

1 Design and Evaluation of a 3-Component Composite Excipient
2 "Microcrystarcellac" as a Filler-Binder for Direct Compression
3 Tabletting and it's Utilisation in the Formulation of Paracetamol
4 and Ascorbic Acid Tablets

biodun shittu¹

⁶ ¹ University of Jos, Jos, Plateau State. Nigeria.

Received: 4 February 2012 Accepted: 5 March 2012 Published: 15 March 2012

9 Abstract

10 A research was conducted to design and evaluate a highly functional 3-component composite
11 fillerbinder for direct compression. Tapioca starch (NTS) was modified physically at molecular
12 level by annealing and enzyme hydrolyzed to obtain microcrystalline tapioca starch(MCTS)
13 which was coprocessed with LMH and microcrystalline cellulose (MCC) to yield
14 Microcrystarcellac (MSCL). NTS was extracted from cassava tuber (*Mannihot esculenta*
15 *crantz*) using a standard method. The powder suspensions were prepared in concentration of
16 40

Index terms— Microcrystarcellac, Coprocessed Excipient, Directly compressible Excipient, Highly functional Filler-binder, Microcrystalline Tapioca Starch.

20 1 I. Introduction

he growing performance expectations of excipients to address issues such as flowability, compactibility, disintegration, dissolution and bioavailability also placed a demand for newer excipients with high functional property.

Co-processing excipients lead to the formation of excipient granulates with superior properties compared with physical mixtures of components or with individual components. They have been developed primarily to address the issues of flowability, compressibility, and disintegration potential, with filler/binder combinations being the most commonly tried. The combination of excipients chosen should complement each other to mask the undesirable properties of individual excipients and, at the same time, retain or improve the desired properties of excipient. For example, if a substance used as a filler/binder has a low disintegration property, it can be coprocessed with another excipient that has good wetting properties and high porosity because these attributes will increase the water intake, which will aid and increase the disintegration of the tablets.

Material science plays a significant role in altering the physicomechanical characteristics of a material, especially with regard to its compression and flow behaviour. Coprocessing excipient s offers an Design and Evaluation of a 3-Component Composite Excipient "Microcrystalline" as a Filler-Binder for Direct Compression Tableting and it's Utilisation in the Formulation of Paracetamol and Ascorbic Acid Tablets properties. Materials, by virtue of their response to applied forces, can be classified as elastic, plastic, or brittle materials. Pharmaceutical materials exhibit all three types of behavior, with one type being the predominant response. Coprocessing is generally conducted with one excipient that is plastic and another that is brittle.. This particular combination prevents the storage of too much elastic energy during compression, which results in a small amount of stress relaxation and reduced tendency of capping and lamination 1 . A combination of plastic and brittle materials is necessary for optimum tabletting performance. Hence, coprocessing these two kinds of materials produces a synergistic effect, in terms of compressibility, by selectively overcoming, the disadvantages. Such combinations can help improve functionalities such as compaction performance, flow properties, strain-rate sensitivity, lubricant

5 IV. COMPACTIBILITY

43 sensitivity or sensitivity to moisture or reduced hornification. Cassava tubers were washed and peeled to remove
44 the outer skin and rind with the aid of a handy stainless knife. The peeled tubers were washed with freshly
45 distilled water and rasped.

46 2 II. Materials and Methods

47 The rasp consists of a sheet of metal plate perforated with nails, clamped around a stainless bucket with the
48 protrusions facing outwards. The tubers were then manually rasped to a pulp on the stationary grater (which
49 is the metal plate perforated by nails). Water was applied in small quantities continuously to the rasper. The
50 process was continued until the whole tubers were turned into a fine pulp in which most but not all of the starch
51 granules were released.

52 After rasping, pulp from the sump was then pumped on to a nylon fastened /clamped around a stainless
53 bucket. A small spray of water was applied to assist the separation of starch granules from their fibrous matrix
54 and to keep the screen mesh clean while water was added, the mass were turned manually to aid the release
55 of the granules. Starch granules carried with the water fall to the bottom of the bucket in which the sieve was
56 placed. The starch milk was then allowed to sediment, by standing for a period of 8 h. The starch settled at the
57 bottom of the bucket and the supernatant liquor decanted. The sediment / fine granules were centrifuged. After
58 the removal of free water from the starch, cake was obtained. The starch cake was then crumbled into small
59 lumps (1-3 cm) and spread out in thin layers on stainless trays and air dried for 120 h 2,3 .

