

# Rp-Hplc Method for the Determination of Pramipexole Dihydrochloride in Tablet Dosage Form

Dr. P.Lavudu<sup>1</sup>, A.Prameela Rani<sup>2</sup> and petikam lavudu<sup>3</sup>

1

5 *Received: 18 February 2012 Accepted: 16 March 2012 Published: 28 March 2012*

6

---

## 7 **Abstract**

8 A simple, sensitive, rapid, selective, precise and accurate high performance liquid  
9 chromatographic method was developed and validated for the determination of Pramipexole  
10 dihydrochloride in bulk and tablet dosage forms. HPLC separation was carried out by  
11 reversed phase chromatography on a Thermo Scientific C18 column (250 mm × 4.6 mm, 5  
12 ?m), held at ambient temperature. The mobile phase consisted of methanol: acetonitrile  
13 (40:60 v/v), run at a flow rate of 1.0 ml/min and with UV detection at 263 nm. The method  
14 was found to be linear over an analytical range of 1-100 ?g/ml with LOD = 0.075 ?g/ml and  
15 LOQ = 0.227 ?g/ml, respectively. The proposed method was validated successfully and  
16 applied to the quantification of the drug in tablet dosage forms.

17

---

18 **Index terms**— Pramipexole dihydrochloride, RP-HPLC, development, Validation.  
19 ramipexole dihydrochloride (PPD) [1][2][3][4][5][6], a nonergot dopamine agonist approved in the US (1997),  
20 is used as an antidyskinetic for treatment of Parkinson's disease. Its chemical name is (S)-N 6 propyl-4,5,6,7-  
21 tetrahydro-1,3-benzothiazole-2,6-diamine dihydrochloride (Fig. ??). The ability of PPD to alleviate the signs  
22 and symptoms of Parkinson's disease is supposed to be linked to its ability to stimulate dopamine receptors in  
23 the striatum.

24 Various analytical methods have been reported in the literature for the assay of PPD in pure and in its  
25 pharmaceuticals preparations. Procedures using UVspectrophotometry [7], visible spectrophotometry [8,9],  
26 HPTLC [10] have been reported by several workers. High-performance liquid chromatography with mass  
27 spectrometer (HPLC-MS) [11][12][13], capillary electrophoresis with laser-induced fluorescence detection [14 ],  
28 gas chromatography with mass spectrometer (GC-MS) [15] and Ultra-performance liquid chromatography with  
29 mass spectrometer (UPLC-MS) [16] have been used for the analysis of PPD in biological samples.

30 Only few HPLC methods with UV detection have been described in the literature for determination of  
31 PPD. Pathare et al [17] developed a chiral liquid chromatographic method for the enantiomeric resolution of  
32 Pramipexole dihydrochloride monohydrate on a Chiralpak AD (250 mm × 4.6 mm, 10 ?m) column using a  
33 mobile phase system containing n-hexane:ethanol: diethylamine (70:30:0.1 v/v/v). A method developed for  
34 determination of PPD and its impurities by Jan ?i? et al [18] was carried out using a C18 column with mobile  
35 phases containing different ratios of acetonitrile and water phase (aqueous triethylamine/orthophosphoric acid).  
36 Yau et al [19] reported a HPLC method for the determination of pramipexole in human plasma and urine.

37 Separation is achieved by ion-pair chromatography on a Zorbax Rx C8 column (250 mm × 4.6 mm, 5 ?m) and  
38 a Brown lee RP-8 pre-column (15 mm x 3.2 mm, 7 ?m) with electrochemical detection at 0.6 V for plasma and  
39 ultraviolet detection at 286 nm for urine. A RP-HPLC [20] method for PPD in pure and in its pharmaceutical  
40 dosage forms has been reported by RAO et al and was carried out on an hypersil ODS-C18 (250 mm × 4.6 mm,  
41 5?m) column with acetonitrile and acetate buffer (90:10 v/v) as the mobile phase and a detection wavelength of  
42 260 nm. Srinubabu et al [21] have reported an RP-HPLC method for the assay of PPD in tablet formulations on  
43 an ODS-C18 column (250 mm × 4.6 mm, 5 ?m) with a mobile phase of acetonitrile and phosphate buffer (60:40  
44 v/v) and detection at 260 nm.

