

1 Exposure of the Population of Ngaoundere-Cameroon to Ionizing 2 Radiation Related to Medical Diagnosis in 2018

3 Joseph Gonsu Fotsing

4 Received: 10 December 2018 Accepted: 2 January 2019 Published: 15 January 2019

5

6 **Abstract**

7 Background: Medical applications are the main source of exposure to ionizing radiation of
8 human origin. Our objective was to determine the data on exposure to ionizing radiation of
9 medical origin of the population of Ngaoundéré in 2018. Methodology: It was a cross-sectional
10 descriptive study conducted within a period of one year, in the different hospitals of
11 Ngaoundéré, with a functional medical imaging service. The variables studied were age, sex,
12 type of examination, anatomical region and effective dose. The statistical analysis was
13 performed using the Microsoft Office 2016 software, Sphinx V5; the effective dosage was
14 calculated using the Internet Dose calculation Module.

15

16 **Index terms**— exposure, ionizing radiation, conventional radiology, city of Ngaoundéré, 2018

17 **1 Introduction**

18 Medical applications are by far the largest source of exposure to ionizing radiation of human origin. Thus, diagnostic
19 procedures account for more than 97% of artificial exposure and nearly 26% of total exposure of the population [1].
20 This exposure leads to absorption by the subject in contact with a dose likely to induce harmful biological effects
21 on the body which are of two types, the so-called deterministic short-term effects directly related to cellular lesions
22 for which a threshold of appearance has been defined and the so-called stochastic long-term or random effects
23 dominated by cancers and genetic anomalies and which can develop from few hours to several years [1]. It would
24 therefore be important to regularly estimate this medical exposure and analyze its evolution over time. A recent
25 publication on the exposure of the population to ionizing radiation in the United States points out that medical
26 exposure per year and per individual has increased six-fold, since the 1980s ??2]. Directive 97/43/ Euratom
27 [3] states in Article 12 on the estimation of doses received by the public: "Member States shall ensure that the
28 distribution of individual doses generated by exposures for medical purposes is determined for the population and
29 for the reference groups concerning it, depending on whether the Member States deems it necessary". The current
30 revision of Directive 96/29/ Euratom [4] on basic radiation protection standards should introduce an additional
31 requirement: "Member States shall ensure that the distribution of individual doses due to medical exposure is
32 determined and takes into account the age and sex distribution of the exposed population". In recent years, many
33 actions, both at European and American level, have been initiated in order to harmonize methods of collecting
34 information and thus to have reliable indicators on the medical exposure of the population. This is the case of
35 the European Union's Dose Datamed project ??2005) ??2006) ??2007) which led to the publication of the report
36 "radiation protection no. 154: European guidance on estimating population doses from medical x-ray procedures
37 (2008)" [5] and the "International action plan for the radiological protection of patients" action plan led by the
38 International Atomic Energy Agency (IAEA). Great Britain is undoubtedly the country that has done the most
39 in this field because, in the late eighties, the National Radiological Protection Board (NRPB) set up a national
40 system of dose evaluation. By type of examination based on measurement campaigns conducted by a sentinel
41 network of hospital services. Other countries, such as the Netherlands, Switzerland or Norway, also rely on
42 annual activity data from all or some hospitals. For several years now, the fleet of heavy imaging equipments has
43 expanded in Cameroon, with the creation of multiple imaging centers for public and private purposes therefore,
44 an increase in examinations and protocols, with the result of irradiation of the population. However, the global
45 exposure of the population to ionizing radiation of medical origin has never been evaluated in our country in

8 C) THE MOST FREQUENT ACTS BY SEX AND AGE

46 general and in Ngaoundere in particular despite the creation of the National Radiation Protection Agency in
47 2002 with the primary mission of protecting people, goods and the environment against ionizing radiation [6].

48 It is also responsible for the dosimetry of patients, professionals, the public, the environment in the imaging
49 services. This is why it is necessary to set up a long-term system to monitor practices both from the point of
50 view of the knowledge of the nature, the frequency and the distribution of examinations in the population, then
51 from the point of view of doses given to patients during these examinations. Thus, we proposed to conduct this
52 pilot study to evaluate the medical exposure of the population of Ngaoundéré to ionizing radiation of medical
53 origin in 2018, which could be the start point for monitoring these populations.

