

Respiratory Syncytial Virus Bronchiolitis IgA LT-E4 Responses and Effects of Host Factors in Two Iraqi Pediatric Hospitals

Dr. Afrah¹

4 ¹ Baghdad University College of Pharmacy

Received: 17 January 2012 Accepted: 15 February 2012 Published: 29 February 2012

7 Abstract

Background : Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease in infants and young children. Both the magnitude, intensity of infection and the host response to RSV infection determine the severity and intensity of disease. Objective : Our goal was to evaluate the effect of immune response (RSV IgA) and inflammatory mediators (LT-E4), in addition to the influence of host factors on the severity of the disease. Methods : This was a randomized, prospective study in two Iraqi pediatric hospitals. Sixty infants (mean age: 6.99 ± 0.62 ,35 boys 25 girls) ,with a first episode of acute bronchiolitis were randomly divided into four treatment groups: oxygen plus intravenous fluid, montelukast pediatric chewable tablet,salbutamol given in combination as oral plus nebulized salbutamol, and dexamethasone IV injection. Control infants with non respiratory diseases were also studied for comparisons. The measured parameters was RSV IgA titer, LT-E4 titer, and a variety of environmental and host factors that may contribute to the severity of RSV bronchiolitis. Severity of bronchiolitis was based on the quantization of lowest O₂ saturation and the length of hospital stay. Results : There were significant increase in RSV IgA values in patients (1.58 ± 0.24 U/mL) compare to the control (0.36 ± 0.03 U/mL);also there were a significant increase in the leukotriene E 4 values in patients (2.66 ± 0.52 ng/ml) compared to the control infants(0.15 ± 0.007 ng/ml). Age was found to be a significant factor in the severity of infection. The younger an infant was, the more severe the infection tended to be as measured by the lowest oxygen (O₂) saturation. We also found that infants exposed to postnatal cigarette smoke from the mother had a lower O₂ saturation than those not exposed. Although a history of maternal atopy seemed to be protective. Conclusion : Secretory IgA antibodies level was found to be a good indicator to respiratory syncytial virus infection as seen by significantly higher levels in patients compared to the control infants. The severity of RSV bronchiolitis early in life seems modified by postnatal maternal cigarette smoke exposure, atopy and age of the infants.

Index terms— RSV, Respiratory Syncytial Virus IgA (RSV IgA); Leukotriene E-4(LT-E4), Bronchiolitis. patients compared to the control infants. The severity of RSV bronchiolitis early in life seems modified by postnatal maternal cigarette smoke exposure, atopy and age of the infants.

Keywords : RSV, Respiratory Syncytial Virus IgA (RSV-IgA); Leukotriene E-4(LT-E4), Bronchiolitis. respiratory syncytial virus (RSV) is the leading cause of serious respiratory tract infections in infants and young children throughout the world (1). RSV replicates for 1-3 days before producing lower respiratory tract symptoms affecting almost 60% of infants and up to 25% of toddlers and preschoolers. Current treatment approaches for severe RSV induced disease are ineffective. Therefore, prevention of disease is a high priority .Immunoglobulin

