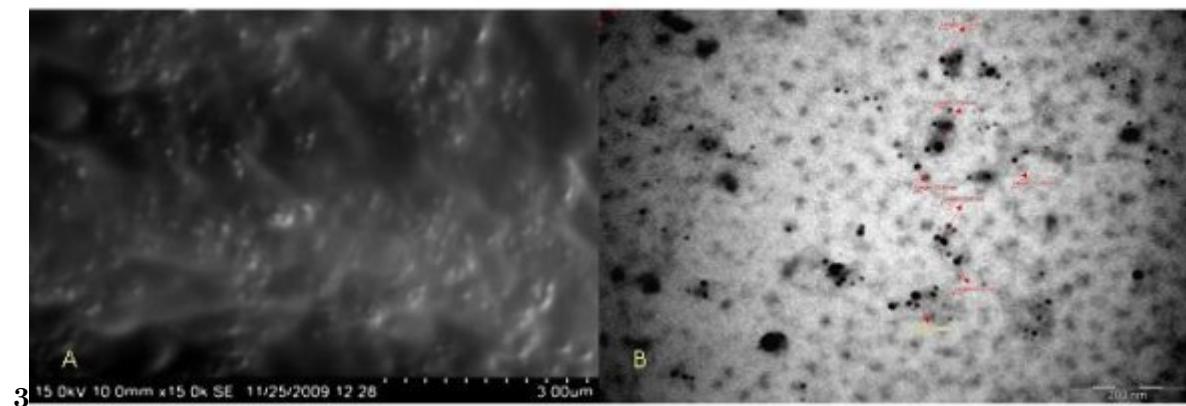
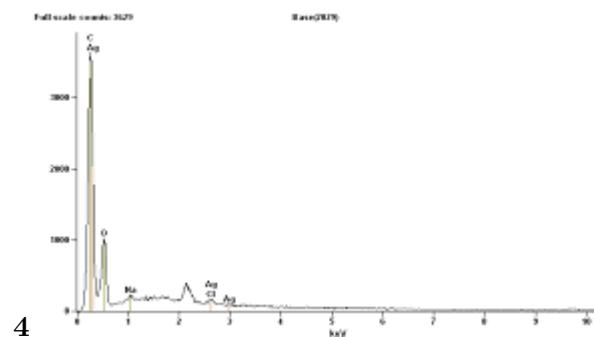



Figure 4: Fig. 3 .

4

Figure 5: Fig. 4 .

1

Test Organism	Zone of Inhibition (mm)	
	Sample	Ofloxacin
Pseudomonas aeruginosa	17	12
Escherichia coli	15	13
Staphylococcus aureus	12	15

Figure 6: Table 1 :

**9 A) ISOLATION AND MOLECULAR CHARACTERIZATION OF
ENDOPHYTIC BACTERIA**

219 [Chemistrybiology] , Chemistry&biology . 10 p. .

220 [Rhodopseudomonas capsulate. Materials Letters] , *Rhodopseudomonas capsulate. Materials Letters* 61 p. .

221 [Weisburg et al. ()] '16S ribosomal DNA amplification for phylogenetic study'. W G Weisburg , S M Barns , D A Pelletier , D J Lane . *J Bacteriol* 1991. 17 p. .

222 [Gurunathan et al. ()] 'Antiangiogenic properties of silver nanoparticles'. S Gurunathan , K J Lee , K Kalishwaralal , S Sheikpranbabu , R Vaidyanathan , S H Eom . *Biomaterials* 2009a. 30 p. .

223 [Perez et al. ()] 'Antibiotic assay by agar well diffusion method'. C Perez , M Paul , P Bazerque . *Acta Biol. Med. Exp* 1990. 15 p. .

224 [Wang et al. ()] 'Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates'. S Wang , N Mamedova , N A Kotov , W Chen , J Studer . *Nano Letters* 2002. 2 p. .

225 [Ravi Raja et al. ()] 'Antimicrobial evaluation of endophytic fungi inhabiting plants of Western Ghats of India'. N S Ravi Raja , G L Maria , K R Sridhar . *Eng. Lifescience* 2006. 6 p. .

226 [Woese ()] 'Bacterial evolution'. C R Woese . *Microbiol Rev* 1987. 51 p. .

227 [Thakkar et al. ()] 'Biological synthesis of metallic nanoparticles'. K N Thakkar , S S Mhatre , R Y Parikh . *Nanomedicine* 2010. 6 (2) p. .

228 [Mann ()] *Biomimetic materials chemistry*, S Mann . 1996. New York: VCH Publishers.

