
© 2011 Tatiana Ilkova , Mitko Petrov. This is a research/review paper, distributed under the terms of the Creative Commons 
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial 
use, distribution, and reproduction inany medium, provided the original work is properly cited. 
 

Global Journal of Medical research 
Volume 11 Issue 4  Version 1.0 December  2011 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 2249-4618 & Print ISSN : 0975-5888 

 

L-lysine Neuro-Dynamic Optimal Control

 

By
 
Tatiana Ilkova , Mitko Petrov

 

Assist. Prof. PhD. Bulgarian Academy of Sciences.

 

Abstract –

 

In this paper Neuro-dynamic programming (NDP) is

 

proposed as an alternative to 
alleviate the “curse of

 

dimensionality” of the Dynamic programming (DP) for optimal

 

control of a 
fed-batch fermentation process in the L-lysine

 

production. The most effective and cheapest 
method for the Llysine

 

biosynthesis (in biological active form) is the

 

microbiological method via a 
direct fermentation. In this paper

 

an optimization method of the L-lysine production from strain

 

Brevibacterium flavum 22LD is used and that is NDP. The

 

results show that the quality of L-lysine 
enhances at the end of

 

the process. The proposed method is particularly simple to

 

implement 
and can be applied for on-line optimization.

 

Keywords :

 

dynamic programming, neural network, Llysine

 

fermentation, optimal control.

 

L-lysine Neuro-Dynamic Optimal Control

 

                                                     

 
                       

Strictly as per the compliance and regulations of:

 

 

 

 



L-lysine Neuro-Dynamic Optimal Control 
Tatiana Ilkova α, Mitko Petrov Ω 

Abstract - In this paper Neuro-dynamic programming (NDP) is 
proposed as an alternative to alleviate the “curse of 
dimensionality” of the Dynamic programming (DP) for optimal 
control of a fed-batch fermentation process in the L-lysine 
production. The most effective and cheapest method for the L-
lysine biosynthesis (in biological active form) is the 
microbiological method via a direct fermentation. In this paper 
an optimization method of the L-lysine production from strain 
Brevibacterium flavum 22LD is used and that is NDP. The 
results show that the quality of L-lysine enhances at the end of 
the process. The proposed method is particularly simple to 
implement and can be applied for on-line optimization. 
Keywords : dynamic programming, neural network, L-
lysine fermentation, optimal control. 

I. INTRODUCTION 

-lysine is an essential amino acid, which means 
that it is essential to human health, but cannot be 
produced by the body. For this reason L-lysine 

must be obtained from food. Amino acids are the 
building blocks of the protein. Lysine is important for 
proper growth and it plays an essential role in the 
production of carnitine, which is a nutrient responsible 
for converting fatty acids into energy and helping to 
lower cholesterol. 

The insufficient L-lysine quantity in the fodders 
reduces the biological value of the fodder doses, it also 
reduces the weight increase and the further 
productiveness of the agricultural animals, decreases 
the fodder quality, used for a kilogram growth and 
decreases the product quantity from animal origin. L-
lysine is also used in the food industry for farming, in the 
medicine as a component of the infusion solution (blood 
substitutes) and as generally strengthening patent 
medicines. Lysine appears to help the body absorb and 
conserve calcium and it plays an important role in the 
formation of collagen, a substance which is important 
for the bones and connective tissues including skin, 
tendon, and cartilage (Anastassiadis, 2007). 

Amino acids are the basic bioelements of 
proteins, which are the most important macromolecules 
for the functions of humans and animals. Out of the 20 
L-amino acids, which are found worldwide in most of the 
living organisms, L-lysine is one of the nine essential 
amino acids for human and animal nutrition 
(Anastassiadis, 2007). 
 

  
 

  
  

 
  

Neuro-dynamic programming (NDP) is 
proposed as an alternative to alleviate the “curse of 
dimensionality” of the Dynamic programming (DP). The 
term NDP expresses the reliance of the methods, 
described in this article with respect to both the DP and 
the neural network concepts. The term reinforcement 
learning is also used in the artificial intelligence 
community where the methods originated from. Using 
common artificial intelligence terms, the methods help 
the systems “learn how to make good decisions by 
observing their own behavior and use built-in 
mechanisms for improving their actions through a 
reinforcement mechanism” (Bertsekas & Tsitsiklis, 
1996). 

