

¹ A Survey of Bancroftian Filariasis by Detecting Microfilaria and
² Circulating Antigenaemia in Biase Cross River State, Nigeria

³ Dr. Mbah. M.¹

⁴ ¹ University of Calabar

⁵ Received: 4 July 2012 Accepted: 30 July 2012 Published: 10 August 2012

⁶

⁷ **Abstract**

⁸ The estimation of filariasis prevalence in Biase Local Government has previously relied upon
⁹ clinical evaluation and examination of night blood smears. However, night blood smears
¹⁰ examination fail to detect the infection in individuals having low parasitaemia and cryptic
¹¹ filarial infection. The present study was undertaken to evaluate the prevalence of filariasis in
¹² nine wards of Biase local government by immunochromatographic test (ICT).Methods :
¹³ Clinical examination was performed according to WHO criteria to classify filarial disease.
¹⁴ Night blood smears collected between 21.00 to 00.00h were examined to detect microfilaria
¹⁵ (MF). For estimation of circulating filarial antigen (CFA) by Binax Now filariasis, 2ml of
¹⁶ blood was collected from each individual by venepuncture at any time of the day.Results : A
¹⁷ total of 425 participants made up of 260 males and 165 females were examined randomly from
¹⁸ the community with particular emphasis on those with suspected cases of infection such as
¹⁹ elephantiasis of the leg.

²⁰

²¹ **Index terms**— Circulating filarial antigen-flariasis-biasemicroflariaemia.

²² **1 I. Introduction**

²³ ymphatic filariasis (LF) caused by the filarial nematode wuchereria bancrofti affects more than 120million people
²⁴ worldwide (1).

²⁵ In Africa, the Prevalence of lymphatic filariasis is especially striking, affecting over 40 million people in the
²⁶ sub-Saharan region alone (2). Overall, Africa is thought to account for 40 percent of all cases of lymphatic
²⁷ filariasis in the world (3).

²⁸ The third most endemic country in the world for this disease (after India and Indonesia) is Nigeria, where it
²⁹ is caused by *W. bancrofti*, and 22.1 percent of the population is thought to be infected (4).

³⁰ In 2003, a survey was carried out in Plateau and Nassarawa state in Nigeria where the prevalence of lymphatic
³¹ filariasis determined by ICT test was 22.5 percent and 22.4 percent respectively (5). The diagnosis of filarial
³² infection by clinical examination and parasitological methods was the mainstay in detecting filarial infection up
³³ to early nineties. These methods though correctly assess the clinical cases and microfilaraemic subjects with
³⁴ high microfilariae MF count, but fail to identify low MF count and cryptic filarial infection in asymptomatic
³⁵ amicrofilaraemic individuals (6). In recent years, with the introduction of new diagnostic methods such as
³⁶ rapid diagnostic tests(RDTs) , the prevalence of filarial disease was redefined in many parts of the globe. The
³⁷ antigen and antibody assays have several advantages over microscopic identification of MF in blood, which is
³⁸ the traditional method of diagnosing Lf infection (14,15, ?76).They are more sensitive (i.e., MF-negative persons
³⁹ with positive antigen or antibody test are frequently identified)(17) and both overcome the logistical constraint
⁴⁰ of obtaining blood at night, which is necessary in the many endemic areas where MF have nocturnal periodicity.
⁴¹ The purpose of this study was to Study the infection status of the human population and finally to access the
⁴² impact of mectizan distribution for Onchocerciasis control on lymphatic filariasis in area where the two diseases
⁴³ are co-endemic. To date such study has not been done in Biase thus ,the results of the present study may be

5 IV. RESULTS

44 relevant to determine the geographic distribution of lymphatic filariasis and the location of communities that
45 requires treatment beyond Biase Local Government area, Cross River State, Nigeria. Informed consent was
46 obtained from study individuals (parents in case of minor). Children less than 16 years old and individuals who
47 did not give their consent were not part of the study.

48 2 II. Materials and Methods

49 Sample collection, a door-to-door survey was carried out from October 2008 to November 2009 in the local
50 government to include individuals (adults and children aged 16 years and above in the study. History suggestive
51 of filariasis and diethyl-carbamazine citrate (DEC) or mectizan consumption was recorded.

52 Mf detection; Mf was detected by making two thick blood smears of 20?l each on a clean glass slide from
53 21.00 to 00.00h. The smears were air dried, dehaemoglobinised and stained with Giemsa stain to detect Mf.