42 A(IgA) is the most abundant immunoglobulin in mammals. Unlike other antibody isotypes, IgA is targeted
43 to mucosal tissues, and virus-specific IgA in mucosal secretions has been shown to protect from reinfection.
44 IgA, unlike IgG, is able to bind and neutralize viral proteins intracellularly at the site of initial replication in
45 epithelial cells .Therefore; mucosal IgA may be of particular importance in immunity against RSV, which is a
46 mucosally restricted pathogen (2,3). Inflammatory mechanisms in bronchiolitis have been documented recently,
47 including increased airway secretion, mucosal edema, and infiltration of inflammatory cells. Cysteinyl leukotrienes
48 (CysLTs) are released during respiratory syncytial virus (RSV) airway infection in infants, and their levels are
49 significantly elevated. CysLTs are known to cause bronchial obstruction, mucosal edema, and infiltration of
50 eosinophilic granulocytes and to increase bronchial responsiveness (4). CysLTE4 (LTE4), one of the terminal
51 CysLT metabolites, is significantly increased in the infants hospitalized with RSV bronchiolitis (5). The risk of
52 severe RSV disease is increased by factors that compromise the ability to control and withstand a respiratory
53 tract infection. Therefore; environmental factors also play a role, including ones that affect lung function (e.g.,
54 household tobacco use) or that increase exposure to infection (e.g., day care, hospitalization, multiple siblings,
55 crowding) (6,7). The objective of the present randomized, prospective study was to evaluate the effects of immune
56 response, inflammatory mediators, host and environmental factors on the severity of the acute viral bronchiolitis.
57 This prospective study was conducted in two Iraqi pediatric hospitals. Baghdad Health Office/Karkh, Child's
58 Central Teaching Hospital & Karbala Health Office, Karbala Pediatric Teaching Hospital. Inclusion criteria
59 were infants' patients aged >8 weeks and <2 years with a respiratory symptom duration of<4 days. Additional
60 inclusion criteria included first episode of wheezing or shortness of breath, randomization within 12 hours of
61 admission and informed consent. Exclusion criteria were any previous hospital admissions with respiratory
62 illnesses, had ever been treated with antiasthma medications before the current illness, corticosteroids treatment
63 in any form during current illness, and underlying cardiopulmonary disease. Gender, age, weight, height , body
64 temperature ,family history in (first-degree relatives), of asthma ,atopy, tobacco smoking, usage of kerosene heater
65 ,type of feeding ,duration of exclusive breast feeding, concurrent diseases, and concomitant medications, were
66 recorded for each infants .A total number of 60 patients mean age: 6.99 ± 0.62 with mild to moderate bronchiolitis
67 were divided randomly into four treatment groups:

68 Group A: Ten infants' patients had received oxygen + intravenous fluid. Group B: Ten infants' patients
69 had received study treatment, montelukast pediatric chewable tablet 4mg once daily, if vomiting occurred one
70 additional dose was given. Group C: Twenty infants' patients had received salbutamol given in combination as
71 syrup & by nebulization, (oral salbutamol 0.1-0.3mg/kg/dose q8 hour+salbutamol nebulizer 0.01-0.02 mg/kg
72 /dose q6hour). Group D: Twenty infants' patients had received dexamethasone ampoule (4mg/1ml), with a dose
73 of, 0.25 -0.5 mg/kg/dose q 12 hours intravenously.

74 From all enrolled infants, blood samples were taken and try to measure both (RSV IgA) & LT-E4, antibody
75 to RSV & inflammatory mediators that release during RSV acute bronchiolitis, respectively. These parameters
76 were measured by the enzyme linked immunoassays (ELISA), to investigate the etiology of acute respiratory
77 infections in hospitalized infants .The test was explained to the parents and they signed the informed consent
78 form. The obtained optical density (OD) of the standards (y-axis, linear) are plotted against their concentration
79 (x-axis, logarithmic) either on semilogarithmic graph paper or using an automated method (8,9,10) .

80 Other type of samples that taken from the patients that put on the study treatment, montelukast pediatric
81 chewable 4mg tablets, was the nasal swab. In the present study, we prospectively tried to examine the association
82 between the presence of nasal eosinophils and severity of acute bronchiolitis and the effect of montelukast on nasal
83 eosinophil. In this study we tried to quantify the number of neutrophils and eosinophils in nasal secretions by
84 utilizing the semiquantitative nasal cytology grading score by Meltzer (11,12) . The values of weight,& duration
85 of exclusive were expressed as mean \pm standard error of mean (SEM).

86 1 March

87 The table (2) showed the RSV IgA values for infants' patients with acute viral bronchiolitis, together with RSV
88 IgA values for the control infants. There was a significant increase in RSV IgA values in patients compared to
89 the control infants. There was a significant relationships between titer of the antibody against RSV(RSV IgA)
90 and family history of atopy,tobacco smoking ,and the ages of infants patients.

