

Comparison of Plasma Tumor Necrosis Factor Alpha (TNF-Alpha) Levels between Obese and Non-Obese With Graded Exercise

Dr. Ambarish Vijayaraghava¹

¹ M. S. Ramaiah Medical College, MSRIT Post, Mattikere, Bangalore-560054

Received: 9 December 2013 Accepted: 3 January 2014 Published: 15 January 2014

Abstract

9 Introduction: Obesity is hazardous to health. On the other hand, performing exercises
10 regularly has health benefits. The plasma cytokine levels get altered with exercise. Cytokines
11 modulate the activity of immune system. Tumour Necrosis Factor alpha is a pro-inflammatory
12 cytokine. Methods: The effect of single bout of moderate exercise and a single bout of
13 strenuous exercise and one month of regular moderate exercise on plasma TNF? level was
14 estimated. 24 healthy non-obese subjects (15 males and 9 females) with mean age, 20.81 years
15 and mean BMI; $21.49 \pm 1.23 \text{ kg/m}^2$ were recruited. 8 obese, but otherwise healthy individuals
16 (5 males and 3 females) with mean age 20.92 years, mean BMI; $31.78 \pm 3.38 \text{ kg/m}^2$ were
17 inducted into the study. Age range of subjects in both groups was 18-25 years. Standardized
18 10m Shuttle Walk Test regime was used for performing the exercise. Plasma TNF-? was
19 measured by Sandwich ELISA technique. The reagent kit used was from Duoset ELISA
20 Development System (R D Systems Europe Ltd). The readings were taken at 450nm using
21 Organon Teknica Reader 230S.

Index terms— obese, non-obese, tumour necrosis factor alpha, exercise, inflammation.

Index terms Obese, non-obese, tumour necrosis factor alpha, exercise, inflammation.

Comparison of Plasma Tumor Necrosis Factor Alpha (TNF-Alpha) Levels between Obese and Non-Obese

With Graded Exercise

umour Necrosis Factor alpha (TNF-?) is a proinflammatory cytokine [1,2]. Higher levels of inflammatory cytokines like TNF-? and IL-6 is positively correlated with the increased prevalence and complications of life style diseases [3,4]. Obesity is also associated with increased incidence of metabolic syndrome and other life style disorders. Unaccustomed physical activity can have harmful effects on health [5]. It increases serum IL-6 levels and the hsCRP (highly sensitive C reactive protein) to correlate with increased incidence of cardiovascular diseases [6]. Persisting physical stress increases secretion of TNF-? and IL-6 which in turn leads to premature onset of lifestyle disorders [7]. Moderate exercise performed regularly decreases severity of inflammation in rheumatoid arthritis [8], [9]. The performance of immune system improves with daily practice of moderate exercise [10]. Regular moderate exercise improves overall health in all age groups [11], [12].

33 of moderate exercise [10]. Regular moderate exercise improves overall health in all age groups [11], [12].
34 Scientists have observed the plasma cytokine changes with different modes of exercises like marathon, military
35 training, downhill running on a treadmill, cycling, etc., on different groups of individuals in different parts of the
36 world ??[13][14][15] [16]. We under-took this study in order to understand the impact of moderate and strenuous
37 exercise on the plasma levels of TNF-? in unaccustomed obese and non-obese individuals and the benefit of
38 exercise on accustumisat -ion by the same individuals.

with mean age 20.92 years, mean BMI; $31.78 \pm 3.38 \text{ kg/m}^2$ were inducted into the study. Age range of subjects in both groups was 18-25 years. Subjects in both the groups were not performing any form of regular exercise. Prior consent was obtained before inducting them into the study. Clearance was obtained from the institutional ethical committee for the study. The approved number of subjects was 40.

