

1 Spatiotemporal and Joint Kinematic Analyses in Hemiparetic 2 Cerebral Palsy Children During Stance Phase

3 Nong Xiao¹, sikina abbas² and Yuxia Chen³

4 ¹ Childrenas Hospital of Chongqing Medical University, Chongqing 400014, China.

5 *Received: 11 August 2012 Accepted: 7 September 2012 Published: 20 September 2012*

6

7 **Abstract**

8 The aim of this study is to identify and quantify spatiotemporal and joint kinematics in
9 hemiparetic cerebral palsy children by three dimensional gait analysis (3DGA). Gait strategy
10 of 36 Hemiparetic and 31 healthy children was quantified by the new anatomically based
11 protocol of 3DGA. Spatiotemporal and joint kinematics of lower limbs were identified and
12 calculated. Results revealed that, the gait pattern of the paretic and non paretic sides of
13 hemiparetic children were different compared to healthy subjects. Shorter stance phase was
14 noted on the paretic side compared to non paretic and healthy subjects ($P<0.05$). Hemiparetic
15 children walked with significantly reduced velocity, stride length, step length and cadence
16 compared to healthy subjects. However step width increased considerably in the hemiparetics
17 compared to healthy children. Joint kinematics during stance indicated that hemiparetic
18 children walked with significantly increased anterior trunk tilt, pelvic tilt and pelvic retraction
19 compared to healthy subjects ($P<0.05$). Nevertheless; hemiparetics displayed higher values of
20 hip flexion than healthy subjects with reduction of both knee flexion and ankle dorsal flexion
21 abilities on the paretic side than non paretic. To conclude, Hemiparetic cerebral palsy children
22 generally present a unique motor strategy due to the pathology and search of better stability
23 to optimize gait. The aim of this study is to identify and quantify spatiotemporal and joint
24 kinematics in hemiparetic cerebral palsy children by three dimensional gait analysis (3DGA).
25 Gait strategy of 36 Hemiparetic and 31 healthy children was quantified by the new
26 anatomically based protocol of 3DGA. Spatiotemporal and joint kinematics of lower limbs
27 were identified and calculated. Results revealed that, the gait pattern of the paretic and non
28 paretic sides of hemiparetic children were different compared to healthy subjects. Shorter
29 stance phase was noted on the paretic side compared to non paretic and hea

30

31 **Index terms**— Hemiparetic cerebral Palsy; Gait analysis; Spatiotemporal; Joint kinematics.

32 **1 I. Introduction**

33 hemiparetic cerebral palsy (CP) is a form of spastic cerebral palsy in which one arm and leg on either the right
34 or left side of the body is affected. It is the most common syndrome in children born at term and is second
35 in frequency only to spastic diplegia among preterm infants (Kulak and Sobaniec, 2004). Patients with spastic
36 hemiplegia have unilateral prehensile dysfunction as a consequence of lesions within sensorimotor cortex and
37 corticospinal tract. Children whose hemiparesis involves the upper limb to a greater extent than the lower (arm-
38 dominant hemiparesis) are much more likely to experience learning difficulties than those whose clinical pattern
39 is leg-dominant (Galli et al., 2010).

5 III. RESULTS

40 Three dimensional Gait analysis can provide a more objective evaluation including kinematic, kinetic, and
41 dynamic electromyographic assessment. Hence enabling clinicians to differentiate gait deviations objectively and
42 understand the primary problem behind a complex disorder more accurately.

43 In literature some studies examined quantitatively the spatiotemporal and joint kinematics of hemiparetic
44 cerebral palsy children, these studies mainly focused on comparing functional motor evaluations of the right and
45 left hemiplegic gaits. Galli et al. (2010) compared right and left hemiplegic gaits using 3DGA to analyze the
46 difference in patterns, the results demonstrated that right hemiplegic gait walked with higher velocity than left
47 hemiplegic gait. ??heelwright et al. (1993) assessed spatiotemporal parameters of gait in hemiparetic children
48 and reported that, hemiparetic children walked more slowly with shorter step length, decreased cadence and
49 longer swing time than normal children. Motor functions of right versus left hemiplegic children together with
50 other intellectual, verbal and nonverbal functions were investigated. The results revealed that both groups
51 showed overall slight or moderate impairments in motor function but the left hemiplegic group had more severe
52 motor limitation than the right hemiplegic group (Carlsson et al., 1994). Cimolin et al. (2007) analyzed
53 gait strategy of unininvolved limb in children with spastic hemiplegia and reported that unininvolved limbs had
54 significant longer stance phase, knee joint more flexed, hip joint presented high flexion at the beginning of gait
55 cycle and ankle kinematics presented values closed to normal. It appears evident that literature did not point
56 out works on distinguishing quantitatively spatiotemporal and joint kinematics in hemiparetic cerebral palsy
57 children during stance phase. A deeper understanding of their motor disability may generate rehabilitative
58 strategies and treatment on improvement of gait. 3DGA is nowadays the most accurate tool in defining peculiar
59 motor characteristic in children with CP.