91 Table (1), demonstrated that, there were no significant differences between the groups in terms of demographic
92 variables.

93 Table (2): Relationships between host factors and RSV IgA titer for infants' patients with acute viral
94 bronchiolitis and for the control infants. Data were expressed as mean \pm standard error of mean (SEM), number
95 (n) and percent (%). Control :infants with non respiratory illness Table (3) showed the leukotriene E4 values
96 in infants patients with acute bronchiolitis, together with leukotriene values of the control infants. There was a
97 significant increase in the leukotriene E4 values in patients compared to the control infants As the table shown,
98 only the gender and family history of tobacco smoke showed significant differences.

99 2 RSV

100 Table (4) Effects of host factors on length of stay (LOS) and oxygen saturation (S P O₂) for the infants patients
101 with acute viral bronchiolitis .Data were expressed as mean \pm standard error of mean (SEM) ,number (n) and
102 percent (%).

103 Table (4) showed the effects of host factors on the length of hospital stay (LOS) and oxygen saturation (S P O
104 2) in infants patients with acute viral bronchiolitis. As the table shown, only the host factors of family history of
105 atopy and breast feeding of infants showed significant effects on duration of hospital stay and oxygen saturation
106 of blood.

107 Concerning nasal swab from infants' patients with acute viral bronchiolitis before and after treatment with
108 montelukast chewable 4 mg tablets once daily; according to Meltzer grading there was a significant differences in
109 the count of eosinophils -neutrophils before and after treatment with montelukast ; 1. 6 reinfection can readily
110 occur throughout life without significant antigenic change .The relative contribution of viral versus various host
111 factors to RSV pathogenesis remains controversial (6). The immune response to primary RSV infection is
112 generally inefficient and consequently subsequent reinfections are common throughout life. In RSV infection,
113 innate and adaptive immunity are out of balance (13).

114 Comparing the risk factors with RSV IgA values of infants' patients, only the age, history of atopy and passive
115 tobacco smoking showed significant differences (14). In the age category older infants' patients (over 1 year) had
116 significantly higher RSV IgA value compared to younger patients (below 1 year) . Patients with negative family
117 history of atopy had significantly higher RSV IgA value compared to patients with positive history of atopy.
118 On the other hand patients with positive history of passive tobacco smoking had significantly higher RSV IgA
119 value compared with those of negative history of passive tobacco smoking. This could indicate that, parental
120 smoking did not inhibit the production of antimicrobial IgA, suggesting that other factors are responsible for
121 the increased susceptibility to infection in these infants. Infants who lived in tobacco smoking environments
122 had increased severity of disease, as results of Th2 predominance, with decreased expression of Th1 cytokines
123 (15) , and IgA titer was less effective for protecting against RSV infection (2) . Lanari et al. (??002) (14) ,
124 demonstrated that exposure to cigarette smoke, in general, seems to worsen the severity of the viral bronchiolitis.

125 Comparing the risk factors with LTE4 values, only the gender and family history of tobacco smoke showed
126 significant difference. Concerning the gender, the value in female babies was significantly higher than male babies.
127 This could indicate that the females infants had more sever RSV infections compared to male infants; this has
128 been attributed to the tendency of parents to bring sick male babies to the hospital earlier than female babies
129 (3) .CysLT increased in infants who exposed to the tobacco smoke. This could indicated that, the exposure to
130 the tobacco smoke increases the severity of RSV bronchiolitis, which was described here by the increased level of
131 LTE4 in the infants who lived in tobacco smoking environments (16,17,18).

