

1 Effect of Membrane Cholesterol on Glucose Uptake in Diabetic 2 Erythrocytes

3 Dr. Rudrappa G¹, Basavaraj S Aski² and Kashinath R.T.³

4 1

5 Received: 25 August 2012 Accepted: 18 September 2012 Published: 29 September 2012

6

7 **Abstract**

8 The generally observed common phenomenon of decreased utilization of glucose by tissue cells
9 in type 2 diabetes mellitus is attributed to either lack of insulin or due to non availability of
10 functioning insulin. Some of the recent studies indicate the decreased glucose utilization may
11 be due to variations in the membrane lipid composition, there by altering glucose transport
12 across the membrane possibly by disorienting the membrane transport molecules. Such a
13 membrane lipid alteration may be due to diabetes induced dyslipidemia. In order to check this
14 hypothesis, we studied the effect of media cholesterol concentration on the erythrocyte
15 membrane cholesterol levels as well as the effect of such an altered membrane cholesterol level,
16 if any on glucose uptake in diabetic erythrocytes. Erythrocytes derived from type 2 diabetic
17 subjects were incubated in cholesterol rich albumin medium for a period of 2 hours and
18 amount of cholesterol included on the erythrocyte membrane was estimated in washed
19 incubated erythrocytes along with glucose uptake, lactic acid production and glycolytic index
20 were studied.

21

22 **Index terms**— Type 2 diabetes, membrane cholesterol, Glucose uptake

23 **1 I. Introduction**

24 The most common biochemical alterations observed in type 2 diabetes mellitus is decreased utilization of glucose,
25 which may be due to subnormal insulin amount or suboptimal function of insulin. The most relevant findings
26 are hyperglycemia and glucosuria with changes in lipid as well as protein metabolism.

27 Cholesterol is essential for maintenance of the structural and functional integrity of all biological membranes,
28 including erythrocytes membrane and it plays a key role in maintenance of the bilayer matrix in an intermediate
29 fluid state. (1). The decreased utilization of glucose by tissue cells as well as by the erythrocytes seen in diabetes
30 mellitus may be due to decreased transport of glucose into the cells which is purely a function of erythrocyte
31 membrane. Though the glucose transport is facilitated by glucose transporter (GLUT) presents in membrane,
32 whose action may be influenced by insulin, the role of membrane lipids specifically phospholipids and cholesterol
33 cannot be ignored.

34 The relative amounts of phospholipids and cholesterol are responsible for the fluid properties of the erythrocyte
35 membrane (11) and for the shape as well as basic structural integrity of erythrocyte. An alteration in membrane
36 lipid composition may bring about certain changes in glucose transport. The increased membrane cholesterol
37 content, increased saturated fatty acid content was observed in diabetic erythrocyte membrane (8). The
38 diabetes induced hyperglycation of membrane proteins including related GLUT particles may induce changes
39 in distribution of membrane lipid components as well as may induce certain changes in membrane transport
40 activity (2) possibly including glucose transport.

41 Present study was undertaken to establish the effect of incubation media cholesterol concentration on
42 erythrocyte membrane cholesterol content as well as to establish the effect of such included cholesterol, if any, on
43 the glucose transport in type 2 diabetic erythrocytes.

44 **2 II. Materials and Methods**

45 Diabetic type 2 subjects (male and female) in the age group of 30-60 years attending Medical OPD of
46 Basaveshwara Medical College Hospital and Research Center, Chitradurga, were randomly selected.

47 The normal subjects (male and female) were randomly picked among house surgeons and employees of the
48 college as well as Hospital, who were in the age group of 30-60 years.

49 Blood samples (6-7ml) from the selected normal subjects and type 2 diabetic subjects were collected, in the
50 fasting state, with heparin as an anticoagulant after obtaining informed consent. Plasma was separated by
51 centrifugation at 3500 rpm, for 10 T minutes. Erythrocytes were washed three times with an aliquot of 5 ml
52 normal saline and then were mixed with equal volume of normal saline so as to give 50% saturated erythrocyte
53 suspension. This erythrocyte suspension was used in the present studies.

54 **3 III. Cholesterol Inclusion Studies**

55 Cholesterol-enriched-albumin solution was used as a cholesterol donor in the present study. (1 gram of fine
56 powdered cholesterol in 100 ml 1% albumin solution). Cholesterol content of this media was determined by
57 triplicate estimation of cholesterol (7).