3 A) STATISTICAL ANALYSIS

43 The subjects in both groups were made to perform one bout of moderate exercise (acute moderate exercise),
44 one bout of strenuous exercise (acute strenuous exercise) and one month of scheduled moderate exercise on a
45 daily basis. The subjects were made to perform acute moderate exercise on the first day and acute strenuous
46 exercise on the second day. They were made to perform scheduled regular moderate exercise from the third day
47 onwards, for 30 days. The exercise was performed under supervision. During one month of scheduled moderate
48 exercise, the subjects were made to perform single bout of moderate exercise daily for 30 days. The exercise
49 was graded as moderate or strenuous based on the rise in heart rate. It was labelled as moderate when the
50 heart rate increased by 50% from resting level and was labelled as strenuous when heart rate increased by 100%
51 [18]. Shuttle Walk Test Protocol The exercise regime chosen was the standardized 10m Shuttle Walking test
52 regime, described by Glenfield Hospital, Leicester, United Kingdom in collaboration with the department of
53 Physical Education and Sports Science, Loughborough University of Technology, United Kingdom [19] [20][21]
54 [22]. In this exercise protocol, the subjects walk on a 10 meter plain path at the two ends of which are placed
55 marker cones. The subjects walk between the cones corresponding to the beeps given out by a record player.
56 Subjects have to increase their speed of walking gradually in tandem with the shortening of intervals between
57 the consecutive beeps as time progresses. The level of the shuttle walk regime at which the heart rate increased
58 by 50% of the baseline was chosen as moderate exercise. The level at which the heart rate increased by 100%,
59 i.e. doubled was considered as strenuous exercise.

60 A venous blood sample from cubital vein (using vacutainers) just before acute moderate exercise (baseline)
61 was collected. Another sample was collected immediately after acute moderate exercise on the same day. After
62 performance of acute strenuous exercise on the next day, third sample was obtained. A sample was obtained
63 after one month of scheduled regular moderate exercise on the last day after exercise. Baseline sample just before
64 acute strenuous exercise, and just before performance of exercise on the last day of one month regular moderate
65 exercise was not obtained. The samples collected from each individual were aliquoted and stored at -40°C till
66 analysis.

67 Plasma sample was used to estimate the level of TNF-?, by using ELISA (Enzyme linked Immuno-Sorbent
68 Assay) method. ELISA was performed using DuoSet ELISA development system as per the manufacturer's
69 instructions (R&D systems, USA).

70 1 Estimation of TNF?:

71 Polystyrene microtiter plates (NUNC, U16 Maxisorp type, Denmark) were coated with monoclonal capture
72 antibody (antihuman TNF?) obtained from mouse (R&D systems, USA) and incubated at 4°C overnight. The
73 following day, the plates were blocked and then incubated for 2 hours with plasma. This was followed by
74 addition of corresponding biotinylated detection antibody obtained from goat (R&D systems, USA) and incubated
75 for 2 hours. Streptavidin, horseradish peroxidase conjugate and then, 3,3',5,5'-tetramethylbenzidine substrate
76 (Bangalore Genie, India) followed this incubation. The reaction was stopped using 2 N sulphuric acid and optical
77 density (O.D) reading was taken at 450nm (Organon Teknica Microwell system, Reader 230s, Germany). All the
78 experiments were conducted in duplicates. A standard curve was obtained based on the standards provided by
79 the manufacturer. The results were expressed as concentration of cytokines (in pg/ml) read from the standard
80 curve (concentration in range: minimum of 5 pg/ml, to maximum of 100 pg/ml).

81 2 Results

82 8 obese and 24 non-obese individuals took part in the study. Plasma TNF-? level was studied with different
83 grades of exercises. Among the non obese, 15 (62.5%) were males and 9 (37.5%) were females. Among the obese,
84 5 (62.5%) were males and 3 (37.5%) were females. The mean BMI was 21.49 ± 1.23 kg/m² among the non-obese
85 and 31.78 ± 3.38 kg/m² among the obese.

86 A repeated measures ANOVA determined that mean TNF-? levels differed statistically significantly between
87 the various exercise levels in obese group and non-obese group ($P < 0.01$). Post hoc tests using the Bonferroni
88 correction revealed that exercise elicited III.

89 3 a) Statistical Analysis

90 Data was entered in M S Excel and was analyzed using SPSS Version 20.0 (SPSS Inc. Chicago, USA). All
91 the continuous variables were summarized in terms of mean and standard deviation and categorical variables as
92 proportions. In order to test for statistical significance for differences in the mean values of TNF-? at different
93 time points (i.e.; during various grades of exercise), in each group (obese and non-obese), repeated measures of
94 ANOVA was employed. Further, pair wise differences were tested using Bonferroni's test. Pearson's correlation
95 coefficient was used to find the correlation between BMI and TNF-? in both groups.