132 Comparing the effects of host factors (age, sex, family history of asthma, atopy, tobacco smoking, kerosene
133 heating, presence of pets at home, breast or bottle feeding and number of family members) on the length of
134 hospital stay and oxygen saturation in infants with acute viral bronchiolitis; only the host factors of family
135 history of atopy and breast feeding of infants showed a significant effects on duration of hospital stay and oxygen
136 saturation of blood (19) . Infants with a positive family of atopy showed a shorter duration of hospital stay and
137 a higher value of blood oxygen saturation compared to infants with acute viral bronchiolitis and have no family
138 history of atopy. Breast feeding of infants with acute viral bronchiolitis showed a significant effect on the blood
139 oxygen saturation and length of hospital stay. Breast feeding is protective, through either transfer of maternal
140 antibody or enhancement of virus-specific lymphocyte transformation activity. Infants with breast feeding have
141 a shorter length of stay and higher value of blood oxygen saturation relative to infants without having breast
142 feeding and have bottle fed.

143 This finding is substantiated further by the fact that infants with a higher O₂ saturation spent less time in
144 the hospital than infants with a lower O₂ saturation (14) .

145 Regarding to the effects of RSV IgA level on the length of hospital stay and patients oxygen saturation,
146 there were a significant effects on both length of hospital stay and patient oxygen saturation. Infants with low
147 titer of RSV IgA showed longer period of hospital stay & lower values of oxygen saturation compared to the
148 patients with a high titer of RSV IgA , which could indicated effects of immune response of the patients on the
149 resolution of symptoms and the time at which patients were fit to the discharge (7,20) . Regarding to the effects
150 of inflammatory mediators' cysteinyl leukotriene and its metabolite LTE4 on the period of hospital stay and
151 oxygen saturation of infants patients with acute viral bronchiolitis, there were significant effects. High titers of
152 LTE4 associated with prolong hospital stay and lower value of blood oxygen saturation .Female, younger infants,
153 negative family history of atopy, and absence of breast feeding, showed longer period of hospital admission &
154 lower value of blood oxygen saturation.

155 According to Meltzer grading there were a significant differences in the counts of eosinophilsneutrophils before
156 and after treatment with montelukast tablet for the infants patients with acute viral bronchiolitis. This could
157 indicated that eosinophilrecruiting chemokines are strongly produced and released from bronchial epithelial cells
158 after stimulation with RSV (12) ;and montelukast treatment has been shown to reduce eosinophils in nasal
159 mucosa of infants (21) .

160 3 March

161 The relationships between risk factors and RSV IgA titer in infants with viral bronchiolitis, only age, family
162 history of atopy and tobacco smoking showed significant effects. Patients with low titer of RSV IgA showed
163 longer period of hospital stay & lower values of oxygen saturation comparing to the patients with a high titer
164 of RSV IgA. Concerning the relationships between risk factors of infants with bronchiolitis and leukotriene E4
165 level, only the gender and family history of tobacco smoke showed significant difference. There were a significant
166 effects of high level of LTE4 on the period of hospital stay compared to the low level of LTE4.

167 Host factors of family history of atopy and breast feeding of infants showed significant effects on duration of
168 hospital stay and oxygen saturation of blood. Infants exposed to postnatal cigarette smoke from the mother
169 had a lower O₂ saturation than those not exposed. Infants with a family history of atopy especially a maternal
170 history of asthma had a higher O₂ saturation. Infants with highest blood oxygen saturation, have shorter length
171 of hospital stay.

172 There were significant differences in the count of eosinophils -neutrophils before and after treatment with
173 montelukast, which could indicated that, there was a correlation between nasal eosinophil and severity of viral
bronchiolitis .

(

Characteristics	Patients (n total =60) (n,%)	Control Infants (n total =20) (n,%)
Age <6months.	40, (59)	12, (60)
Age >6months.	20, (41)	8,(40)
Male.	35 ,(58)	14, (70)
Female.	25 ,(42)	6 ,(30)
Family history of asthma.	30, (52)	8 ,(40)
Family history of atopy.	38 ,(63)	12, (60)
History of passive tobacco smoking.	44,(74)	16, (80)
Family history of kerosene heating.	46 ,(77)	14, (70)
Presence of pets at house.	26, (45)	10, (50)
Breast feeding.	33 ,(54)	2, (10)
Bottle feeding.	18,(30)	14 ,(70)
Mixed feeding.	8,(13)	4, (20)
< 5 Member.	8,(13)	4,(20)
>5 Member.	52,(87)	16(80)
Mean weight, kg.	7.2 ± 0.79	9.3 ± 1.14
Duration of exclusive breast feeding, months.	4.53± 0.303	8 ± 2.68