The key idea is to use a scoring function to 
select decisions in complex dynamic systems, arising 
from a broad variety of applications for engineering 
design, operations research, resource allocation, 
finance, etc. This is much similar to a computer chess, 
where positions are evaluated by means of a scoring 
function and the move that leads to the position with the 
best score is chosen. NDP provides a class of 
systematic methods for computing the appropriate 
scoring functions using approximation schemes and 
simulation/evaluation of the system’s performance 
(Driessens & Dzeroski, 2004). 

Using common artificial intelligence terms, the 
methods allow the systems to “learn how to make good 
decisions by observing their own behavior and use built-
in mechanisms for improving their actions through a 
reinforcement mechanism”.  In more mathematical 
meaning “observing their own behavior” relates to 
simulation and “improving their actions through a 
reinforcement mechanism” relates to the iterative 
schemes for improving the quality of approximation of 
the optimal cost function, the Q-factors or the optimal 
policy. There has been a gradual realization that the 
reinforcement learning techniques can be fruitfully 
motivated and interpreted in terms of classical DP 
concepts such as the value and policy iteration (Barto 
et. all, 1995; Sutton, 1988). 

NDP is a relatively new class of the dynamic 
programming methods for control and sequential 
decision making under uncertainty. These methods 
have the potential of dealing with some problems that 
were thought to be intractable for a long time due to 
either a large state space or the lack of an accurate 
model. They combine ideas from the fields of neural 
networks, artificial intelligence, cognitive science, 
simulation, and approximation theory. In recent years 
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the method has been applied successfully for an 
optimal control of fermentation process (FP). The 
literature sources show that the calculating time is 
significantly reduced, while the desired products 
quantity is increased (Kaisare et. all, 2003; Ikova & 
Petrov, 2008).

 The aim of this study is to develop optimal feed 
rate strategy of biotechnological process in L-lysine 
production using Neuro-dynamic control.

 
II.

 
PROCESS SPECIFICS AND L-LYSINE 

PRODUCTION MATHEMATICAL MODEL
 

The development of a multi-step bio-
technological process requires three steps, comprising 
of:

 •
 

Identification and characterization of a suitable 
biological system (microorganism, biocatalyst).

 •
 

Increase of bioreactor productivity by systematic 
media optimization and adaptation of fermentation 
technology to a developing process.

 •
 

Downstream process (cell separation by 
centrifugation or ultrafiltration, separation, 
evaporation and drying) (Anastassiadis, 2007).

 In addition to physical parameters like pH, 
agitation and aeration rate, air saturation, temperature, 
dissolved carbon dioxide and foaming, the medium 
composition is a very important factor highly influencing 
fermentation processes, which are often a subject of 
extensive process development and optimization 
studies. The culture medium has to satisfy the 
requirements of microbial growth and production in a 
suitable manner. L-lysine can be produced either using 
a chemical or a biochemical method, which is 
economic, even though relatively low yields are obtained 
during the extraction of L-lysine, requiring specific 
installations and the use of expensive products. The 
stereospecificity of amino acids and the steadily 
increasing L-lysine demand necessitates indispensably 
their fermentative production (the L isomer) over 
synthetic processes. 

 The experimental investigations are done in a 
15 L bioreactor that is included in an Automatic Control 
System. The Automatic Control System is flexible and 
includes control of the following parameters of the 
process: rotation speed, oxygen partial pressure, 
temperature, pH, foam level, gas flow rate, flow rates of 
the main substance. The process is led in the next 
conditions:

 
• Temperature T=300C;  
• pH pH=6.8-7.6; 
• pO2 pO2=20-30%; 
• Gas flow rate  QG=60 L h-1; 
• Rotation speed  n=450 min-1; 
• Maximum bioreactor volume 15 L. 

For the L-lysine fermentation defined media is 
used which acquires nutrients that require pure growth 

and essential additives or alternatively undefined media 
containing natural organic substances such as 
soybeanhydrolyzate, corn steep liquor, yeast extract or 
peptone is used. Common fermentation media for L-
lysine production contain various carbon and nitrogen 
sources, inorganic ions and trace elements (Fe++, 
Mn++), amino

 
acids, vitamins (biotin, thiamine-HCl, 

Nicothin amide) and numerous complex organic 
compounds. An upper expression of genes is also 
achieved by optimizing the composition of the media 
and the culture technique in addition to the physiological 
and genetic parameters (Anastassiadis, 2007).

 The model of the fed-batch processes includes 
the dependences between the concentrations of the 
basic variables of the process: cell mass concentration 
(bacteria Brevibacterium flavum), substrate 
concentration, L-lysine, Threonine concentration and 
oxygen concentration in the liquid phase. The general 
scheme of the L-lysine is shown in Figure 1.