96 decrease in TNF-? concentration in obese [19 ± 0.54 (Mean \pm SEM)] and non-obese group [$(42.30 \pm 0.94$
97 (Mean \pm SEM)] which was statistically significant ($p < 0.01$). Therefore, we can conclude that a long-term
98 exercise elicits a statistically significant reduction in TNF? level.

99 There was a significant increase in the levels of this cytokine with both acute moderate exercise ($p=0.003$ and
100 $p=0.002$ in obese and non-obese respectively) and acute strenuous exercise ($p=0.005$ and $p=0.003$ in obese and
101 non-obese respectively) compared to baseline value. There was a significant rise in its levels after acute strenuous

102 exercise when compared to moderate exercise ($p=0.043$ and $p=0.002$ in obese and non-obese respectively). The
103 fall of TNF-? after one month of regular moderate exercise was also significant compared to baseline value ($p=0.001$
104 and $p=0.001$ respectively). That is, the TNF-? level decreased to below baseline level after the bout of moderate
105 exercise on the last day of one month of regular moderate exercise regime in both groups (Table ?? *TNF-?
106 alpha in pg/dl n=24 for obese and n=8 for non obese * $p < 0.05$: TNF-? is statistically significant between different
107 grades of exercise and between obese and non-obese groups.

108 **4 Figure 2 : Comparison of TNF-? level (pg/ml) between obese 109 and non-obese at different grades of exercise**

110 There was a positive correlation in both obese and non-obese groups at baseline (no exercise) but it was not
111 statistically significant in both groups. It was found that BMI had a significant positive correlation with TNF-?
112 in both obese and non obese groups but the correlation was high ($r=0.975$, $p<0.001$) in obese as compared
113 to non obese group ($r=0.76$, $p<0.05$) after a bout of moderate exercise. There was a positive correlation of
114 BMI and TNF-? alpha during strenuous exercise in obese($r=0.59$) which was not statistically significant. There
115 was correlation between BMI and TNF-? in non-obese group for strenuous exercise but it was not statistically
116 significant ($r=0.16$). There was a negative correlation between TNF-? and BMI after one month of regular
117 moderate exercise, but it was not statistically significant in both obese ($r=-0.25$) and nonobese ($r=-0.17$) groups.
118 IV.

119 **5 Discussion**

120 Obesity is a health hazard. This study was undertaken to see if there is any difference in the behavior of plasma
121 levels of the pro-inflammatory cytokine TNF-?, when the obese subjects and nonobese subjects were made to
122 undergo identical physical stress. Sudden and excessive physical activity is hazardous to health [23]. Physical
123 injury and unaccustomed physical stress/exercise has similar effects on immune system. [24]. There is production
124 of proinflammatory cytokines when the human body is made to undergo acute physical exercise. [25], [26]. The
125 percentage of T cells decrease in circulation on performance of long term severe exercise. [27]. Regular practice
126 of moderate exercise is inversely correlated with levels of pro-inflammatory cytokines in coronary heart disease
127 patients retarding the process of atherosclerosis [28]. Therefore, higher levels of pro-inflammatory cytokines like
128 tumor necrosis factor alpha are harmful to health [29].

129 TNF-? has pro-inflammatory properties. In this study, in both the obese and the non-obese groups, TNF-?
130 levels increased after a bout of moderate exercise and there was a further significant increase following a bout
131 of strenuous exercise and decreased significantly compared to baseline levels when compared with one month of
132 scheduled regular moderate exercise done on a daily basis; that is, in both the groups, TNF-? levels decreased to
133 below baseline level after the single bout of moderate exercise on the last day of one month of scheduled moderate
134 exercise when compared to single bout of moderate exercise without accustomisation to regular moderate exercise,
135 in the same individuals. It can be noted that the TNF-? levels are higher in obese subjects at baseline (no exercise)
136 level as well as at all other grades of exercise. In those subjects who perform moderate exercise on a daily basis,
137 sudden increase in pro-inflammatory cytokine may not occur if such individuals were to perform severe bouts
138 of unaccustomed physical activity intermittently. This may help them to tolerate sudden and unaccustomed
139 physical stresses in life better than those who do not exercise regularly.. The immune status improves markedly
140 with regular moderate exercise [6][7] [8][10] [11]. Since this study shows a fall in TNF-? level with regular
141 moderate Volume XIV Issue III Version I Year () K exercise in both groups, a fall in TNF-? level should also be
142 beneficial for maintaining health and immunity. TNF-? is pro-inflammatory cytokine, so its altered production
143 leads to unnecessary inflammation and tissue damage [30]. Thus regular moderate exercise seems to modulate
144 its release and alters its levels to the optimum levels necessary for human body to maintain good health.