Figure 1: Table (1

(

	Patients	Patients	Pat
	n ,(%)	U/r	
	n ,,(%) total = 48		
LT-E4 High Titer.			2.66
LT-E4 Low Titer.			0.14
		total	
		=	
		45	
RSV IgA high titer (mean ± SEM)	36		1.58
RSV IgA low titer (mean ± SEM) Age <1year. Age >1 year.	(75) 12 (25)		
Age <1year. Male.	34,(70.8)	34 (75.6)	1.24
Age >1 year. Female.	14,(29.1)	11 (24.4)	2.63
Male. Positive Family history of Asthma. Female. Negative Family history of Asthma. Positive Family history of Atopy.	23,(47.9) 25 (52.1) 34 (70.8)	34 (75.6) 11 (24.4)	1.37
Positive family history of asthma.	14	21,(46.6)	1.21
Negative Family history of Atopy.	(29.1)		
Negative family history of asthma.		24(53.3)	1.91
Positive History Of Passive Tobacco			
Positive family history of atopy.	38	33	1.18
Smoking. Negative History Of Passive Tobacco	(79.2)	(73.3)	
Negative family history of atopy.	10(20.8)	12 (26.6)	2.69
Smoking.			
Positive history of passive tobacco smoking. Positive Family history of Kerosene Heating.	40 (83.3)	35 (77.7)	1.79
Negative history of passive tobacco smoking. Negative Family history of Kerosene Heating.	8 (16.6)	10(22.2)	0.86
Positive family history of kerosene heating. Positive Presence of Animal in the house.	20(41.6)	38 (84.4)	1.49
Negative family history of kerosene heating. Negative Presence of Animal in the house.	28 (58.3)	7 (15.6)	2.21
Positive presence of animal in the house. Positive Breast Feeding.	29 (60.4)	20(44.4)	1.26
Negative Presence of animal in the house. Negative Breast Feeding. Positive breast feeding. Positive Bottle feeding. Negative breast feeding. Negative Bottle feeding. Number Of Family Member > 5.	19 (39.6) 20 (41.6) 28 (58.3) 36 ,(75)	25 (55.5) 22(48.8) 23 (51.1)	1.84
Positive bottle feeding. Number Of	12	21,(46.6)	1.41

175 [Collins] , P Collins .

176 [Commun Dis Public Health ()] , *Commun Dis Public Health* 1999. 2 p. .

177 [Allergology International ()] , *Allergology International* 2008. 57 p. .

178 [Amirav et al. ()] 'A double-blind, placebo-controlled, randomized trial of montelukast for acute bronchiolitis'. I
179 Amirav , A Luder , N Kruger . *Pediatrics* 2008. 122 p. .

180 [Vaart et al. ()] 'Acute effects of cigarette smoke on inflammation and oxidative stress: a review'. Der Vaart , H
181 , Postma D S Timens , W , Ten Hacken N H T . *Thorax* 2004. 59 p. .

182 [Mejías et al. ()] 'Asthma and respiratory syncytial virus. New opportunities for therapeutic intervention'. A
183 Mejías , Ríos S A.M Chávez-Bueno , M Fonseca-Aten , . A.M Gómez , JafriH S , RamiloO . *An Pediatr
(Barc)* 2004. 61 (3) p. E2.

185 [Tsu I-Hsien ()] 'Differential modulation of leukotriene b4 synthesis and degradation in human bronchoalveolar
186 lavage cells by lipopolysaccharide and tobacco smoke'. MaoJ T , Tashkin D P Tsu I-Hsien . *Cancer Prev Res*
187 2008. 1 p. .