229 [Ma et al.] 'Biomimetic processing of nanocrystallite bioactive apatite coating on titanium'. J Ma , H Wong , L B Kong , K W Peng . *Nanotechnology* 14 p. .

230 [Shankar et al. ()] 'Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes'. Shiv Shankar , S Absar , Ahmad Renu Pasricha , Murali Sastry . *J. Mater. Chem* 2003. 13 p. .

231 [Zhang et al. ()] 'Biosorption and bioreduction of diaminesilver complex by *Corynebacterium*'. H Zhang , Q Li , Y Lu , D Sun , X Lin , X Deng . *J Chem Technol Biotechnol* 2005. 80 p. .

232 [Vijay et al. ()] 'Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus *Aspergillus clavatus*'. C Vijay , Verma , N Ravindra , Kharwar , C Alan , Gange . *Nanomedicine* 2010. 5 p. .

233 [Sathyavati et al. ()] 'Biosynthesis of Silver Nanoparticles Using *Coriandrum Sativum* Leaf Extract and Their Application in Nonlinear Optics'. R Sathyavati , M B Krishna , S V Rao , R Saritha , D N Rao . *Adv. Sci. Lett* 2010. 3 (1) p. .

234 [Kalimuthu et al. ()] 'Biosynthesis of silvernanocrystals by *Bacillus licheniformis*'. K Kalimuthu , R Suresh Babu , D Venkataraman , M Bilal , S Gurunathan . *Colloids and surfaces B: biointerfaces* 2008. 65 p. .

235 [Gurunathan et al. ()] 'Biosynthesis, purification and characterization of silver nanoparticles using *Escherichia coli*'. S Gurunathan , K Kalishwaralal , R Vaidyanathan , D Venkataraman , S R K Pandian , J Muniyandi , N Hariharan , S H Eom . *Colloids Surf B* 2009b. 74 (1) p. .

236 [Parak et al. ()] 'Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks'. W J Parak , R Boudreau , M L Gros , D Gerion , D Zanchet , C M Micheel , S C Williams , A P Alivisatos , C A Larabell . *Adv Mater* 2002. 14 p. .

237 [Procópio et al. ()] 'Characterization of an endophytic bacterial community associated with *Eucalyptus* spp'. R E L Procópio , W L Araújo , W MaccheroniJr , J L Azevedo . *Genetics and Molecular Research* 2009. 8 p. .

238 [Shrivastava et al. ()] 'Characterization of enhanced antibacterial effects of novel silver nanoparticles'. Siddhartha Shrivastava , Tanmay Bera , Arnab Roy , Gajendra Singh , P Ramachandrarao , Debabrata Dash . *Nanotechnology* 2007. 18 p. .

239 [Nair and Pradeep ()] 'Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains'. B Nair , T Pradeep . *Cryst Growth Des* 2002. 2 p. .

240 [Pal et al. ()] 'Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium *Escherichia coli*'. S Pal , Y K Tak , J M Song . *Appl. Environ. Microbiol* 2007. (6) p. .

241 [Minaeian et al. ()] 'Extracellular biosynthesis of silver nanoparticles by some bacteria'. S Minaeian , A R Shahverdi , A S Nohi , H R Shahverdi . *J. Sci. I. A. U (JSIAU)* 2008. 17 p. .

242 [Bhainsa and Souza ()] 'Extracellular biosynthesis of silver nanoparticles using the fungus *Aspergillus fumigatus*'. K C Bhainsa , S F Souza . *Colloids Surf B* 2006. 47 p. .

243 [Ahmad et al. ()] 'Extracellular biosynthesis of silver nanoparticles using the fungus *Fusarium oxysporum*'. A Ahmad , P Mukherjee , S Senapati , D Mandal , M I Khan , R Kumar . *Colloids Surf B* 2003. 28 p. .

244 [Kowshik et al. ()] 'Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3'. M Kowshik , S H Ashtaputre , S H Kharazi . *Nanotechnology* 2003. 14 p. .

9 A) ISOLATION AND MOLECULAR CHARACTERIZATION OF ENDOPHYTIC BACTERIA

273 [Garrity and Springer ()] G Garrity , Springer . AAVV: *Bergey's Manual of Systemic Bacteriology*, (London)
274 2005. 2.

275 [Mallikarjuna et al. ()] 'Green synthesis of silver nanoparticles using ocimum leaf extract and their characteriza-
276 tion'. K Mallikarjuna , G Narasimha , G R Dillip , B Praveen , B Shreedhar , C Sree Lakshmi , B V S Reddy
277 , Deva Prasad Raju , B . *Digest Journal of Nanomaterials and Biostructures* 2011. 6 p. .