## 5 A) METHOD DEVELOPMENT

---

45 The reported HPLC methods for the determination of PPD in pharmaceutical dosage forms suffer from one  
46 or more disadvantages like preparation of buffer, rigid pH control, narrow linear concentration range and less  
47 sensitivity.

48 In this paper, an attempt is made to develop and validate a simple, efficient and reliable method, without  
49 incorporating the use of an internal standard, for the determination of PPD in tablet dosage forms by HPLC  
50 using UV detection. All HPLC experiments were carried out on a isocratic High Pressure Liquid Chromatography  
51 system (Shimadzu HPLC class VP series, Shimadzu Corporation, Kyoto, Japan) with two LC-10 AT, VP  
52 pumps, variable wavelength programmable UV/Visible detector SPD-10A, VP, CTO-10AS VP column oven,  
53 SCL-10A, VP system controller. The HPLC system was equipped with the software "class VP series version  
54 5.03" (Shimadzu). The analytical column used for the separation was 250 mm × 4.6 mm I.D., 5  $\mu$ m particle size,  
55 Thermo Scientific C18 (Phenomenex, Torrance, CA, USA).

### 56 1 b) Chemicals and reagents

57 All chemicals and reagents were of HPLC grade quality. Milli-Q-water was used throughout the process and  
58 it was obtained from Merck Specialties Private Ltd, Hyderabad, and Andhra Pradesh, India. Methanol and  
59 acetonitrile of HPLC grade were from Rankem laboratories, Mumbai, India.

### 60 2 c) Preparation of Mobile phase

61 Mobile phase 'A' consisted of methanol. Mobile phase 'B' was acetonitrile. The mobile phase used for analysis  
62 was prepared by mixing mobile phase 'A' and mobile phase 'B' in the ratio, 40:60 v/v. The same mobile phase  
63 was also used as a diluent for the sample preparations.

### 64 3 d) Standard solutions and tablet dosage forms

65 Pharmaceutical grade PPD was kindly gifted by Matrix laboratories, Hyderabad, India, and was used as received.  
66 The following available pharmaceutical dosage forms containing 0.5 mg and 1 mg of active ingredient were  
67 purchased from the local pharmacy and used in the present investigation:

68 ? Parpex (1 mg, Zydus cadila, Ahmedabad, India) ? Pramipex (0.5 mg and 1 mg, Sun pharma, Mumbai,  
69 India) Stock solution of PPD (1 mg/ml) was prepared by dissolving 100 mg of PPD in 50 ml of diluent in a 100  
70 ml volumetric flask and then made up to the mark with diluent.

### 71 4 e) Chromatographic conditions

72 The mobile phase was a mixture of methanol and acetonitrile (40:60 v/v). The contents of the mobile phase  
73 were filtered before use through 0.45  $\mu$ m membrane filter, degassed with a helium sparge for 15 min and pumped  
74 from the respective solvent reservoirs to the column at a flow rate of 1 ml/min. The column temperature was  
75 maintained at 25±10C. The injection volume of samples was 20  $\mu$ l. The analyte was monitored at a wavelength  
76 of 263 nm. f) Recommended procedure Working standard solutions equivalent to 1 to 100  $\mu$ g/ml PPD were  
77 prepared by appropriate dilution of the stock standard solution (1 mg/ml) with the diluent. Prior to injection  
78 of the drug, the mobile phase was pumped for about 30 minutes to saturate the column thereby to get the base  
79 line corrected. 20  $\mu$ l of each solution was injected automatically onto the column in triplicate and the peaks were  
80 determined at 263 nm. The peak areas of PPD were plotted against the corresponding nominal concentration to  
81 obtain calibration graph. The concentration of the drug was obtained from the calibration graph or the regression  
82 equation.

83 g) Procedure for tablet dosage forms Fifty tablets containing PPD were exactly weighed and ground into a  
84 fine powder. From this powder, an amount of the tablet powder equivalent to 25 mg PPD was transferred to a  
85 25 ml standard flask containing 10 ml of diluent and shaken for 10 minutes. The volume was made up to the  
86 mark with diluent and mixed well. The solution was filtered through a 0.45  $\mu$ m membrane filter. The filtered  
87 solution was appropriately diluted with diluent to obtain a concentration of 100  $\mu$ g/ml. From this solution, 20  
88  $\mu$ L was injected into the HPLC system. The area under the peak was noted and the drug content in the tablets  
89 was quantified using the calibration graph or regression equation.