54 2 II.

55 3 Methodology

56 The study was carried out in the two Hospitals with medical imaging departments equipped with ionizing radiation
57 equipment in the city of Ngaoundéré, namely the medical imaging department of the Regional Hospital and the
58 Patient Clinic. This was a descriptive cross-sectional study, conducted within a period of one year, from January
59 to December 2018, including all patients coming to perform a medical imaging examination, using ionizing
60 radiation. The diagnostic acts selected for the study were those of conventional radiology, which are the only
61 ones currently performed in the city of Ngaoundere and grouped according to the anatomical zone explored.
62 Finally, 25 areas were defined for this study. The variables studied were the frequencies of diagnostic procedures
63 by anatomical region, age, sex, examination required, anatomical region, indication of examination, irradiation
64 parameters and irradiation dose. The collection took place as practices in the imaging centers over a period of
65 one year. The extrapolation of the results of the survey sample to the general population was based on data from
66 the last census of the general population of Cameroon; which estimated the population of Ngaoundere at about
67 200,000 inhabitants. The study will therefore make it possible to estimate the population actually exposed to
68 radio diagnostics in the public sector as well as in the private sector. In accordance with the recommendations of
69 European Commission (EC) Report No. 154 [5], the dosimetric indicator used in this study to estimate the dose
70 to the population related to medical exposure is the effective dose E (expressed in milli sievert, mSv) which is an
71 indicator of the risk of health detriment linked to individual exposure to ionizing radiation. Being a standardized
72 indicator, it allows comparisons between different countries and study of the evolution of the exposure that results
73 from this or that type of act over time. Effective doses were calculated using the conversion factor values defined
74 in ICRP Publication 60 ??7]. From the number of Nt acts and the average effective dose and associated with
75 each type of act t, it is possible to calculate the collective effective dose $S = \sum Et \times Nt$ [8]. The annual average
76 effective dose per inhabitant is obtained by dividing the collective effective dose S by the total population size for
77 the year studied, whether or not exposed to ionizing radiation. The statistical analysis was carried out using the
78 software sphinx V5, Excel 2016 and the effective dose was calculated from the Internet Dose calculation Module
79 (MICADO) online software of the National Institute for Radioprotection and Nuclear Safety (NIRNS) of France.

80 4 III.

81 5 Results

82 6 a) Total number of acts and collective effective dose for the 83 population of Ngaoundéré in 2018

84 It is estimated that 4136 diagnostic procedures were performed in Ngaoundéré from January to December 2018.
85 Of the 4030 patients, of whom 2394 (59.4%) were men and 1636 (40.6%) women, the sex ratio was H/F of 1.5
86 (Figure 1) and an average act number of 0.02 per inhabitant, 2.07% of the population of Ngaoundere performed
87 at least one conventional imaging examination in 2018, so 0.84% women and 1.22% of men. The mean age was
88 37 +/-19.25 years with 1-month and 96-years extremes, the most represented age groups were 30-34 years with
89 378 (9.13%) cases, 35-39 years with 298 (7.20%) cases, 25-29 years with 266 (6.43%) cases, 40-44 years with
90 216 (5.22%) cases, 45-49 years with 214 (5.17 %) cases, and 20-24years with 202 (4.88%) cases (Table 1). The
91 age group performing the most examination in men is 25-49 years and 25-54 years in the women. The most
92 frequent acts involved the thorax, limbs, spine and pelvis with respectively 53.9%; 19.6%; 14.3% and 6.7% of
93 cases (Table 2). The spine (lumbar and cervical spine), pelvic (pelvis, hip and hysterosalpingography (HSG)),
94 skull and abdomen (intravenous urography, barium enema (BE) and abdomen without preparation (AWP) acts
95 contributed to the majority of the collective effective dose with 39.99%, 25, 96 %, 10,53 and 8,84 % respectively,
96 the total effective dose S resulting from all the acts is equal to 8300 mSv (Table 3).