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 :

 

A general metabolite pathway of the L-lysine 
biosynthesis.
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The mathematical model of the process is 
based on the mass balance equations as a perfect 
mixing in the bioreactor is adopted. The model of the 
process has the following type (Anastassiadis, 2007):

(1)

(2)

X
V
FX

dt
dX

−= µ

XkXkXkSS
V
F

dt
dS
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FXkTrTr
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dt
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(5)

   

(6)

   

The specific rate of L-lysine synthesis and 
specific consumption rate have the following form:

 

(7)

   

(8)

   

where: 

  

specific

 

rate of L-lysine synthesis, h

  

specific consumption rate of L-lysine, h

 
 

  
  

  
 
 

 
 

 
 

The initial conditions in the model (1) -

 

(8) have 
the follows values:

 

 
 

The model coefficients in (1) -

 

(8) have the 
following values:

 
 

 
 

 

III.

 

NEURO-DYNAMIC OPTIMAL CONTROL 
OF THE PROCESS

 

The objective of this work is to find the optimal 
feed flow rate (F(t))

 

of a fed-batch process, such as the 
L-lysine production that will raise L-lysine at the end of

 

the process, i.e.:

 

(9)

   

where: t0

 

–

 

initial time, tf

 

–

 

final time of the 
fermentation.

 

Therefore, the control objective is to drive 
the reactor from the low product steady state to the 
desirable high product rate. It may be considered as a 
step change in the set point at time t=0 from the low 

product concentration to the high product concentration 
steady state. 

 

In the systems the decisions are made in 
stages. The outcome of each decision is not fully 
predictable but can be anticipated to some extent 
before the next decision is made. Each decision results 
in some immediate cost, but it also affects the context in 
which the future decisions are to be made and thus it 
affects the cost incurred in future stages. DP provides a 
mathematical formalization of the tradeoff between the 
immediate and future costs. Generally, in DP 
formulations there is

 

a discrete-time dynamic system 
whose state evolves according to the given transition 
probabilities that depend on the decision/control u. 

 

DP is an elegant way to solve the introduced 
optimization problem (9). It involves a stagewise 
calculation of the cost-to-go function to arrive at the 
solution not just for a specific initial state, but for a 
general initial state. Once obtained the cost-to-go 
function, represents a convenient vehicle to obtain the 
solution for a general state. In very few cases the 
stagewise optimization to obtain analytically a closed-
form expression for the cost-to-go function has been 
solved. The conventional approach to the problem 
involves gridding the state space, calculating and 
storing the cost-to-go for each grid points as one

 

marches backward from the first stage to the last. For an 
infinite horizon problem the number of iteration required 
for convergence can be very big. Such an approach is 
seldom practically feasible due to the exponential 
growth of the computation with respect to the state 
dimension. Unfortunately, from the very beginning it was 
apparent that an increase of the dimensionality of the 
problem, i.e. an addition of reservoirs, caused an 
exponential increase in the time required to find a 
solution. This is referred to as the “curse of 
dimensionality”, which must be removed so that this 
approach can find a widespread use. 

 

NDP aims to develop a methodological 
foundation for combining dynamic programming, 
compact representations, and simulation to provide the 
basis for a rational approach to complex stochastic 
decision problems (Bertsekas & Tsitsiklis, 1996; Kaisare 
et. all, 2003). 

 

Two fundamental DP algorithms, policy iteration 
and value iteration, are the starting points for the NDP 
methodology. The most straightforward adaptation of 
the policy iteration method operates as follows: we start 
with a given policy (a rule for choosing a decision u at 
each possible state i), and we approximately evaluate 
the cost of that policy (as a function of the current state) 
by least-squares-fitting a scoring function to the results 
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X
dt
dL η=

F
dt
dV

=

( )( )( )[ ]L

L

CkSSkTrk
CTrk

+−++
=

4032

1µ

( )( )( )( )[ ]LL

L

CkCkSkSk
CSk

++++
=

1211109

8η

µ – -1; 
η – -1 ; X –
biomass concentration, g l- ; L – L-lysine concentration, 
g l-1; S – glucose concentration, g l-1; V – working liquid 
volume, l; F – feed flow rate, l h-1; Tr – Threonine 
concentration, mg l-1; t – process time, h; CL – dissolved 
oxygen concentration, g l-1; C*  – equilibrium dissolved 
oxygen concentration, g l-1; Sin – input feed substrate 
concentration, g l-1; Trin – input feed Threonine 
concentration, g l-1; kla – volumetric liquid mass transfer 
coefficient, h-1.