### 90 5 a) Method development

91 In order to develop an efficient and simple RP-HPLC method for the analysis of the drug in bulk and in its  
92 tablet dosage forms, preliminary tests were conducted to select satisfactory and optimum conditions. HPLC  
93 parameters, such as detection wavelength, ideal mobile phase & their proportions and flow rate were carefully  
94 studied.

95 Preliminary experiments indicated that the Thermo Scientific C18 (250 mm × 4.6 mm, 5  $\mu$ m) column provides  
96 efficient and reproducible separation of PPD at ambient temperature. Hence Thermo Scientific C18 column  
97 was selected for method development and validation. PPD was determined by injecting the drug solution on  
98 to Thermo Scientific C18 column with UV detector set at 263 nm. After trying different ratios of mixtures of  
99 methanol and acetonitrile, the best results were achieved by using a mixture of methanolacetonitrile (40:60 v/v)  
100 as mobile phase. At a flow rate of 1.0 ml/min, the retention time for PPD was 4.458 min. The analyte peak area

101 was well defined and free from tailing under the described experimental conditions. b) System suitability System  
102 suitability test was carried out on freshly prepared solution of PPD (50 ?g/ml) to ensure the II.

## 103 **6 Materials and Methods**

## 104 **7 III.**

## 105 **8 Results and Discussion**

106 validity of the analytical procedure. Data from five injections were used to confirm system suitability parameters  
107 like retention time, peak area, peak asymmetry, theoretical plates, plates per meter and height equivalent to  
108 theoretical plate. The results are presented in Table 1. The values obtained demonstrated the suitability of the  
109 system for the analysis of the PPD.

## 110 **9 c) Selectivity**

111 Selectivity is the ability of an analytical method to distinguish between the analyte of interest and other  
112 components present in the sample. To identify the interference by the excipients in the tablet dosage form,  
113 the tablet extract was prepared according to procedure described under "Procedure for tablet dosage forms" and  
114 injected. The resulting chromatogram (Fig. ??) did not show any peak other than that of PPD, which confirmed  
115 the selectivity of the method. The selectivity of the method was also demonstrated by interference check by  
116 injecting the diluent blank to determine whether any peaks in the diluent are co-eluting with PPD peak. No  
117 interference of peaks eluted in the diluent blank with PPD peak was observed (Fig. 3).

## 118 **10 d) Linearity**

119 The linearity was determined by constructing calibration curve. A calibration curve was constructed using least  
120 squares method by plotting the peak area vs concentration of PPD. The calibration curves (Fig. ??) for PPD  
121 show good linearity with excellent regression coefficient (0.9993) in the concentration range of 1-100 ?g/ml. The  
122 linear regression equation and regression coefficient of the calibration curve is presented in Table 2.

123 e) LOD and LOQ The limit of detection (LOD) and limit of quantification (LOQ) were calculated based on  
124 the standard deviation of y-intercepts of regression lines or standard deviation of blank readings and the slope of  
125 the calibration curve by using three calibration curves. Results of LOD and LOQ for PPD are shown in Table 2.

## 126 **11 f) Accuracy and precision**

127 The precision and accuracy of the method was determined by performing five repeated analysis of three different  
128 standard solutions containing 5, 50, 90 ?g/ml PPD, on the same day, under the optimized experimental conditions.  
129 The precision and accuracy are expressed as RSD and relative error, respectively. The results of this study are  
130 presented in Table 3. The values of the relative standard deviation and relative error were found satisfactory.  
131 Hence the proposed method is precise and accurate.

## 132 **12 g) Recovery studies**

133 The accuracy of the proposed method was also further assessed by performing recovery experiments using the  
134 standard addition method. Known amount of the pure PPD was added to pre-analyzed formulation and the  
135 total concentration was once again determined by the proposed method. The obtained mean recoveries and  
136 relative standard deviations were in the range 99.66-100.33 and 0.378-0.614 %, respectively (Table 4). The  
137 results revealed that any small change in the drug concentration in the solutions could be accurately determined  
138 by the proposed method. The closeness of the recoveries suggests lack of interference from tablet excipients and  
139 thereby establishes some degree of selectivity.

## 140 **13 h) Application to tablet dosage forms**

141 To find out the suitability of the proposed method for the assay of tablet dosage forms containing PPD was  
142 analyzed by the proposed method. The results obtained from the proposed method were compared statistically  
143 with reference method<sup>7</sup> by applying Student's t-test for accuracy and F-test for precision. From the results  
144 (Table 5) it was found that the proposed method does not differ significantly in precision and accuracy from the  
145 reference method.