97 7 Volume XIX Issue II Version I

98 8 c) The most frequent acts by sex and age

99 The data presented in Table 4 and Figures 2 to 6 provide the following information: The exposure of patients
100 under five years is primarily in the chest region with 23.52% for males and 30.88% for females. For limbs, 29.417%

males and 13.23% females for limbs, and skull 2,94% for males and 0% for females, no pelvic x-ray under five years. For children aged 5 to 20 years, irradiation affects the majority of limbs with 32.11% for males and 13.13% for females. For adults between 21 and 50 years old, this irradiation concerns all the most frequent acts. As early as the age of 50 years, radiation is predominant for thoracic, lumbar spine and pelvic examinations; in general, the male sex is more representative of the irradiated anatomical area. According to National Institute of Statistics (NIS) data, the population of Ngaoundere is about 200,000, which leads to an average collective effective dose of 0.04 mSv per capita in the general population. The individual average effective dose in 2018 for the population actually exposed (2.07% of the total population) is 2 mSv, according to sex 2.67 mSv in women and 1.55 mSv in men. The most irradiated age group ranges from 20 to 64 years with a dose of 4680.66 mSv (56.39%), the 30-34-year groups receive 896.76 mSv (10.80%) and 35 -39 years 706.7 mSv (8.51%) (Table 5 and figure ??). The collective dose amount per sex is higher among women with 4487.20 mSv (54.06%) than men with 3812.98 mSv (45.94%) (Figure ??). [8]. Indeed, the development of medical imaging is recent in the city of Ngaoundere, many equipment are outdated, operating intermittently. The high price of imaging exams relative to the average income of populations is a handicap to examinations. The low number of these examinations also makes it possible to limit the irradiation of the population. Imaging is varied across all anatomical regions with predominance of the thorax which accounts for more than half of the acts with 53.9% followed by limbs with 24.23% and the lumbar spine with 11.85%. Specialized examinations are very rare, hysterosalpingography (HSG) is 1.64%, intravenous urography (IVU) 0.34%, barium enema (BE) 0.29%, urethrocy-stography 0.15 % and duodenal gastro esophageal transit (DGOT) 0.05%. The high frequency of an act takes into account its involvement in the management of common pathologies, this is the case of chest x-ray whose involvement in the management of pulmonary, cardio-mediastinal and costal pathologies is more to demonstrate. In addition this examination is strongly realized within the framework of the visits of employment, the systematic medical visits and even the visits before the registration in universities, the granting of a visa to travel in certain countries [9] which is not the case for examinations such as limbs, spine, skull whose indications are more specific and limited, often occurring in cases of trauma, pain and lameness.

9 Volume XIX Issue II Version I

10 Global Journal of Medical Research

Our data are similar to those of France recorded in the National institute of Health and Medical Research report of 1994 [10] where the chest x-ray represents 31%, followed by the spine of 8.3%. As for the specialized exams, their request is rather weak because of the absence in our city of the specialists being able to request these examinations; more over they are rather expensive. Chest x-rays are found at all ages, with the limbs predominantly 0-5 years old, the pelvis predominating in adolescents up to 50 years, and the lumbar spine predominantly at the age of 50 years and more. The distribution of x-rays according to the age marries the pathologies which concern these age groups, the thoracic pathologies are found at all the ages, those of the limbs concern the children and the young adults, the pelvis and the lumbar spine mainly concern the adults. Our data corroborate those of Switzerland [11] where it was examined by x-ray of patients under five, from the thorax region, for children aged five and over, radiography mainly affects the limbs and joints for adults under 50 years, this radiation is also mainly followed by the limbs and the thorax, from 50 years. Hence, the thorax dominates.

11 b) Effective Dose

The amount of collective dose per sex is higher among women with a total of 4487.22 mSv (54.06%) compared to men with a total of 3812.96 (45.94%). Among the most irradiating examinations are the lumbar spine and the pelvis, these are examinations concerning thick areas and composed of very dense structures that require a significant load in terms of kilo voltage and milli ampere and therefore a high dose of radiation to cross them. [11]. It should be noted that, the annual per capita effective dose in Ngaoundéré in 2018, equal to 0.04 mSv, is lower than the European and American average values and to the natural irradiation which is 2. ?? mSv [12]. This wide difference in dose can be explained by the presence of numerous radio diagnostic procedures including CT and nuclear medicine and a wide range of protocols by modality in these countries and also the very high number of irradiating acts in these cities compared to the city of Ngaoundere. In conventional radiology, the acts exposing the abdomen (Spine, IVU, BE and AWP), the pelvis (pelvis, hip and HSG) and the skull contribute mainly to the collective effective dose with respectively 48.83%, 25.96% and 10.53% of the collective effective dose, which is the same with data from France 2007 [8] where the acts exposing the abdomen, the pelvis and the digestive tract contribute mainly to the collective dose with 41, 5%, 29.8% and 11.8% of the collective effective dose. These are exams for which a large amount of irradiation is used and the contrast examinations are dynamic, requiring multiple incidences and shots.