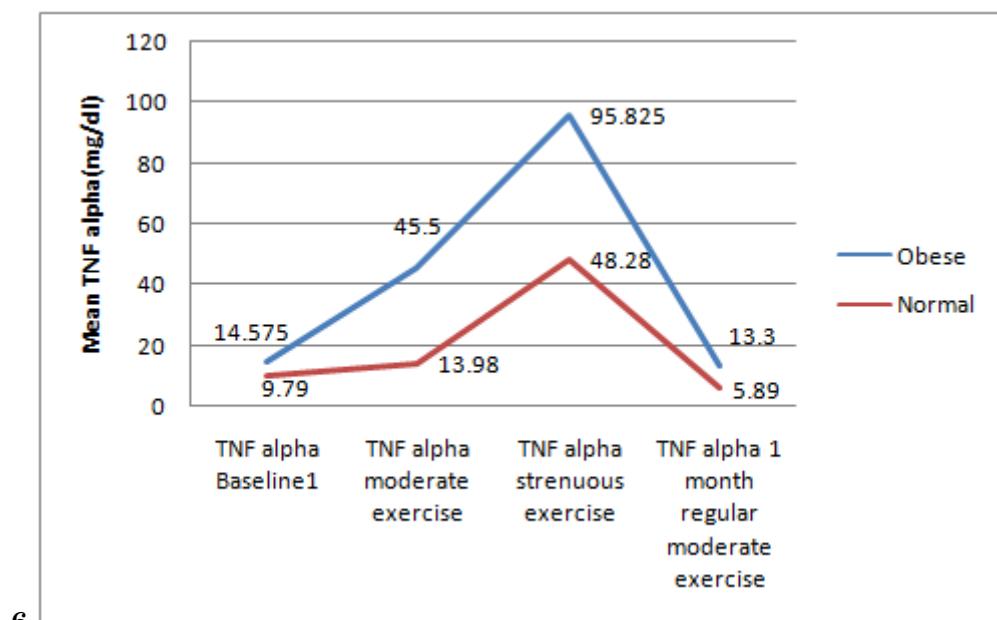
145 Mental stress is also known to increase the level TNF-? [31]. The adaptive cytokine response may also help
146 individuals adhering to regular moderate exercise to cope with bouts of psychological stresses encountered in
147 daily life [32]. The levels of TNF-? may not rise drastically either [33].

148 Elevated levels of TNF-? interleukin-6 (IL-6) are observed in atherosclerosis, coronary artery disease and
149 diabetes mellitus, etc [30]. Stressful bursts of physical activity in daily life, in such patients increases their levels
150 much further and leads to exacerbation of the disease. It can be postulated that the drastic rise in TNF-? and
151 IL-6 with bursts of physical activity or with 'acute on chronic infections' tends to become mild if such patients
152 perform moderate exercises regularly.