146 A simple, sensitive, selective, accurate and precise RP-HPLC method was developed for the determination  
147 of PPD in bulk and in tablet dosage forms. It should be emphasized it is isocratic and the mobile phase do  
148 not contain any buffer. The short chromatographic time makes this method appropriate for the processing of  
149 numerous samples in a limited time. The method has wider linear range with good accuracy and precision. The



Figure 1:

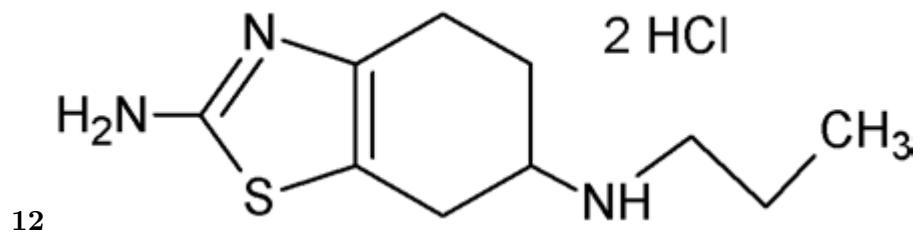



Figure 2: Figure 1 :Figure 2 :

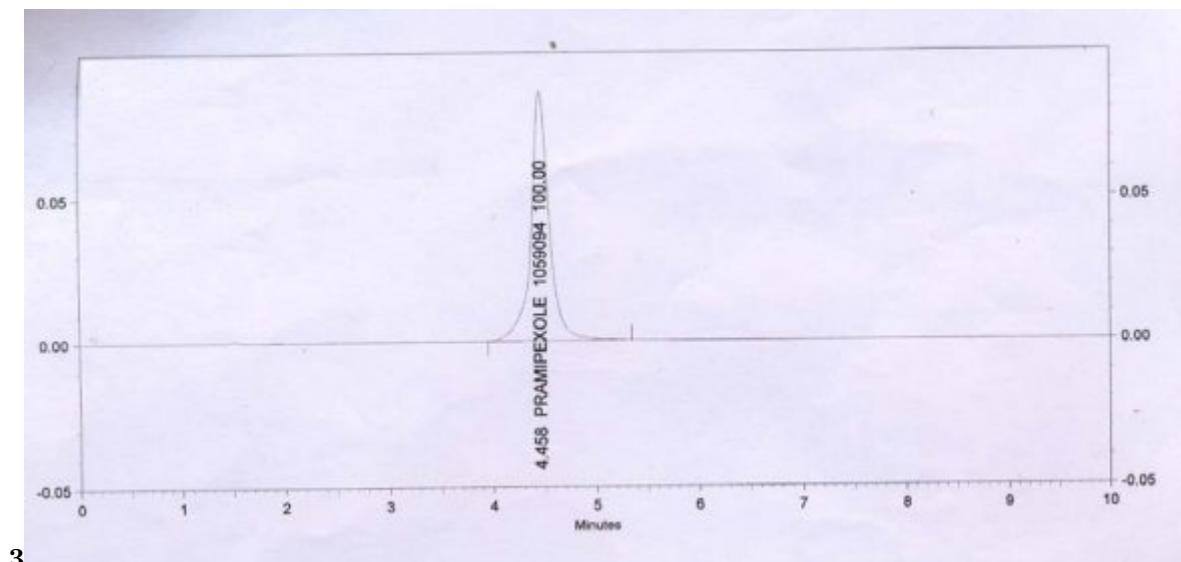
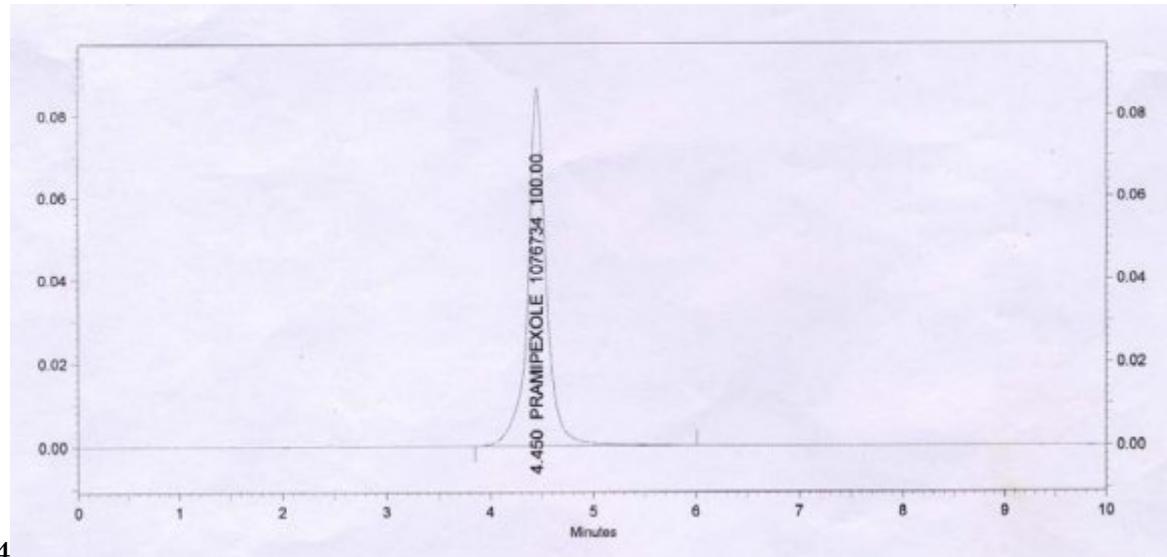