60 The aim of this study is furthermore to identify and quantify gait pattern of hemiparetic CP children and
61 compare their results with those obtained in a group of healthy children.

62 2 II. Methods

63 3 a) Subjects

64 Thirty six hemiparetic CP children participated in the study with age range of 2-15years, among them 27 were
65 right hemiparetic and 9 left hemiparetic .The age, weight and height of hemiplegic children were 7.8 ± 3.8 years,
66 26.2 ± 13.5 kg and 122.1 ± 22.5 cm respectively. According to (Arguelles et al., 1995) in terms of the assessment
67 of degree of CP severity, all children had a mild severity (can walk unaided); in addition all patients were leg-
68 dominant lower limb primarily involved with relative sparing of the upper limb. They had no history of functional
69 lower limbs surgery and absence of pharmacological treatments in the last year.

70 A control group of thirty one healthy children were investigated; their age, weight and height were 8.4 ± 4.1
71 years, 28.9 ± 13.2 kg and 126.9 ± 22.5 respectively. Selection criteria for this group included no prior history
72 of cardiovascular, neurological or musculoskeletal disorders. They exhibited normal range of motion, muscle
73 strength, and had no apparent postural or motor deficits.

74 All subjects were volunteers and their parents gave written consent to the children's participation in this study.
75 This study was approved by Ethics Committee of the Children's Hospital of Chongqing Medical University in
76 China.

77 4 b) Data collection

78 The assessment composed of three dimensional gait analysis which was conducted in a laboratory equipped with
79 9m linear walkway and 6 infrared cameras operating at 60 HZ frequency. 2 Force plates embedded at the centre
80 of the walkway used to determine foot contact and foot-off events synchronized with the system made from
81 motion Analysis Company (Helen Hayes model). Reflective markers (10mm in diameter) were placed according
82 to anatomical landmarks as shown in fig 1 ?? (Motion analysis version 11 user's manual).

83 Anthropometric measures were taken and preparation of patient followed by inserting 26 markers directly on
84 the subject's skin for measurement of static phase. The walking phase involved removal of 4 markers named (R.
85 ankle medial, L. ankle medial, R. knee medial and L knee medial) from the subject's body leaving 22 markers as
86 the new anatomically based protocol suggests (Leardini et al., 2007).

87 Subjects were allowed to walk barefoot at their self-selected speed along 9m walkway. Seven trials were recorded
88 for each child in order to guarantee the consistency of the results. The following parameters were identified and
89 calculated for each subject.

90 5 III. Results

91 Age, body weight and height were not significantly different among hemiparetic and healthy children. Table 1
92 displays the mean (standard deviation) of the spatiotemporal, ankle, knee and hip kinematics for hemiparetic
93 group with the distinction between Hemiparetic children walked with significant reduced velocity compared to
94 healthy. Cadence, step length and stride length revealed significant lower values in comparison to healthy subjects
95 ($P < 0.05$). For double support time, there was no significant difference in the two groups.

96 Step width increased considerably in the hemiparetics compared to healthy children. Ankle joint, Reduced
97 dorsal flexion ability was generally present on the paretic side compared to non paretic and healthy ($P < 0.05$)

98 with excessive plantar flexion on the non paretic side than paretic. The paretic side displayed comparatively
99 higher values of ankle abduction than healthy subjects. No significant difference was observed in the other
100 parameters (adduction and rotation).

101 The knee joint displayed quite significant differences in flexion and extension ability. The paretic side showed
102 lower flexion ability compared to non paretic ($P < 0.05$) with significant hyperextension on the non paretic side
103 than paretic and healthy subjects. However both paretic and non paretic sides highlighted mean values of
104 rotation, varus and valgus closed to healthy subject's data.

105 Regarding the hip joint, Hemiparetic children showed significant increased values of flexion ability compared
106 to healthy subjects. Significant differences were found in terms of the hip rotation, the paretic side revealed
107 high values of external rotation compared to healthy subjects ($P < 0.05$) with slight increase in internal rotation
108 compared to non paretic side. No significant differences were observed in abduction and adduction ability in the
109 two groups.

110 As concerns the pelvic and trunk kinematics, Hemiparetic children walked with significant increased anterior
111 pelvic and trunk tilt compared to healthy subjects ($P < 0.05$). Pelvic rotation with hip trailing (pelvic external
112 rotation) revealed comparatively higher values in the hemiparetics than healthy subjects. No significant
113 differences were observed in pelvic obliquity, lateral trunk tilt and trunk rotation between the two groups.