54 Antigenaemia detection : About 2ml of blood was collected from all the individuals (n=425; 260 males and
55 165 females) enrolled in the study. Sera were separated in the field and brought to the laboratory and stored
56 at -20 0 c until tested. The binax now filariasis was used for detecting and quantifying w. bancrofti antigen.
57 The test card was removed from the pouch just prior to use. The card was laid flat on the work surface . The
58 capillary tube was filled to the 100?l mark using capillary action with venous blood. The 100?l of sample was
59 added Slowly from the capillary or pipette onto the top of the pink and white pad. The 100?l of sample was
60 added slowly from the capillary or pipette onto the top of the pink and white pad. Important : Each drop was
61 allowed to soak in before adding the next drop onto the pad. Incorrect addition of sample may result in device
62 failure.

63 It was allowed until the sample has flown into the pink area and was completely wet (this should take about
64 30 seconds to 1 minute).

65 The adhesive liner was removed and discarded and the adhesive of the test card was exposed.

66 The card was closed. To ensure good test flow, the card was pressed very firmly along the entire area to the
67 right of the window.

68 The timing started. The result was read through the viewing window after 10 minutes.

69 3 III. Result Interpretation a) Positive result

70 The test was positive if two lines (TandC) were seen in the viewing window. Any pink line in the T area indicated
71 a positive result. The test was positive even when the T line appeared lighter or darker than the C line.

72 4 b) Negative result

73 The test was negative if only the C line was seen. To ensure that low positive samples had sufficient time to
74 develop, a negative result was not to be recorded until 10 minutes have elapsed from when the card was closed.

75 Statistical analysis : The Pearson correlation coefficient, student T-test and chi-square test were used to
76 analyse the data. X2 for trend was used to find the relation of age with Mf and CFA prevalence while the
77 Pearson Correlation was used to find out if there is any relationship between Knotts concentration method and
78 the antigen detection.

79 5 IV. Results

80 A total of 425 individuals were examined from Biase local government. The prevalence of Mf and CFA was
81 13.2 percent and 48.7 percent respectively There was a statistically significant difference in the prevalence of
82 W. bancrofti microfilaria and circulating filarial antigenaemia by method of detection(X2=11.004, P<0.05). The
83 correlation analysis showed that there is no relationship between the two methods of detection of filarial infection
84 (r=0.967, P>0.05). The percentage of Mf and CFA positive individual increased steadily with age reaching a
85 peak in the 16-26 year age group. The prevalence of Mf and CFA decrease steadily between 49-70 year age
86 group. Beyond 70 year there was a fall in CFA prevalence while no individual was positive for Mf. There was a
87 statistically significant difference in the distribution of circulating antigen of lymphatic filariasis in the blood of
88 subjects by age (P<0.05) table 1 (1).

89 The Relationship between circulating filarial antigen (CFA) and microfilaria (MF) detection with clinical status
90 is presented in table 2. it was observed that in asymptomatic individuals (n =399), ICT Now Filariasis Kits
91 could detect infections in 203 (53.4%) individuals while night blood smear had 48 (12.6%) positive cases only.
92 In symptomatic individuals (n=26), the prevalence was 61.5 and 46.1 percent by ICT and night blood smear
93 respectively. Infection rate detected by CFA was significantly (P<0.05) higher compared to that by night blood
94 smear examination.

95 Of the 425 individuals included in the study, 26 had clinical symptoms of filariasis (elephantiasis and hanging
96 groin). Among the 24 individuals presenting with elephantiasis, Mf was present in 10 (38.5%) and CFA in 14
97 (53.9%) cases. All the 2 individuals presenting with hanging groin were microfilaraemic and were also found
98 positive for CFA (Table 3). It was observed that all the microfilaraemic individuals were CFA positive but
99 all the CFA positive individuals were not microfilaraemic. A total of 159 individuals were CFA positive but
100 having no circulating Mf. From the 159 amicrofilaraemic antigen positive individuals, 151 were asymptomatic
101 and amicrofilaraemic having cryptic infection detected by ICT now filariasis test kits.