X(0) = X0 = 3.00 g l-1; S(0) = S0 = Si = 100.00 g l-1; Tr(0) = 
Tr0 = Trin = 100.00 mg l-1; L(0) = 0.00 g l-1; CL(0) = C* = C0

= 6.1x10-3 g l-1; V(0) = V0 = 10.00 l.

k1 = 20.8, k2 = 42.0, k3 = 28.0, k4 = 1.1, k5 = 1.01,
k6 = 0.07, k7 = 0.51, k8 = 62.0, k9 = 28.0,
k10 = 37.0, k11 = 4.0, k12 = 0.12, k13 = 6.10,
k14 = 448.0, k15 = 22.0, k16 = 209.0, kla = 120.

∫=
ft

t

dttVtLQ
0

)()(max
u

of many simulated system trajectories using that policy. 
A new policy is then defined by minimization in 
Bellman’s equation where the optimal cost is replaced 
by the calculated scoring function and the process is 
repeated. This type of algorithm typically generates a 
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sequence of policies that eventually oscillates in a 
surrounding of an optimal policy. The resulting deviation 
from optimality depends on a variety of factors, principal 
among which is the ability of the architecture of scoring

 

function to accurately approximate the cost functions of 
the various policies. 

 

NDP uses simulated process data received 
under suboptimal policies to fit an approximate cost-to-
go function –

 

generally by fitting artificial network. With 
the value iteration approach NDP the initial approximate 
cost-to-go function in the future was improved by an 
iteration procedure based on Bellman equation. In this 
way the simulation role has two points. First, by 
simulation the process under a reasonably chosen 
suboptimal policy and all possible operating parameters 
it provides set data points that define the relevant 
“working” region in the state space. Second, the 
simulation provides the cost-to-go value under the 
suboptimal policy for each state visited, which iteration 
of the Bellman equation can be initialed with (Kaisare et. 
all, 2003). 

 

In this paper we will demonstrate NDP 
approach not only for reducing the computational 
demand, but also for improving the controller 
performance through the use of the cost-to-go 
approximator. A neural network is chosen as an 
approximator to obtain cost-to-go as a function of 
system states. While a properly trained neural network 
has good interpolation capabilities, one may not be 
used to extrapolate over the regions of state space that 
are not covered during its training. Extrapolation by 
neural network results in deteriorated performance of the 
controller. 

 

The policy improvement theorem states that a 
new policy that is greedy (a greedy policy is

 

one whose 
current cost is the least) with respect to the cost-to-go 
function of the original policy is as good as or better 
than the original policy.

 

When the new policy is as good as the original 
policy the above equation becomes the same as 
Bellman equation. 

 

The relevant regions of the state space are 
identified by simulation of NDP control and the initial 
suboptimal cost-to-go function is calculated from the 
simulation data. In this survey a functional approximator 
is used to interpolate between this data. The 
improvement is obtained through the iteration of the 
Bellman equation. When the iteration converge this off-
line computed cost-to-go function can be used for an 
on-line optimal control calculation for the bioreactor 
(Xiong & Zhang, 2005). 

 

NDP uses neural network approximations for 
the approximation of cost-to-go function. The cost-to-go 
function was not used to generate an explicit control 
law; instead, it was used in an on-line optimization to 
reduce the large (or infinite) horizon problem to a

 

relatively short horizon problem. The method was found 

to be robust to approximation errors. Both deterministic 
(step changes in kinetic parameters) and stochastic 
problems (random variations in kinetic parameters and 
feed composition) were explored Lee J.M., & Lee, J. H., 
2009; Tosukhowong & Lee J. H., 2009). 

 

a)

 

NDP

 

algorithm 

 

The following notations are used for description 
of the algorithm: 

 

The general simulation-approximation scheme 
involves computation of the converged cost-to-go 
approximation off-line. The architecture of the scheme is 
shown in Figure 2. Step 1, Step 2, Step 3 and Step 4 
represent the “Simulation part”, and 5 and 6 the “Cost 
Approximation Part”. 

 

The simulation-based approach involves 
computation of the converged profit-to-go 
approximation off-line. The following steps describe the 
general procedure of NDP algorithm: 

 

1.

 

Performing of simulations of the process with 
chosen suboptimal policies under all representative 
operating conditions. Starting with a given policy (a 
rule for choosing a decision u at each possible state 
i), and approximately evaluate the cost of that policy 
(as a function of the current state) by least-squares-
fitting a scoring function to the results of the many 
simulated system trajectories using that policy.

 

2.