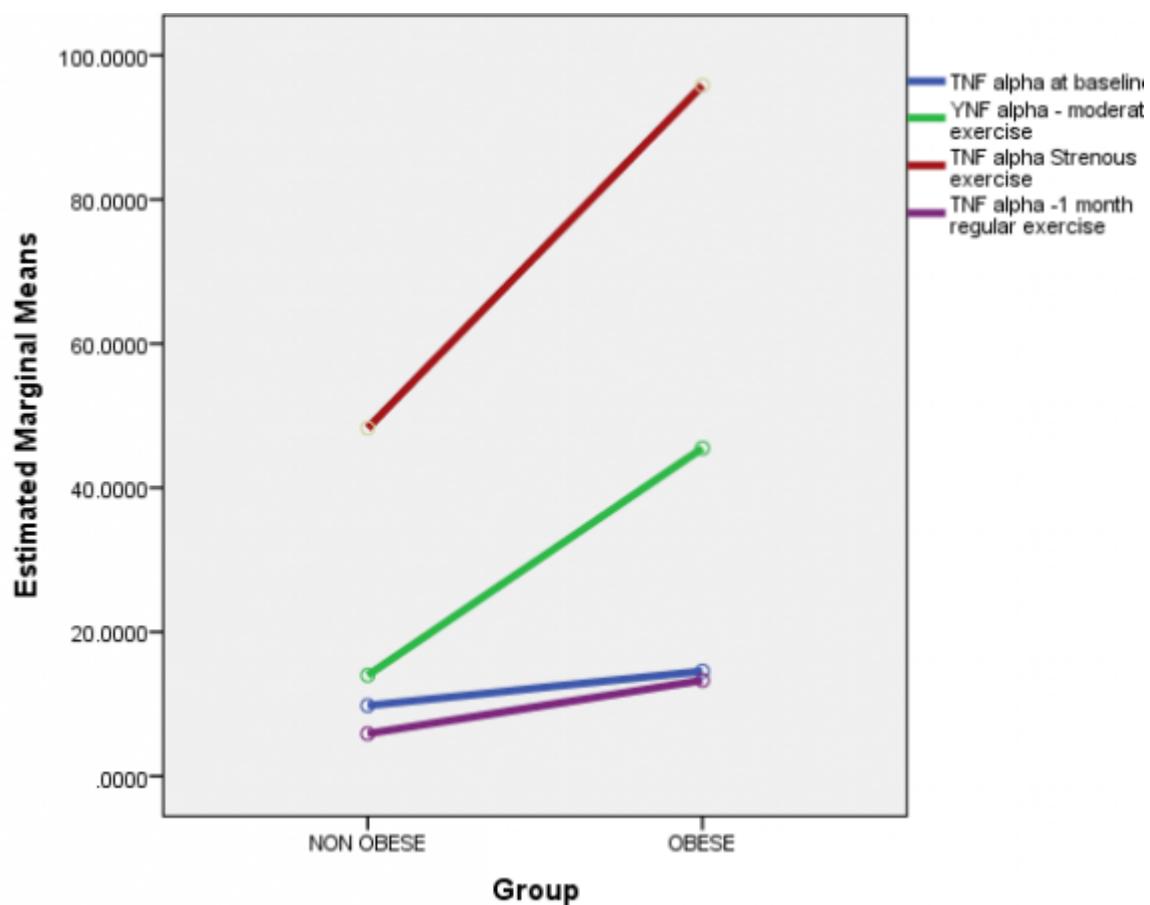
153 Certain autoimmune disorders like systemic lupus erythematosus and rheumatoid arthritis are associated
154 with increased plasma levels of pro inflammatory cytokines like TNF-? and IL-6, which increased inflammation
155 ??34]. Increased levels of TNF-? leads to cachexia, increased levels of C-reactive protein and other acute phase
156 proteins, activates macrophages, increases tumour cytotoxicity, activates neutrophils and increases phagocytosis
157 and induces secretion of other pro-inflammatory cytokines like IL-6 [36]. This study shows a positive correlation
158 between TNF-? and BMI baseline (no exercise) though not statistically significant in both obese and non-obese
159 groups. It was found that BMI had a significant positive correlation with TNF-? in both obese and non obese
160 groups but the correlation was high ($r=0.975$, $p<0.001$) in obese as compared to non obese group ($r=0.76$,
161 $p<0.05$) after a bout of moderate exercise. There was a positive correlation of BMI and TNF-? after strenuous