102 Table ?? shows the prevalence of lymphatic filariasis according to the knotts concentration methods and ICT.
103 Among participants who had meaningful results, 56 (13.2 per cent) were positive for the thick blood film technique
104 and 207 (48.7 per cent) by ICT card test. Out of 56 mf positive persons by the Knotts concentration method,
105 only 2(3.6 per cent) were negative by the card test, whereas 151(41.1 per cent) individuals were negative by the
106 Knotts concentration method. 216(58.8 per cent) were negative according to both Knotts concentration and ICT
107 card test whereas 218(51.3 per cent) were negative for ICT card test alone. The overall sensitivity of the whole
108 blood ICT card test was 96.5 per cent (56/58) while the specificity of the test was 58.8 per cent (216/367). The
109 two false negative were males in the 37-47 year of age group.

110 **6 V. Discussion**

111 Filariasis is a major public health problem in Nigeria. With the continuous change in environmental factors,
112 urbanization and availability of newer diagnostic tools (8), the estimation of 22.1 percent of the population
113 thought to be infected is bound to be increased (4). With the widespread availability of the CFA assay which
114 reflects adult worm burden (9), it can now be demonstrated that a majority of the earlier studies underestimated
115 the prevalence of filariasis in endemic communities (7).

116 The prevalence of CFA was considerably higher than Mf prevalence in all the age groups (10), (11), (12). In
117 the present study, the prevalence of filarial infection in the population was approximately four times higher when
118 determined by CFA positivity compared to Mf examination in all the age groups except 49-59 and 60-70 year
119 age groups that the infection was one against sixteen and two against nineteen for Mf and CFA respectively
120 (table 1). In the context of filariasis elimination programme, use of antigen detection in the diagnosis of filarsis,
121 particularly in young children is important as treatment at an earlier age may prevent subsequent development of
122 clinical disease. also most of them were engaged in farm work during the period of blood collection. Cynthia et al.
123 (??003) had similar results where the prevalence of microfilaremia and antigenaemia was slightly higher in males
124 than in females in Brazil. In this case however, Mf prevalence was estimated by a relatively less sensitive 20?
125 blood smear and the present CFA+/Mf-might include low density Mf carriers. The prevalence of microfilaraemia
126 and antigenaemia seemed to decrease with age (table 1). This is contrary to the work done in Cook Islands where
127 the percentage of CFA positive subjects increased steadily with age reaching a peak in the 30-40 year age group
128 (7).

129 A cost analysis of the ICT card test was carried out during the research. The Knotts concentration method
130 was shown to have lower price (ICT cost per unit US\$8 vs. Knotts concentration cost per unit US \$0.3). However,
131 certain features of the ICT card test proved to be extremely advantageous high sensitivity, the ability to offer
132 prompt diagnosis, no need for complicated laboratory procedures, and no need for specialized technicians. These
133 combined characteristics overcame the low price of the Knotts concentration making to be the overall more cost
134 effective option, thereby justifying its use as a diagnostic tool in screening in endemic areas.

135 In conclusion, about 60 percent antigenaemia in the study population is a matter of concern and necessary
136 control programme is needed to check the transmission of filariasis in the local government and neighbouring
137 local government.

138 © 2012 Global Journals Inc. (US)

139 The average CFA prevalence was about 4 times higher than the Mf prevalence indicating that majority of
140 antigenaemia were slightly higher in males than in infection was antigen positive but Mf negative. In this study,
141 the prevalence of lymphatic filariasis was 3.56 times higher when determined by ICT compared to microfilaria
examination in all age groups. This also confirms the work done by Cynthia et al., ??2003) ^{1 2}

2

ear 2012
Y
Research Volume XII Issue VIII Version I
Medical
Global Journal of

Figure 1: Table 2 :

142

¹© 2012 Global Journals (US) © 2012 Global Journals Inc. (US)

²© 2012 Global Journals Inc. (US) © 2012 Global Journals Inc. (US)

6 V. DISCUSSION

3

2 8

Figure 2: Table 3 :

1

Age Group (Year)	No Exam- ined	No(%) positive for Mf	No(%) Positive for CFA
27 -37	105	18 (17.1)	44 (41.9)
16 -26	178	29 (16.3)	90 (50.6)
38-48	67	6(8.9)	33 (49.2)
49-59	25	1 (4)	16 (64)
60-70	37	2(5.4)	19 (54.3)
71-81	13	-(0)	5 (38.5)
Total	425	56 (13.2)	207 (48.7)

Mf-Microfilaria

No-number.

-denotes absence of positive cased use in results section.