114 **6 IV. Discussion and Conclusion**

115 Hemiparetic cerebral palsy has functional consequences that are varied and can potentially affect all activity of
116 daily living. About 33% of CP children have hemiplegia with weakness and spasticity predominantly affecting
117 one side of the body and the deficit concerns the motor ability of the body's side opposite to the site of cerebral
118 lesion (Hagberg et al., 2001; Liptak and Accardo, 2004; Nashner et al., 1983).

119 Although the term "hemiplegia" connotes involvement of only one side, hemiparetic children often have motor
120 involvement not only on affected side, but also on the non affected side as well, particularly in those cases with
121 more severe types of hemiplegia which demonstrates an altered gait pattern of lower limb (Gage, 2004). In
122 literature, few studies have examined quantitatively some aspects of motor control during gait in hemiplegic
123 children (Carlsson et al., 1994; Cimolin et al., 2007; Galli et al., 2010; ??heelwright et al., 1993). Gait analysis
124 focused mainly on comparing functional kinematics in hemiparetic cerebral palsy children during stance phase.
125 Nevertheless; the non affected side (non paretic) was neglected. Hence there is clinical need to identify and
126 investigate both sides of hemiparetic children for developing either deficit-specific or rehabilitative strategies.
127 The aim of this study was the quantification of spatiotemporal and joint kinematics in hemiparetic children
128 during stance phase.

129 With regard to spatiotemporal parameters hemiparetic children walked more slowly than healthy children with
130 shorter step length, decreased cadence and longer step width. Walking velocity is the product of step length
131 and cadence, hence reduction in either one parameter may account for gait slowing and it might be considered a
132 strategy in order to obtain a better stability and equilibrium during walking. The shorter stance phase on the
133 paretic side compared to non paretic and healthy children is related to the deficient ability to load and transfer
134 weight through their affected leg. It has been proposed that improving weight transfer through the affected leg
135 during progressive training with the feet of the patients placed in a variety of diagonal position may improve
136 gait symmetry in hemiplegics (Olney et al., 1991). Ankle joint showed an asymmetry pattern, the paretic side
137 revealed reduced dorsal flexion ability and increased abduction during stance phase compared to non paretic side.
138 This pattern is common in hemiplegic patients with equinovarus foot deformity. The deformity can be explained
139 by the premature onset of the gastrocnemius medialis muscle (Boulay et al., 2012). As for pelvic, hip and knee
140 kinematics, the significant reduced knee flexion during stance may necessitate such compensatory maneuvers as
141 hip circumduction, hip hiking, and contra lateral vaulting with excessive elevation of the pelvis to avoid toe drag
142 (Kim et al., 1994; Perry, 1969). Hemiparetic children walked with significant increased anterior pelvic tilt with
143 increased pelvic external rotation compared to healthy subjects. The external pelvic rotation is also known as
144 pelvic retraction. Hemiparetic children often walk with abnormal pelvic motion patterns including increased
145 anterior pelvic tilt (Saunders et al., 1953 A potential weakness of this study may be; lack of classification of
146 the patients according to ??Winters et al., 1987) into 4 gait strategies based on sagittal plane kinematics, even
147 though the use of classification system resulted in small subject numbers being allocated to some gait types.

148 However our results support previous observations which showed that analysis of gait pattern of hemiparetic
149 CP children generally presents a unique motor strategy different from healthy subjects (Cimolin et al., 2007).

150 From clinical perspective, the identification and precise quantification of gait pattern in hemiparetic CP
151 children is important for development of effective and specific rehabilitative programs.

152 **7 Global Journal of 153 Medical**

154 1 2

¹© 2012 Global Journals Inc. (US)

²© 2012 Global Journals Inc. (US) © 2012 Global Journals Inc. (US)

Figure 1: Fig. 1 :

1

41

[Note: © 2012 Global Journals Inc. (US)]

Figure 2: Table 1 :

2

ear 2012
Y
Research Volume XII Issue VIII Version I
Medical
Global Journal of

Figure 3: Table 2 :

Figure 4:

ear 2012
Y

Figure 5:

155 .1 V. Acknowledgements

156 We acknowledge the assistance of all therapists at the rehabilitation centre of children's hospital, Chongqing
157 Medical University and Eng. Khamis Ruhabaye for his valuable contribution.

158 .2 VI. Conflicts of Interest

159 None

160 [Leardini et al. ()] 'A new anatomically based protocol for gait analysis in children'. A Leardini , Z Sawacha , G
161 Paolini , S Ingrosso , R Nativo , M G Benedetti . *Gait Posture* 2007. 26 p. .