5 DISCUSSION

162 exercise in obese ($r=0.79$, $p<0.05$) which was statistically significant. This demonstrates that the obese are more
163 prone to secrete higher levels of pro-inflammatory cytokines like TNF-? on stressful physical activity to which they
164 are not accustomed. There was correlation between BMI and TNF-? in non-obese group for strenuous exercise
165 but it was not statistically significant ($r=0.16$). There was a negative correlation between TNF-? and BMI
166 after one month of regular moderate exercise, but it was not statistically significant in both obese ($r=-0.25$) and
167 non-obese ($r=-0.17$) groups.. This may indicate that obesity predisposes to increased levels of pro-inflammatory
168 cytokines, especially when the obese are exposed to unaccustomed physical stress. Interestingly, we found a
169 negative correlation between BMI and TNF-?, though not significant at end of one month of regular moderate
170 exercise in both groups. This may be because of the increase in healthy lean body mass/muscle mass at end of one
171 month of exercise and decrease in adiposity [37]. Till date very few studies have been undertaken simultaneously
172 in the obese and non-obese groups of human subjects to study the effects of physical stress/exercise on plasma
173 level of TNF-?. One of the reasons for this may be that it is difficult to convince obese subjects to perform
174 physical exercises, especially under supervision, which are both physically and psychologically stressful for them
175 [38]. Obesity associated inflammation is a known entity, but the mechanism controlling this pathway is still being
176 investigated and is not clearly known [39]. Regular moderate exercise may not only benefit obese individuals but
177 also those patients suffering from disorders related to metabolic syndrome like diabetes, inflammatory diseases
178 and auto-immune disorders by bringing down the levels of pro-inflammatory cytokines like TNF-?. Since the
179 behavior of plasma TNF-? level differs in obese and non-obese subjects with different grades of physical exercise,
180 we propose that this study has potential for clinical application. How much physical activity is good for health?
Annu Rev Public Health 1992; 13; 99-126. ^{1 2}


Figure 1: Figure 1 :

181


¹Comparison of Plasma Tumor Necrosis Factor Alpha (TNF-Alpha) Levels between Obese and Non-Obese With Graded Exercise

²© 2014 Global Journals Inc. (US)

6

Figure 2: 6 .

1

Figure 3:

Figure 4: Table 1 :

5 DISCUSSION

182 .1 Acknowledgements

183 We would like to acknowledge the support and valuable inputs of Dr. Chandrashekara. S, Director, Chanre
184 Rheumatology and Immunology center for Research, Bangalore and Dr. Rajeev Sharma, former head, Department
185 of Physiology, M. S. Ramaiah Medical College, Bangalore, India.

186 [Global Journal of Medical Research] , *Global Journal of Medical Research*

187 [Iwamoto et al.] , I Iwamoto , H Nakajima , H Endo , S Yoshida .

188 [Proc Natl Acad Sci (2003)] , *Proc Natl Acad Sci* 2003 Jul. 100 (15) p. .

189 [Hernandez et al. (2014)] 'A macrophage NBR1-MEKK3 complex triggers JNK mediated adipose tissue inflam-
190 mation in obesity'. E Z Hernandez , S J Lee , J Y Kim , A Duran , J F Linares , T Yajima . *Cell Metab* 2014
191 Jul 15. (Epub ahead of print)

192 [Leger and Lambert ()] 'A maximal multistage 20m shuttle run test to predict VO₂max'. L A Leger , J Lambert
193 . *Eur J Appl Physiol* 1982. 49 p. .

194 [Muhl and Pfeilschifter (2003)] *Anti-inflammatory properties of pro-inflammatory interferon-gamma*. *Int Im-
195 munopharmacol*, H Muhl , J Pfeilschifter . 2003 Sep. 3 p. .

196 [Mackinnon (2000)] 'Chronic exercise training effects on immune function'. L T Mackinnon . *Med Sci Sports
197 Exerc* 2000 Jul. 32 (7) p. .

198 [Janice et al. (2003)] 'Chronic stress and age-related increases in the proinflammatory cytokine IL-6'. K Janice ,
199 Kiecolt-Glaser , K J Preacher , R C Maccallum , C Atkinson , W B Malarkey , R Glaser . *Proc Natl Acad
200 Sci* 2003 July 22. 100 (15) p. .

201 [Flaishon et al. (2002)] 'Cutting edge: antiinflammatory properties of low levels of IFN-gamma'. L Flaishon , I
202 Topilski , D Shoseyov , R Hershkoviz , E Fireman , Y Levo . *J Immunol* 2002 Apr 15. 168 (8) p. .