V.

12 Conclusion

At the end of this study, it appears that, the medical exposure to ionizing radiation in Ngaoundere is mainly done by conventional radiology, the total number of examination is 4136 is an average number of act of 0.02 act

12 CONCLUSION

159 per inhabitant, the examinations are more frequently performed in men and the irradiation is more important for
160 women, the most affected age groups are those aged 25 to 49 for men and 25 to 54 for women. The most common
161 examinations are the thorax, the limbs, the lumbar spine and the skull; the most radiating examinations are the
162 lumbar spine, the abdomen and the pelvis. The collective effective dose is 8300 mSv with 4487.22 mSv in women
163 and 3812.96 mSv in men, an effective average dose per capita of 0.04 mSv well below European, US and natural
164 irradiation values. The proportion of the population that has actually benefited from a conventional radiology
165 examination is 2.07%, an individual effective average dose of 2 mSv per person.

Volume XIX Issue II Version I ¹ ²

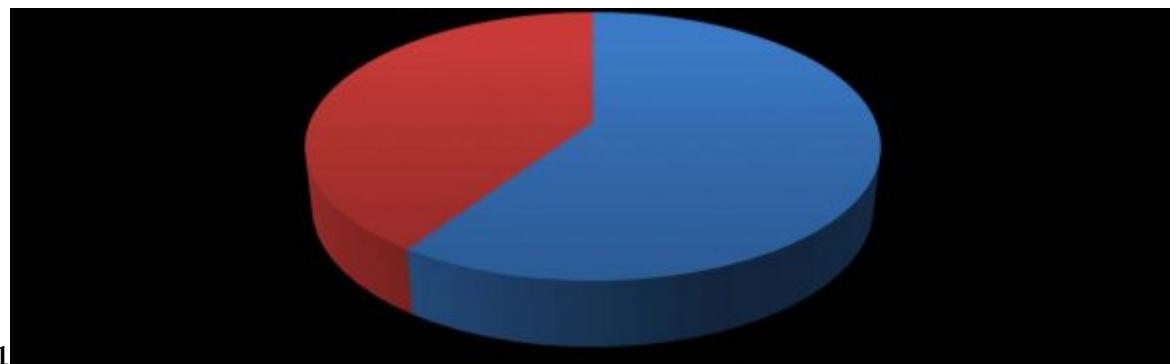


Figure 1: Figure 1 :

2 [REDACTED]

Figure 2: Figure 2 :

166

1

Age group	Frequency of act				Total	
	Male	Percentage	Female	Percentage		Percentage
0-1	16	0,39%	28	0,68%	44	1.06%
1-8	50	1,21%	38	0,92%	88	2.13%
5-9	44	1,06%	50	1,21%	94	2.27%
10-14	64	1,55%	50	1,21%	114	2.76%
15-19	72	1,74%	38	0,92%	110	2.66%
20-24	140	3,38%	62	1,50%	202	4.88%
25-29	172	4,16%	94	2,27%	266	6.43%
30-34	252	6,09%	126	3,05%	378	9.13%
35-39	176	4,26%	122	2,95%	298	7.21%
40-44	154	3,72%	62	1,50%	216	5.22%
45-49	138	3,34%	76	1,84%	214	5.17%
50-54	76	1,84%	78	1,89%	154	3.72%
55-59	82	1,98%	52	1,26%	134	3.24%
60-64	100	2,42%	68	1,64%	168	4.06%
65-69	40	0,97%	34	0,82%	74	1.79%
70-74	40	0,97%	20	0,48%	60	1.45%
75-79	10	0,24%	24	0,68%	38	0.92%
80-84	18	0,44%	18	0,44%	36	0.87%
85-89	12	0,29%	8	0,19%	20	0.48%
90-94	6	0,15%	4	0,10%	10	0.24%
95 -	2	0,05%	2	0,05%	4	0.1%
Empty	792	19,14%	620	14,99%	1412	34.14%
Total	2457	59,38%	1679	40,57%	4136	100%

[Note: b) Distribution of acts and collective effective dose by anatomical area explored.]