58 1ml of 50% saturated erythrocytes both normal/ diabetic were separately incubated with 0.6 ml of cholesterol
59 rich albumin medium at 37°C in a temperature controlled water bath for 2 hours. After stipulated incubation
60 period, the erythrocytes were washed with 3 times with 3ml aliquot of normal saline. One part of washed
61 erythrocytes was mixed with 4 ml distilled water, the mixture stirred vigorously with a clean glass rod to lyse
62 the erythrocytes. This was centrifuged at 3500 rpm for 5 minutes. Supernatant was discarded. The sedimented
63 membranes were washed 3 times with 3 ml aliquot of normal saline. The resultant membranes were mixed with
64 9 parts of chloroform: methanol mixture (1:1 v/v) and homogenized for 8 minutes in a Potter-Elvehjem tissue
65 homogenizer. The extracts were used for estimation of membrane cholesterol (7).

66 The rest of the erythrocytes incubated with cholesterol-rich-albumin medium, were employed for glucose uptake
67 studies.

68 **4 IV. Studies on Glucose Uptake by**

69 Erythrocytes and Lactic Acid Production

70 **5 V. results**

71 In the present study, a total number of 192 subjects were employed, which include 52 normal subjects and 140
72 diabetic subjects. The normal subjects were consisted of 44 male subjects and 08 female subjects. Further
73 diabetic group consisted of 85 male diabetic subjects and 55 female diabetic subjects. The results of the present
74 study are narrated in table 1and 2. Table ?? gives, glucose uptake, percentage of glucose uptake, lactic acid
75 production, as well as glycolytic index in erythrocytes of normal subjects and in erythrocytes of diabetic subjects.
76 As seen from the table there is a significant decrease observed in glucose uptake ($p<0.001$), percentage of glucose
77 uptake ($p<0.001$), lactic acid production ($p<0.001$), as well as glycolytic index ($p<0.001$) in erythrocytes of
78 diabetic subjects as compared to normal subjects, indicating there is a decrease in glucose uptake and utilization
79 in diabetic erythrocytes.

80 Table ?? depicts erythrocyte membrane cholesterol prior to the incubation and post incubation with cholesterol
81 rich albumin medium, as well as glucose uptake by these erythrocytes. It is evident from the table that there is
82 a significant elevation in cholesterol inclusion on both normal as well as diabetic erythrocytes which are exposed
83 to cholesterol rich medium, as compared to non-exposed erythrocytes ($p<0.001$). Further it is evident from the
84 table that, the glucose uptake is decreased ($p<0.001$) in cholesterol rich albumin medium exposed erythrocytes
85 (normal/diabetic) as compared to non-exposed counter parts. This decrease in glucose uptake may probably due
86 to extra cholesterol included onto the membrane.

87 **6 VI. Discussion**

88 The membrane surrounding the erythrocyte serving as a barrier, the membrane contains pumps and channels
89 for the movements of sodium, potassium and calcium and it facilitates the transport of glucose and other small
90 molecules. It is also responsible for the basic structural integrity of the erythrocytes. A decreased utilization of
91 glucose by the tissue cells in type 2 diabetes mellitus is attributed to either lack of insulin or due to non-availability
92 of functioning insulin (13).

93 Increased cholesterol and phospholipid contents in erythrocyte have been correlated with decrease in
94 erythrocyte membrane fluidity in diabetes mellitus and these parameters identified as contributing factors for
95 decrease in membrane fluidity (5). This erythrocytes membrane lipid alteration may be due to diabetes induced
96 dyslipidemia. An increase in cholesterol may induce rigidity into the membrane, whereas increase phospholipid
97 induces more flexibility. In addition probably the glycation of membrane proteins including related GLUT
98 particles may induce changes in distribution of membrane lipid components as well as 2 20

99 To 0.5 ml of cholesterol-rich-albumin medium was incubated erythrocyte of both normal and diabetic subjects
100 were separately mixed with 0.5 ml of normal saline, 1 ml of 0.1% freshly prepared aqueous glucose solution

101 was added to both. An aliquot of 0.5 ml mixture was immediately pipette out into a tube marked 10% TCA,
102 the contents were mixed and centrifuged at 3500 rpm for 5 minutes and the supernatants were employed for
103 estimation N 0 and D 0 minute glucose content (10) and lactic acid contents (3). The rest of the erythrocyte
104 mixture was incubated in temperature controlled water bath at 37 °C for 1 hour. At the end of the incubation
105 time another aliquot of 0.5 ml mixture was pipette out into a tube marked N 60 and D 60 and proceeded as
106 above. The supernatants were used for 60 minutes glucose and lactic acid estimation in normal and diabetic
107 erythrocytes.