203 [Lloyd et al. (1994)] 'Cytokine production and fatigue in patients with chronic fatigue syndrome and healthy
204 control subjects in response to exercise'. A Lloyd , S Gandevia , A Brockman , J Hales , D Wakefield . *Clin
205 Infect Dis* 1994 Jan. 18 (1) p. . (Suppl)

206 [Singh et al. ()] 'Development of a shuttle walking test of disability in patients with chronic airways obstruction'.
207 S J Singh , Mdl Morgan , S Scott , D Walters , A E Hardman . *Thorax* 1992. 47 p. .

208 [Kentrou et al. (2002)] 'Effect of moderate exercise on salivary immunoglobulin A and infection risk in humans'.
209 P Kentrou , T Ciestak , M Macneil , A Vintinner , M Plyley . *Eur J Appl Physiol* 2002 Jun. 87 (2) p. .

210 [Haahr et al. (1991)] 'Effect of physical exercise on in vitro production of interleukin 6, tumour necrosis factor
211 alpha, interleukin 2 and interferon-gamma'. P M Haahr , B K Pedersen , A Fomsgaard , N Tvede , M Diamant
212 , K Klarlund . *Int J Sports Med* 1991 Apr. 12 (2) .

213 [Akimoto et al. (2003)] 'Effects of 12 months of exercise training on salivary secretory IgA levels in elderly
214 subjects'. T Akimoto , Y Kumai , T Akama , E Hayashi , H Murakami , R Soma . *Br J Sports Med* 2003
215 Feb. 37 (1) p. .

216 [Pedersen and Steenberg (2002)] 'Exercise and hypoxia: effects on leukocytes and interleukin-6 -shared mecha-
217 nisms?'. B K Pedersen , A Steenberg . *Med Sci Sports Exerc* 2002 Dec. 34 (12) p. .

218 [Peake et al. (2005)] 'Exercise-induced muscle damage, plasma cytokines, and markers of neutrophil activation'.
219 J M Peake , K Suzuki , G Wilson , M Hordern , K Nosaka , L Mackinnon . *Med Sci Sports Exerc* 2005 May.
220 37 (5) p. .

221 [Glaser et al.] Jkk Glaser , K J Preacher , C Robert , M C Atkinson , W B Malarkey , R Glaser . *Chronic stress
222 and agerelated increases in the proinflammatory cytokine IL*,

223 [Fauci et al. ()] *Harrison's Principles of Internal Medicine*, A S Fauci , E Braunwald , K J Isselbacher , J D
224 Wilson , J B Martin , D L Kasper . 1998. New York (US: McGraw-Hill. (14th edition)

225 [Kimura et al. (2001)] 'Highly sensitive determination of plasma cytokines by time resolved fluoroimmunoassay;
226 effect of bycycle exercise on plasma level of interleukin -1 -alpha, tumour necrosis factor alpha and interferon
227 gamma'. H Kimura , M Suzui , F Nagao , K Matsumoto . *Anal Sci* 2001 May. 17 (5) p. .

228 [Merino et al. (2003)] 'Immune and hormonal changes following intense military training'. D G Merino , M
229 Chennaoui , P Burnat , C Drugon , C Y Guezennec . *Mil Med* 2003 Dec; 168. (12) p. .

230 [Rubin and Hackney ()] 'Inflammatory cytokines and metabolic risk factors during growth and maturation:
231 Influence of physical activity'. D A Rubin , A C Hackney . *Med Sports Sci* 2010. 55 p. .

232 [Strohacker and Mcfarlin (2010)] *Influence of obesity, physical inactivity and weight cycling on chronic inflam-
233 mation*, K Strohacker , B K Mcfarlin . 2010 Jan 1. 2 p. . (Front Biosci (Elite Ed))

234 [Jankord and Jemiolo (2004)] 'Influence of physical activity on serum IL-6 and IL-10 levels in healthy older men'.
235 R Jankord , B Jemiolo . *Med Sci Sports Exerc* 2004 Jun. (6) p. .

5 DISCUSSION

236 [Interferon ? regulates antigen-induced eosinophil recruitment into the mouse airways by inhibiting the infiltration of CD4+ T ce
237 'Interferon ? regulates antigen-induced eosinophil recruitment into the mouse airways by inhibiting the
238 infiltration of CD4+ T cells'. *J. Exp. Med.* 1993. 177 p. 573.