Figure 3: Table 1 :

2

Exams	Male	Workforce	Female	Total		
AWP	50	1,21%	28	0,68%	39	1,89%
FOREARM	62	1,50%	28	0,68%	45	2,18%
ARM	62	1,50%	50	1,21%	16	0,77%
BASIN	16	0,39%	16	0,39%	56	2,71%
ANKLE	70	1,69%	40	0,97%	55	2,66%
CLAVICLE	6	0,15%	12	0,29%	9	0,44%
ELBOW	22	0,53%	10	0,24%	16	0,77%

[Note: Volume XIX Issue II Version I D © 2019 Global Journals Exposure of the Population of Ngaoundere-Cameroon to Ionizing Radiation Related to Medical Diagnosis]

Figure 4: Table 2 :

3

Examens	Dose Collective (mSv)	Percentage
AWP	134,98	1,63%
FORE ARM	24,82	0,30%
BASIN	486,9	5,87%
ARM	4,42	0,05%
CLAVICLE	13,6	0,16%
ANKLE	13,36	0,16%
ELBOW	4,72	0,06%
FEMUR	18,16	0,22%
KNEE	26,02	0,31%
HIP	520,58	6,27%
HSG	1147,62	13,83%
LEG	33,16	0,40%
HAND	3,38	0,04%
BE	254,12	3,06%
FOOT	5,56	0,07%
WRIST	3,22	0,04%
CERVICAL SPINE	352	4,24%
DORSAL SPINE	473,54	5,78%
LUMBAR SPINE	2967,26	35,75%
SHOULDER	138,24	1,67%
URETHROCYSTOGRAPHY	74,96	0,90%
DGOT	28,50	0,34%
THORAX	346,56	4,18%
IVU	344,66	4,15%
SKULL	873,6	10,53%
TOTAL	8300	100%

Figure 5: Table 3 :

4

Exams	Thorax		Lumbar spine		Members		Pelvis		Skull	
	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female
Sex										
0-1	8	18	0	0	6	8	0	0	2	0
1-4	24	24	0	0	34	10	0	0	2	0
5-9	4	30	2	2	22	10	4	0	0	2
10-14	24	16	2	2	32	12	0	4	4	0
15-19	24	20	2	2	34	14	4	0	2	0
20-24	70	24	14	6	40	8	4	8	10	8
25-29	112	52	8	8	40	12	12	12	6	6
30-34	190	62	20	18	40	10	6	14	6	0
35-39	126	80	8	26	24	16	0	16	4	2
40-44	108	30	16	12	20	10	6	2	2	0
45-49	60	46	22	18	24	8	8	2	2	4
50-54	44	48	8	6	18	8	10	2	0	2
55-59	50	16	8	10	8	22	6	0	2	2
60-64	54	34	6	12	18	4	10	6	0	0
65-69	20	16	0	6	6	12	2	0	0	0
70-74	22	16	10	4	6	0	2	2	0	0
75-79	10	12	6	6	0	2	0	2	0	0
80-84	18	18	2	0	0	0	2	2	2	2
85-89	10	4	2	0	0	2	0	0	0	0
90-94	6	4	2	0	0	0	0	0	0	0
95-	0	2	0	0	0	0	0	0	0	0
Empty	374	296	100	114	320	242	70	74	66	44
Total	2228	868	490	252	924	410	280	146	182	72

Figure 6: Table 4 :