162 [Hagberg et al. ()] 'Changing panorama of cerebral palsy in Sweden. VIII. Prevalence and origin in the birth
163 year period 1991-94'. B Hagberg , G Hagberg , E Beckung , P Uvebrant . *Acta Paediatr* 2001. 90 p. .

164 [Kulak and Sobaniec ()] 'Comparisons of right and left hemiparetic cerebral palsy'. W Kulak , W Sobaniec .
165 *Pediatr Neurol* 2004. 31 p. .

166 [Boulay et al. ()] *Dynamic equinus with hindfoot valgus in children with hemiplegia*, C Boulay , V Pomero , E
167 Viehweger , Y Glard , E Castanier , G Authier , C Halbert , J L Jouve , B Chabrol , G Bollini , M Jacquemier
168 . 2012. (Gait Posture)

169 [Arguelles et al. ()] 'Epilepsia en ninos com paralisis cerebral'. P P Arguelles , J M Lima , F S Vilaplana . *Acta
170 Pediatrica Espanola* 1995. 53 p. .

171 [O'sullivan et al. ()] 'Factors associated with pelvic retraction during gait in cerebral palsy'. R O'sullivan , M
172 Walsh , A Jenkinson , T O'brien . *Gait Posture* 2007. 25 p. .

173 [Galli et al. ()] 'Gait patterns in hemiplegic children with Cerebral Palsy: comparison of right and left
174 hemiplegia'. M Galli , V Cimolin , C Rigoldi , N Tenore , G Albertini . *Res Dev Disabil* 2010. 31 p. .

175 [Cimolin et al. ()] 'Gait strategy of uninvolved limb in children with spastic hemiplegia'. V Cimolin , M Galli ,
176 N Tenore , G Albertini , M Crivellini . *Eura Medicophys* 2007. 43 p. .

177 [Liptak and Accardo ()] 'Health and social outcomes of children with cerebral palsy'. G S Liptak , P J Accardo
178 . *J Pediatr* 2004. 145 p. .

179 [Hadders-Algra and Brogren ()] *Postural control: a key issue in developmental disorders*, M Hadders-Algra , E
180 Brogren . 2008. London: Mac Keith Press. (1st Ed)

181 [Park et al. ()] 'Soft tissue surgery for equinus deformity in spastic hemiplegic cerebral palsy: effects on kinematic
182 and kinetic parameters'. C I Park , E S Park , H W Kim , D W Rha . *Yonsei Med J* 2006. 47 p. .

183 [Aminian et al. ()] 'Spastic hemiplegic cerebral palsy and the femoral derotation osteotomy: effect at the pelvis
184 and hip in the transverse plane during gait'. A Aminian , S J Vankoski , L Dias , R A Novak . *J Pediatr
185 Orthop* 2003. 23 p. .

186 [Nashner et al. ()] 'Stance posture control in select groups of children with cerebral palsy: deficits in sensory
187 organization and muscular coordination'. L M Nashner , A Shumway-Cook , O Marin . *Exp Brain Res* 1983.
188 49 p. .

189 [Saunders et al. ()] 'The major determinants in normal and pathological gait'. J B Saunders , V T Inman , H D
190 Eberhart . *J Bone Joint Surg Am* 1953. p. .

191 [Perry ()] 'The mechanics of walking in hemiplegia'. J Perry . *Clin Orthop Relat Res* 1969. 63 p. .

192 [Kim et al. ()] 'The study for gait speed of stroke patients comfortable versus maximum safe speed'. M J Kim ,
193 S A Lee , S K Kim . *J Korean Acad Rehabil Med* 1994. 18 p. .

194 [Gage ()] *The treatment of gait problems in cerebral palsy*, J R Gage . 2004. London: Cambridge University
195 Press.

196 [Prosser et al. ()] 'Trunk and hip muscle activation patterns are different during walking in young children with
197 and without cerebral palsy'. L A Prosser , S C Lee , A F Vansant , M F Barbe , R T Lauer . *Physical Therapy*
198 2010. 90 p. .

199 [Van Der Heide et al. ()] J C Van Der Heide , J M Fock , B Otten , E Stremmelaar , M Hadders-Algra . *Kinematic
200 characteristics of postural control during reaching in*, 2005.

201 [Carlsson et al. ()] 'Verbal and nonverbal function of children with right-versus lefthemiplegic cerebral palsy of
202 pre-and perinatal origin'. G Carlsson , P Uvebrant , K Hugdahl , J Arvidsson , L M Wiklund , Von Wendt ,
203 L . *Dev Med Child Neurol* 1994. 36 p. .

204 [Olney et al. ()] 'Work and power in gait of stroke patients'. S J Olney , M P Griffin , T N Monga , I D McBride
205 . *Arch Phys Med Rehabil* 1991. 72 p. .