108 The data obtained was statistically evaluated using students't 'test.

109 N 0 and D 0 containing 4 ml of may induce certain changes in membrane transport activity (4).

110 In the present study, a significant raise in the inclusion of cholesterol ($p<0.001$), onto the erythrocyte membrane
111 as been observed in erythrocytes which are incubated with cholesterol rich albumin medium compared to non-
112 exposed erythrocytes. This is in agreement with the reports of Christopher (6) and Steven (12). When the
113 erythrocyte which are incubated with cholesterol rich albumin medium were used for glucose uptake studies,
114 it was found that there is a significant decrease in glucose uptake ($p<0.001$), percentage of glucose uptake
115 ($p<0.001$), lactic acid production ($p<0.001$), as well as glycolytic index($p<0.001$), in erythrocyte of type 2
116 diabetic subjects. This suggests that an increase in cholesterol content of erythrocyte membrane may result
117 in decreased glucose uptake, which may partly due to an alteration in membrane lipid composition, leading to
118 altered membrane proteins orientation, possibly GLUT particles, which may cause a decrease in glucose uptake
119 in these erythrocytes.

120 In conclusion it can stated that, when erythrocytes (normal/diabetic) exposed to cholesterol rich albumin
121 medium, an extra cholesterol migrate onto the membrane (9), resulting in increase of membrane cholesterol level.
122 Further such an increase in membrane cholesterol level decrease significantly glucose uptake by these erythrocytes.

123 **7 Groups**

124 ^{1 2}

¹© 2012 Global Journals Inc. (US)

²© 2012 Global Journals Inc. (US) © 2012 Global Journals Inc. (US)

.1 Effect of Membrane Cholesterol on Glucose Uptake in Diabetic Erythrocytes

125 .1 Effect of Membrane Cholesterol on Glucose Uptake in Diabetic Ery- 126 throcytes

127 Table ?? : Showing glucose uptake, percentage of glucose uptake, lactic acid production and glycolytic Index in
128 normal erythrocytes as well as in diabetic erythrocytes.

129 Note : 1.The number in parenthesis shows the number of samples. Note: 1.The number in parenthesis shows
130 the number of samples.

131 [Vagus et al. ()] 'Abnormalities of erythrocyte membrane lipids in insulin dependent diabetes are improved by
132 shorter term control of diabetes'. Juhan Vagus , J Dris , Roul Cedel . *Clinical Hematology* 1984. p. .

133 [Bryszewska and Szoland ()] 'Association between Glycation of erythrocyte membrane protein and membrane
134 fluidity'. M Bryszewska , K Szoland . *Clinical Biochem* 1988. (21) p. .

135 [Jane et al.] 'Cholesterol Blocks the Disordering effect of ethanol In Bio membranes'. H Jane , Dora B Chin ,
136 Goldstein . *Lipids* 19 (9184) p. .

137 [Definition, Diagnosis and Classification of Diabetes Mellitus and its complications ()] *Definition, Diagnosis
138 and Classification of Diabetes Mellitus and its complications*, 1999. (World Health Organization, Department
139 of Noncommunicable Disease Surveillance)

140 [Varley ()] 'Determination of Cholesterol'. Herold Varley . *Practical Clinical Biochemistry*, (New Delhi) 1969.
141 CBS Publishers and Distributors. (IV Edition)

142 [Barker ()] *Determination of Lactic acid, Hawk's Physiological Chemistry; Mc Grow-Hill Book Company*,
143 Summerson Barker . 1941. 14 p. .

144 [Bryszewska and Leykow ()] 'Effect of insulin on human erythrocyte membrane fluidity in diabetes mellitus'. M
145 Bryszewska , Leykow . *Diabetologia* 1983. 24 p. .

146 [Henry ()] Richard Henry . *Clinical Chemistry Principles and Practice 2nd edition. Row publishers New York.
147 Chapter 25, carbohydrates*, 1974. p. .

148 [Alester et al. ()] 'Low-frequency submicron fluctuation of red blood cells in diabetic retinopathy'. Y Alester , A
149 Lowenstein , S Leven , M Lazar , R Korenstein . *Arch Ophthalmol* 1998. 116 p. .

150 [Christopher et al. ()] 'Movement of free cholesterol from Lipoproteins or Lipid vesicles into Erythrocytes'. K
151 Christopher , Dora B Daniels , Goldstein . *Molecular Pharmacology* 1982. 21 p. .

152 [Steven et al. ()] 'Quantitation of the in vitro free cholesterol exchange of human red cells and lipoproteins'. H
153 Steven , Helen L Quarfordt , Hilderman . *Journal of Lipid Research* 1970. II p. .

154 [Schmit-Schonbein and Volger ()] 'Red cell aggregation and red cell deformability in diabetes'. H Schmit-
155 Schonbein , E Volger . *Diabetes* 1976. 25 p. . (Suppl.2)

156 [Bennet ()] 'The spectrin-actin junction of erythrocyte membrane skeletons'. V Bennet . *Biochim. Biophys. Acta*
157 1989. 988 p. .