239 [Predel ()] 'Marathon run: Cardiovascular adaptation and cardiovascular risk'. H G Predel . *Eur Heart J* 2014
240 Jan 9. (Epub ahead of print)

241 [Black et al. (2013)] 'Pathological gambling: Relationship to obesity, selfreported chronic medical conditions,
242 poor lifestyle choices, and impaired quality of life'. D W Black , M Shaw , B McCormick , J Allen . *Compr
243 Psychiatry* Feb 2013. 54 (2) p. .

244 [Schumacher et al. (2006)] 'Physical performance is associated with markers of vascular inflammation in patients
245 with coronary heart disease'. A Schumacher , K Peerson , L Sommervol , I Seljeflot , H Arnesen , J E Otterstad
246 . *Eur J Cardiovasc Prev Rehabil* 2006 Jun. 13 (3) p. .

247 [Ang and Pinilla ()] 'Potential therapeutic effects of exercise to the brain'. E T Ang , F G Pinilla . *Curr Med
248 Chem* 2007. 14 (24) p. .

249 [Roitt and Delves ()] *Roitt's Essential Immunology*, I M Roitt , P J Delves . 2012. Oxford (UK: Blackwell Science
250 Company. (12 th edition)

251 [Northoff et al. (1998)] 'Similarities and differences of the immune response to exercise and trauma: the IFN-?
252 ga mmaconcept'. H Northoff , A Berg , C Weinstock . *Can J Physiol Pharmacol* 1998 May. 76 (5) p. .

253 [Castell et al. ()] 'Some aspects of the acute phase response after a marathon race, and the effects of glutamine
254 supplementation'. L M Castell , J R Poortmans , R Leclercq , M Brasseur , J Duchateau , E A Newsholme .
255 *Eur J of Appl Physiol* 1996. 75 (1) p. .

256 [Steensberg et al. (2001)] 'Strenuous exercise decreases the percentage of type 1 T cells in the circulation'. A
257 Steensberg , A D Toft , H Bruunsges , K J Halkjaer , B K Pedersen . *J Appl Physiol* 2001 Oct. 91 (4) p. .

258 [Pal and Pal ()] *Text Book of Practical Physiology*, G K Pal , P Pal . 2001. Chennai (India. (Orient Longman
259 Limited)

260 [Northoff et al. (1994)] 'The cytokine response to strenuous exercise'. H Northoff , C Weinstock , A Berg . *Int J
261 Sports Med* 1994 Oct. 15 (3) p. .

262 [Pool and Axford ()] 'The effects of exercise on the hormonal and immune systems in rheumatoid arthritis'. A J
263 Pool , J S Axford . *Rheumatology* 2001. 40 p. .

264 [Dyer et al. ()] 'The incremental shuttle walking test in elderly people with chronic airflow limitation'. Cae Dyer
265 , S J Singh , R A Stockley , A J Sinclair , S L Hill . *Thorax* 2002. 57 p. .

266 [Meager ()] *The Molecular Biology of Cytokines*, T Meager . 1998. Chichester (UK: John Wiley & Sons. (1st
267 edition)

268 [Pratt et al. ()] 'The reliability of the Shuttle Walking Test, the Swiss Spinal Stenosis Questionnaire, the Oxford
269 Spinal Stenosis Score, and the Oswestry Disability Index in the assessment of patients with lumbar spinal
270 stenosis'. R K Pratt , Jct Fairbank , A Virr . *Spine* 2002. 27 (1) p. .

271 [Pou et al. (2007)] 'Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of
272 inflammation and oxidative stress: The Framingham Heart Study'. K M Pou , J M Massaro , U Hoffman , R
273 S Vasan , P M Horvat , M G Larson . *Circulation* 2007 Sep 11. 116 (11) p. .

274 [What predicts obesity in patients with rheumatoid arthritis? An investigation of the interactions between life style and inflamma
275 'What predicts obesity in patients with rheumatoid arthritis? An investigation of the interactions between
276 life style and inflammation'. *Int J Obes (Lond)* 2010 Feb. 34 (2) p. .