Figure 3: Figure 3 :



4

Figure 4: Figure 4 :

1

Figure 5: Table 1 :

2

Figure 6: Table 2 :

3

Figure 7: Table 3 :

4

Figure 8: Table 4 :

5

Figure 9: Table 5 :

## **13 H) APPLICATION TO TABLET DOSAGE FORMS**

---

150 method shows no interference from tablet excipients. Hence, the proposed method could be useful and fit for the  
151 quantification of PPD in bulk and tablet dosage forms.<sup>1 2 3</sup>

---

<sup>1</sup>Rp-Hplc Method for the Determination of Pramipexole Dihydrochloride in Tablet Dosage Form © 2012 Global Journals Inc. (US) © 2012 Global Journals Inc. (US)

<sup>2</sup>© 2012 Global Journals Inc. (US)

<sup>3</sup>© 2012 Global Journals Inc. (US) © 2012 Global Journals Inc. (US)

- 152 [Srinubabu et al.] , G Srinubabu , K Jaganbabu , B Sudharani , K Venugopal , G Girizasankar , Jvlns Rao .  
153 [Kvernmo et al. ()] 'A review of the receptor-binding and pharmacokinetic properties of dopamine agonists'. T  
154 Kvernmo , S Härtter , E Burger . *Clinical Therapeutics* 2006. 28 p. .  
155 [Ernst et al. ()] 'Analysis of the anti-Parkinson drug pramipexole in human urine by capillary electrophoresis  
156 with laser-induced fluorescence detection'. Alessandro M Ernst , K Emanuele , M Fabrizio , R Maria , AR .  
157 *Analytica Chimica Acta* 2008. 626 p. .  
158 [Shubhangi and Sunil ()] 'Application of stability indicating high performance thin layer chromatographic  
159 method for quantitation of pramipexole in pharmaceutical dosage form'. M P Shubhangi , R D Sunil .  
160 *Journal of Liquid Chromatography & Related Technologies* 2011. 34 p. .  
161 [Hoerger et al. ()] 'Cost effectiveness of pramipexole in Parkinson's disease in the US'. T J Hoerger , M V Bala  
162 , C Rowland , M Greer , E A Chrischilles , R G Holloway . *Pharmaco Economics* 1998. 14 p. .  
163 [Yau and Glenn ()] 'Determination of pramipexole (U-98,528) in human plasma and urine by high-performance  
164 liquid chromatography with electrochemical and ultraviolet detection'. Y L Yau , D H Glenn , NitaI . *Journal  
165 of Chromatography B: Biomedical Sciences and Applications* 1996. 683 p. .  
166 [Yau et al. ()] 'Determination of pramipexole (U-98,528) in human plasma by high-performance liquid chro-  
167 matography with atmospheric pressure chemical ionization tandem mass spectrometry'. Y L Yau , M S  
168 Jeffrey , D H Glenn , T Rasmy , NitaI . *Journal of Chromatography B: Biomedical Sciences and Applications*  
169 1996. 683 p. .  
170 [Development and validation of a LC method for the determination of pramipexole using an experimental design Chromatographia  
171 'Development and validation of a LC method for the determination of pramipexole using an experimental  
172 design'. *Chromatographia* 2006. 64 p. .  
173 [Bharathi et al. ()] 'Development and validation of a sensitive LC-MS/MS method with electrospray ionization  
174 for quantitation of pramipexole in human plasma: application to a clinical pharmacokinetic study'. D V  
175 Bharathi , K K Hotha , P V Sagar , S S Kumar , A Naidu , R Mullangi . *Biomedical Chromatography* 2009.  
176 23 p. .  