278 [Molday and Mackenzie ()] 'Immunospecific ferromagnetic iron dextran reagents for the labeling and magnetic
279 separation of cells'. R S Molday , D Mackenzie . *J Immunol Methods* 1982. 52 p. .

280 [Yoshida and Kobayashi ()] 'Intracellular hyperthermia for cancer using magnetite cationic liposomes'. J Yoshida
281 , T Kobayashi . *J Magn Magn Mater* 1999. 194 p. .

282 [Bacon and White ()] *Microbial endophytes*, C W Bacon , J F White . 2000. New York, N.Y.: Marcel Dekker
283 Inc.

284 [Mah et al. ()] 'Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo'. C Mah , I
285 Zolotukhin , T J Fraites , J Dobson , C Batich , B J Byrne . *Mol Therapy* 2000. 1 p. S239.

286 [De La Isla et al. ()] 'Nanohybrid scratch resistant coating for teeth and bone viscoelasticity manifested in
287 tribology'. A De La Isla , W Brostow , B Bujard , M Estevez , J R Rodriguez , S Vargas , V M Castano .
288 *Mat Resr Innovat* 2003. 7 p. .

289 [Nam et al. ()] 'Nanoparticles-based bio-bar codes for the ultrasensitive detection of proteins'. J M Nam , C C
290 Thaxton , C A Mirkin . *Science* 2003. 301 p. .

291 [Panatarotto et al. ()] D Panatarotto , C D Pritidos , J Hoobeke , F Brown , E Kramer , J P Briand , S Muller
292 , M Prato , A Bianco . *Immunization with peptidefunctionalized carbon nanotubes enhances virus*, 2003.

293 [Henglein ()] 'Physicochemical properties of small metal particles in solution: "microelectrode" reactions,
294 chemisorption, composite metal particles, and the atom-to-metal transition'. A Henglein . *J. Phys. Chem*
295 1993. 97 p. .

296 [Mahtab et al. ()] 'Protein-sized quantum dot luminescence can distinguish between "straight", "bent", and
297 "kinked" oligonucleotides'. R Mahtab , J P Rogers , C J Murphy . *J Am Chem Soc* 2003. 117 p. .

298 [Chan and Nie ()] 'Quantum dot bioconjugates for ultrasensitive nonisotopic detection'. W C W Chan , S M Nie
299 . *Science* 1998. 281 p. .

300 [Saifuddin et al. ()] 'Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with
301 Microwave Irradiation'. N Saifuddin , C W Wong , A A Nuryasumira . *E-J Chem* 2009. 6 p. .

302 [Mouxing et al. ()] 'Rapid preparation process of silver nanoparticles by bioreduction and their characterisation'.
303 F U Mouxing , L I Qingbiao , S U N Daohua , L U Yinghua , H E Ning , X U Deng , Wang Huixuan , Huang
304 Jaile . *Chinese J. Chem Eng* 2006. 14 (1) p. .

305 [Bruchez et al. ()] 'Semiconductor nanocrystals as fluorescent biological labels'. M Bruchez , M Moronne , P Gin
306 , S Weiss , A P Alivisatos . *Science* 1998. 281 p. .

307 [Shiying He et al. ()] Shiying He , Yu Zhirui Guo , Song Zhang , Jing Zhang , Ning Wang , Gu . *Biosynthesis of
308 gold nanoparticles using the bacteria*, 2007.

309 [Klaus et al. ()] 'Silver based crystalline nanoparticles, microbially fabricated'. T Klaus , R Joerger , E Olsson ,
310 C G Granqvist . *Proc Natl Acad Sci* 1999. 968 p. .

311 [Mahendra Rai et al. ()] 'Silver nanoparticles as a new generation of antimicrobials'. Alka Mahendra Rai , Aniket
312 Yadav , Gade . *Biotechnology Advances* 2009. 27 p. .

313 [Sadowski et al. ()] *Synthesis of silver nanoparticles using microorganisms Materials Science-Poland*, Z Sadowski
314 , I H Maliszewska , B Grochowalska , I Polowczyk , T O?lecki . 2008. 26 p. .

315 [Edelstein et al. ()] 'The BARC biosensor applied to the detection of biological warfare'. R L Edelstein , C R
316 Tamanaha , P Sheehan , E Miller , M M Baselt , D R Whitman , L J Colton , RJ . *Biosensors Bioelectron*
317 2000. 14 p. .

318 [Weissleder et al. ()] 'Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents
319 for MR imaging'. R Weissleder , G Elizondo , J Wittenburg , C A Rabito , H H Bengele , L Josephson .
320 *Radiology* 1990. 175 p. .