[Note: A]

Figure 3: Table 1 :

143 [Pf et al. ()] 'Age-Specific prevalence antigenaemia in a Wuchereria bancrofti-exposed population'. Lammie Pf ,
144 A W Hightower , M L Eberhard . *American Journal of Tropical Medicine and Hygiene* 1994. 51 p. .

145 [Sahoo et al. ()] 'Bancroftian filariasis: Infection, disease and specific antibody purpose patterns in a high and
146 low endemicity community in East Africa'. P K Sahoo , Jjb Gedam , A K Satapathy , Mohanty Me , B ;
147 Ravindran , P E Simonsen , W E Jaoko , M N Malecela , Mukokod , E M Pedersen . *American journal of*
148 *tropical medicine and Hygiene* 2002. 66 p. . (Bancroftian Filariasis: Prevalence of antigenaemia and endemic
149 normals in Olussa)

150 [Weil and Ramsy ()] 'Diagnostic tool for elimination programs'. G J Weil , R M Ramsy . *Trends Parasitol* 2007.
151 23 p. .

152 [Michael and Bundy ()] 'Global Mapping of Lymphatic Filariasis'. E Michael , Dap Bundy . *Parasitology Today*
153 1997. 13 p. .

154 [Nelson et al. ()] *Lymphatic Filariasis in lower shire, southern Malawi, Transaction of Royal society and tropical*
155 *medicine and Hygiene*, N O Nelson , P Makaula , D Nyakuipa , P Bloch , Nyasuluy , P E Simonsen . 2002.
156 96 p. .

157 [Lymphatic Filariasis: The disease and his Control Fifth report of the WHO expert Committee on Filariasis ()]
158 'Lymphatic Filariasis: The disease and his Control'. *Fifth report of the WHO expert Committee on Filariasis*,
159 (Geneva) 2002.

160 [Chanteau et al. ()] 'Og4C3 Circulating antigen: a marker of infection and adult worm burden in wuchereria
161 bancrofti Filariasis'. S Chanteau , J P Moulia-Pelat , P Glaziou , N L Nguyen , P Luguiaud , C Plichart , P
162 M Martin . *Journal of infectious Disease* 1994. 170 p. .

163 [Weil et al. ()] 'Parasite antigenemia in Bancroftian filariasis'. G J Weil , R M Ramsy , R Chandrashekhar , A M
164 Gad , R C LowrieJr , R Faris . *AM J Med Hyg* 1996. 55 p. .

165 [Weerasooriya et al. ()] 'Prevalence and intensity of Wuchereria Bancrofti antigenaemia in Sri Lanka by Og4c3
166 Eliza using filter paper-absorbed whole blood'. M V Weerasooriya , N K Gunawardena , M Itoh , X G Qiv ,
167 E Kimura . *Transaction of Royal society and Tropical Medicine and Hygiene* 2002. 96 p. .

168 [Eigege et al. ()] 'Rapid assessment for lymphatic filariasis in central Nigeria: A comparison of the immunochro-
169 matographic card test hydrocele rate in an area of high endemicity'. Abel Eigege , Frank O Richards , J R
170 David , D Blaney , Emmanuel S Miri , Ibrahim Gontor , Gladys Ogah , John Umaru , M V Jinadu , Wanjira
171 Mathai , Stanley Amadiegewu , B Donald , R Hopkins . *American Journal of Tropical Medicine* 2003. 68 (6)
172 p. .

173 [Michael et al. ()] 'Reassessing the global prevalence and distribution of lymphatic filariasis'. E Michael , D A
174 Bundy , B T Grenfell . *Parasitology* 1996. 112 p. .

175 [References Références Referencias © 2012 Global Journals Inc. (US)] *References Références Referencias © 2012*
176 *Global Journals Inc. (US)*,

177 [Ottensen ()] 'The global programme to eliminate lymphatic Filariasis'. E A Ottensen . *Tropical Medicine*
178 *International Health* 2000. World Health Organization. 5 p. .

179 [Weil et al. ()] 'The ICT filariasis test : a rapid diagnostic-format antigen test for diagnosis of Bancroftian
180 filariasis'. G J Weil , P J Lamine , N Weiss . *Parasitol Today* 1997. 13 p. .

181 [Steel et al. ()] 'Worm burden and host responsiveness in Wuchereria bancrofti infection. Use of antigen detection
182 to define earlier assessments from the south Pacific'. C Steel , E A Ottensen , P E Weller , T B Nutman .
183 *American Journal of Tropical Medicine hygiene* 2001. 65 p. .