188 [Kott et al. ()] 'Effect of Secondhand Cigarette Smoke, RSV Bronchiolitis and Parental Asthma on Urinary
189 Cysteinyl LTE4'. K S Kott , B H Salt , R J Mcdonald , S Jhawar , J M Bric , J P Joad . *Pediatric
190 Pulmonology* 2008. 43 p. .

191 [Sritippayawan et al. ()] 'Environmental tobacco smoke exposure and respiratory syncytial virus infection in
192 young children hospitalized with acute lower respiratory tract infection'. S Sritippayawan , N Prapphal , P
193 Wong , P Tosukhowong , R Samransamruajkit , J Deerojanawong . *J Med Assoc Thai* 2006.

194 [No and Csb-E05176h] 'Human leukotriene E4(LT-E4) ELISA Kit'. Catalog No , Csb-E05176h . *Cusabio Biotech
195 Co Ltd* p. .

196 [Fisher et al. ()] 'IgA monoclonal antibody is no more effective than IgG at protecting mice from mucosal
197 challenge with respiratory syncytial virus'. R G Fisher , J E Crowe , Johnson T R Tang , Y Graham ,
198 B S Passive . *The Journal of Infectious Diseases* 1999. 180 p. .

199 [Singleton et al. (2003)] 'Inability To Evoke a Long-Lasting Protective Immune Response to Respiratory Syncytial
200 Virus Infection in Mice Correlates with Ineffective Nasal Antibody Responses'. R Singleton , N Etchart
201 , S Hou , L Hyland . *Journal of Virology* Nov. 2003. 77.

202 [Gupta et al. ()] 'Oral salbutamol for symptomatic relief in mild bronchiolitis:A double blind randomized placebo
203 controlled trial'. P Gupta , A Aggarwal , P & Gupta , K K Sharma . *Indian Pediatrics* 2008. 45 p. .

204 [Shinohara et al.] *Presence of eosinophils in nasal secretion during acute respiratory tract infection in young
205 children predicts subsequent wheezing within two months*, M Shinohara , H Wakiguchi , H Saito , K Matsumoto
206 .

207 [D'costa G.F and Shedge ()] 'Quantitative cytology of nasal secretion and scrapings in children with perennial
208 allergic rhinitis ,a comparison of non-infected and infected conditions'. Candes A F D'costa G.F , R Shedge .
209 *Bombay Hospital Journal* 2009. 51 (4) p. .

210 [Chakravarti and Kashyap (2007)] *Respiratory syncytial virus in lower respiratory tract infections*, A Chakravarti
211 , B Kashyap . June 2007. *Iran J Ped.* 17 p. .

212 [Crowcroft et al.] *Respiratory syncytial virus: an underestimated cause of respiratory infection*, N Crowcroft , F
213 S; Cutts , M C ; Zambon . (with prospects for a vaccine)

214 [Respiratory virus IgA Elisa DAI Code ()] 'Respiratory virus IgA Elisa'. *DAI Code #* 2009. 8 p. .

215 [Bradley et al. ()] 'Severity of respiratory syncytial virus bronchiolitis is affected by cigarette smoke exposure
216 and atopy'. J P Bradley , L B Bacharier , J Bonfiglio , K B Schechtman , R Strunk , G Storch , M Castro .
217 *Pediatrics* 2005. 115 p. .

218 [Patrick ()] 'Systematic review of the biology and medical management of respiratory syncytial virus infection'.
219 B Patrick . *Respir Care* 2003. 48 (3) p. .

220 [Flores et al. ()] 'Th1 and th2 cytokine expression in nasopharyngeal secretions during acute bronchiolitis in
221 children younger than two years old'. P Flores , J Guimaraes , J M Guimaraes . *Allergol Immunopathol
(Madr)* 2011. 39 (1) p. .

223 [Graham ()] 'Viral and host factors in human respiratory syncytial virus pathogenesis'. B S Graham . *Journal
224 of Virology* 2007. p. .

225 [Graham (2008)] 'Viral and host factors in human respiratory syncytial virus pathogenesis'. Collins P L Graham
226 , BS . *Journal of Virology* Mar. 2008. 82 (5) p. .