177 [Jayesh et al. ()] 'Development and validation of GC/MS method for determination of pramipexole in rat plasma'.  
178 G P Jayesh , V P Ravindra , K M Shobhana . *Biomedical Chromatography* 2011. 25 p. .  
179 [Millan et al. ()] 'Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A  
180 multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes'. M J  
181 Millan , L Maiofiss , D Cussac , V Audinot , J A Boutin , A Newman-Tancredi . *The Journal of Pharmacology  
182 and Experimental Therapeutics* 2002. 303 p. .  
183 [Rao et al. ()] 'Estimation of pramipexole by an RP-HPLC method'. Seshagiri Rao , Jvln , Anantha Kumar , D  
184 Mastanamma , S Srilakshmi , K . *International Journal of Chemical Sciences* 2009. 7 p. .  
185 [Jan?i? et al. ()] 'Experimental design in chromatographic analysis of pramipexole and its impurities'. B Jan?i?  
186 , M Medenica , D Ivanovi? , A Malenovi? . *Acta Chimica Slovenica* 2007. 54 p. .  
187 [Thangabalan et al. ()] 'Extractive Spectrophotometric Determination of Pramipexole Dihydrochloride in Pure  
188 and Pharmaceutical Formulations'. B Thangabalan , D Praveen Kumar , G Lavanya , Inthiaz Sk , C Deepthi  
189 , Manohar Babu , S , Vijayaraj Kumar , P . *Journal of Pharmacy Research* 2011. 4 p. .  
189 [Kohno and Takeuchi ()] 'Pharmacological profiles and clinical effects of antiparkinsonian agent, pramipexole'.  
190 Y Kohno , S Takeuchi . *Nippon Yakurigaku Zasshi* 2004. 123 p. .  
191 [Mierau et al. ()] 'Pramipexole binding and activation of cloned and expressed dopamine D2, D3 and D4  
192 receptors'. J Mierau , F J Schneider , H A Ensinger , C L Chio , M E Lajiness , R M Huff . *European  
193 Journal of Pharmacology* 1995. 293 p. .  
194 [Bennett and Piercy ()] 'Pramipexole-A new dopamine agonist for the treatment of Parkinson's disease'. J P  
195 BennettJr , M Piercy . *Journal of Neurological Sciences* 1999. 163 p. .  
196 [Nirogi et al. ()] 'Quantification of pramipexole in human plasma by liquid chromatography tandem mass  
197 spectrometry using tamsulosin as internal standard'. R V Nirogi , V Kandikere , W Shrivastava , K Mudigonda  
198 , S Maurya , D Ajjala . *Biomedical Chromatography* 2007. 21 p. .  
199 [Babu and Raju ()] 'Spectrophotometric determination of pramipexole dihydrochloride monohydrate'. Srinu Babu  
200 , G Raju , Cai . *Asian Journal of Chemistry* 2007. 19 p. .  
201 [Gurupadayya et al. ()] 'Spectrophotometric methods for the estimation of pramipexole dihydrochloride in  
202 pharmaceutical formulations'. B M Gurupadayya , V Vishwajith , N Srujana . *World Journal of Chemistry*  
203 2009. 4 p. .  
204 [Pathare et al. ()] 'Validated chiral liquid chromatographic method for the enantiomeric separation of pramipex-  
205 ole dihydrochloride monohydrate'. D B Pathare , A S Jadhav , M S Shingare . *Journal of Pharmaceutical and  
206 Biomedical Analysis* 2006. 16 p. .  
207 [Yadav et al. ()] 'Validated Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry Method for  
208 the Determination of Pramipexole in Human Plasma'. M Yadav , R Rao , H Kurani , J Rathod , R Patel , P  
209 Singhal , P S Shrivastav . *Journal of Chromatographic Science* 2010. 48 p. .  
210