5

Age group	Dose (mSv)		Total
	Male	Female	
0-1	4,76	0.06%	7,06
1-4	17,98	0.22%	8,3
5-9	32,58	0.39%	17,02
10-14	42,3	0.51%	109,66
15-19	51,98	0.63%	28,44
20-24	151,7	1.83%	317,18
25-29	218,68	2.63%	365,78
30-34	340,3	4.1%	556,46
35-39	324,32	3.91%	382,38
40-44	231,7	2.79%	198,16
45-49	340,92	4.1%	243,66
50-54	237,08	2.86%	100,32
55-59	161,18	1.94%	135,38
60-64	197,12	2.37%	178,34
65-69	58,042	0.70%	27,82
70-74	109,86	1.32%	38,02
75-79	19,38	0.23%	96,06
80-84	32,94	0.40%	30,7
85-89	15,76	0.19%	0,98
90-94	13,52	0.16%	0,50
95 -	29,94	0.36%	12,6
Empty	1180	14.22%	1632,4
Total	3812,96	45,94%	4487,22
			54,06%
			8300
			100%

Figure 7: Table 5 :

Figure 8:

167 .1 Conflicts of Interest

168 The authors declare that there is no conflict of interests regarding the publication of this paper.

169 [Boniface et al. ()] 'Assessing the role of routine chest radiography in asymptomatic students during registration
170 at a university in an endemic area of tuberculosis'. M Boniface , T Joshua , P Walter , Z Fernande , G Emrick
171 , G Joseph . *Ann Trop Med Public Health* 2012. 5 p. .

172 [Rannou et al. ()] 'Available on www.irsn.fr 2. National on Radiation Protection and Measurements. Ionizing ra-
173 diation exposure of the population of the United States'. A Rannou , B Aubert , P Scanff . IRSN/DRPH/SER
174 2006-02. Availableonwww.ncbi.nlm.nih.gov *NCRP report* 2006. 2009. 160. (Report) (Exposure of the
175 French population to ionizing radiation)

176 [Directive 96/29/Euratom of 13 may 1996 laying down basic standards for the protection of the health of workers and the general
177 *Directive 96/29/Euratom of 13 may 1996 laying down basic standards for the protection of the health of workers*
178 *and the general public against the dangers arising from ionizing radiation*, Availableonwww.asn.fr

179 [Directive 97/43/Euratom of 30 june 1997, on the protection of the health of persons against the dangers of ionizing radiation wh-
180 *Directive 97/43/Euratom of 30 june 1997, on the protection of the health of persons against the dangers of*
181 *ionizing radiation when exposed for medical purposes*, Availableonwww.asn.fr

182 [Coultre et al. ()] *Disponible sur le site www.bag.admin.ch* 12. United Nation, *Report of the United Nations*
183 *Scientific Committee on the Effects of Atomic Radiation, Fifty-sixth sessions*, Le Coultre , R Bize , J
184 Champendal , M Wittwer , D Trueb , P Verdun , F . 2015. 2013. 2015. July 2008. p. 18. (Exposition de
185 la population suisse aux rayonnements ionisants en imagerie médicale en)

186 [République Du ()] *Décret n° 2002/250 of 31 octobre 2002 establishing, organisation and operating the*
187 *National Radiation Protection Agency. Available on www.ilo.org* 7. International Commission on Radiological
188 *protection. 1990 recommandation of the international commission on radiological protection. Publication 60 of*
189 *the CIPR (1990) French language edition Pergamon Press, Cameroon République Du . Availableonwww.*
190 *asn.fr* 2002. Oxford.

191 [European Guidance on Estimating Population Doses from Medical X-Ray Procedures, Radiation Protection n° 154 European Co-
192 'European Guidance on Estimating Population Doses from Medical X-Ray Procedures, Radiation Protection
193 n° 154'. European Commission, DG Energy-Transport 2008.

194 [Pascale et al.] *Exposition de la population française aux rayonnements ionisants -Institut de veille sanitaire*, S
195 Pascale , D Jean , P Phillippe , A Bernard . Availableonlesitewww.irsn.fr

196 [Sandra and Bernard ()] *Exposure of the French population to ionizing radiation related to the medical diagnostic*
197 *procedures in 2007 -Institut de veille sanitaire*, Cecile E Sandra , S Bernard , A . Availableonwww.irsn.fr
198 2012.

199 [General Assembly Official Records Sixty-third Session Supplement No] *General Assembly Official Records*
200 *Sixty-third Session Supplement No*,