 

Calculation of the -horizon cost-to-go for each 
state visited during the simulation, using the 
simulation data. The solution of one-stage-ahead 
cost plus cost-to-go problem results in the 
improving of the cost values. Cost-to-go is the sum 
of the single state cost from the next point to the 
end of the horizon.

 

3.

 

The deviation, which is a result of the optimality, 
depends on a variety of factors, principal among 
which is the ability of the architecture of Bellman 
function to approximate accurately the cost 
functions of the various policies.

 

4.

 

A new policy is then defined by minimizing 
Bellman’s equation where the optimal cost is 
replaced by the calculated scoring function and the 
process repeats. This type of algorithm typically 
generates a sequence of policies that eventually 
oscillate in a surrdounding of an optimal policy.

 

5.

 

Fitting a neural network function approximator to the 
data to approximate the cost-to-go function as a 
smooth function of the states.

 

6.

 

As described above the improved costs are

 

again 
fitted to a neural network,  to obtain subsequent 
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∞

iterations of Bellman functions, and so on ..., until 
convergence is accomplished.

7. Policy update may sometimes be necessary to 
increase the coverage of the state space. In this 
case more suboptimal simulations with the updated 
policy are used to increase the coverage or the 
number of the data points in certain region of the 
state space.
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The NDP algorithm block-

 

scheme is shown in Fig. 2.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 :

 

NDP algorithm block-scheme.

 
 

Take into consideration that when starting with a fairly 
good approximation of the cost-to-go (which has to be a 
result of using a good suboptimal policy), the cost 
iteration has to converge fairly fast –

 

faster than the 
conventional stagewise cost-to-go calculation. 

 

The next values of F are examined 0.2, 0.4, 0.5, 
0.7, that can cover the possible rang of variations.

 

The 
bioreactor was started at three different W(0) values for 
each of the parameter values around the low product 
yield steady state. 

 

A functional approximation relating cost-to-go 
with augmented state was obtained by the neural 
network –

 

with five hidden nodes, six input nodes and 
two output nodes. The neural network presented a good 
fit with a mean error of 10-3 after training for 1000 
epoch. 

 

Improvement of the cost-to-go is obtained 
through the iterations of the Bellman equation. This 
method is known as a value iteration (or value iteration). 
The solution of the one-stage-ahead cost plus cost-to-
go problem, results in the improvement of the

 

cost 
values. The improved prices were again fitted to the 
neural network, described above to obtain subsequent 
iterations of Belman function and so on ..., until they are 
converged. Cost is said to be “converged” if the sum of 
the absolute error is less than 5% of the maximum cost. 
The cost is converged in 7 iterations for our system. 

 

The converged cost-to-go function from above 
was used for solving the one-stage-ahead problem. 

 

The optimal value of feed flow rate before and 
after optimization is shown in

 

Fig.3. The L-lysine 
production before and after optimization is shown in 
Fig.4. Fig.4 shows the increase of the L-lysine after 
optimization by 39.41%.
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Fig.3 : Optimal feed flow rate before and after 
optimization.
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Fig.4 :

 

L-lysine concentration before and after 
optimization

 
  

The process was stopped at the 48th hour 
because at this hour the fermentation was led. For 
proving of the choice of stopping of the optimization 
final hour the procedure was extended to the 54th hour. 
The results show that after 48th the process stands still 
and it continuing is economically disadvantageous. It 
becomes clear that after 48th the process goes into a 
steady state. Therefore, the fixed right end for 48 hours 
is appropriate.

 

In this optimization problem the time is 
discredited in six hours. It is assumed that this is a step 
of discretization of this process in terms of features and 
well-known computational difficulties.

 

IV.

 

CONCLUSION

 

An approach for the optimal control of 
fermentation processes for a L-lysine fed-batch 
fermentation is developed for searching an optimal feed 
rate strategy using Neuro-dynamic control. It is 
proposed as a method for alleviation of the “curse of 
dimensionally” of DP.

 

The conventional approach to solving an 
optimization problem with DP method

 

involves gridding 
of the state space, solving the optimization for each grid 
point and performing the stagewise optimization until 
convergence. Exhaustive sampling of state space can 
be avoided by identifying relevant regions of the state 
space by simulation under judiciously chosen 
suboptimal policies, which is presented using NDP 
methods with the help of a neural network for functional 
approximator. 

 

The results show that the L-lysine quantity is 
highly raised at the end of the process which is the 
desired criterion for process quality.

 

The result shows 
that NDP is a convenient and easy to use application 
method for optimal control. The approach is particularly 
simple to implement and it should be used for on-line 
implementation, after necessary additional training of 
the relevant neural network is obtained.
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