60 ii. Preparation of microcrystalline Tapioca Starch (MCTS) hundred gram (500 g) of tapioca starch granules
61 were weighed into five places and each placed in a 1000 ml capacity conical flask. Six hundred millimeters (600
62 ml) of freshly distilled water was added to each content of the flask to make a suspension (= 40 %w/w). The pH
63 of the medium was adjusted to between 6.5 and 7.0. All the flasks were placed on a digitalized water bath and
64 the starches were annealed at 60 o C for 30 min. Each flask was dosed with 0.5 ml of ?-amylase (0.1 % v/w d.s.)
65 at 60oC on water bath and was allowed to stand for hydrolysis to take place at various length of specified time:
66 60, 120, 180, 240, and 300 min). At the end of the first 60 min., the enzyme reaction in one of the flasks was
67 terminated by adjusting the pH to 2.0 with 0.4 N HCL after which the pH was raised to 6.5 with 0.4 N NaOH.
68 The medium was filtered through a Buckner funnel; the residue was washed 3 times, with distilled water and
69 finally dehydrated by adding enough isopropanol (99 %) (a water -miscible solvent) and the resulting dehydrated
70 highly crystalline starches were air dried . These procedures were repeated for the remaining hydrolyzed starches
71 at other times.

72 iii. Preparation of Three Component Composite Filler-Binder (Microcrystalline Cellulose) by Codried method. The
73 working formula for preparation of the novel three component composite excipient (microcrystalline Cellulose).

74 3 Global Journal of

75 Material Batch % (w/w)

76 4 Five

77 The slurry form of annealed enzyme hydrolyzed tapioca starch (MCTS) (sieved fraction, <75 μ) was coprocessed
78 with ?-lactose monohydrate (? -L-MH) (sieved fraction, <75 μ), and microcrystalline cellulose (MCC) (sieve
79 fraction, <75 μ). The slurry was made by suspending the MCTS in a solution of Isopropanol and freshly
80 distilled water in ratio 2:1 respectively. MCTS slurry was blended with ? -L-MH, and MCC at concentrations
81 indicated in Table 1 as a dried mass relative to MCTS. The composite slurry was stirred vigorously with a stirrer
82 until a semi-solid mass easily ball was formed. The composite mass was then granulated through a 1500 μ and
83 codried at 60oC until a constant weight was reached. Codried granules were pulverized and sized by passing
84 through mesh size 500 μ m, and the fraction between >75 -250 μ m was reserved. The powder and tabletting
85 properties of the codried products were evaluated and compared to those of corresponding components and
86 physical mixtures.

87 5 iv. Compactibility

88 The preliminary study was carried out to select few promising batches: (1) the best batch out of the five batches
89 of hydrolyzed starch (MCTS) having the best tablet properties to be coprocessed with lactose and MCC, (2) the
90 best two batches (out of five) of coprocessed filler-binder for microstructuring before compaction studies.

91 The native tapioca starch, and the microcrystalline tapioca starch at various time of hydrolysis were compressed
92 on a single punch Erweka tabletting machine (Erweka, AR 400. Germany), fitted with 10.5 mm diameter flat
93 faced punch and die. Tablet target was 500 mg, and pressure load used range from 4 to 7 KN.

94 The coprocessed filler-binder: MSCL (5 batches each) were subjected to the same procedure to streamline the
95 batches to just two for effective research and particle restructuring. The batches chosen here were subjected to
96 particle sieving and further employed for compaction studies.

97 6 v. Compaction Studies a. Preparation of Compacts

98 Compacts of weights, 500 mg, of each of the primary powders [tapioca starch, microcrystalline cellulose
99 (MCC), lactose], annealed tapioca starch (ATS), annealed enzymatically hydrolyzed tapioca starch (MCTS),
100 Microcristarlac (B4 and B5), Microcristarcellac (B2 and B3), physical mixture of MCTS and lactose; MCTS,
101 lactose and MCC, were made using a single punch carver hydraulic hand press (model, C, Carver Inc. Menomonee
102 Falls, Wisconsin, U.S.A) at machine compression force ranging from 2.5 KN to 12.5 KN. Fourty compacts were
103 made at each compression level for individual material. Before compression, the die (10.5 mm diameter) and
104 the flat faced punches were lubricated with a 1 % w/v dispersion of magnesium stearate in ethanol-ether (1:1).
105 The compacts were stored over silica gel for 24 hours (to allow for elastic recovery and hardening and to prevent
106 falsely low yield values) before evaluations. The dimensions (thickness and diameter) and weight uniformity of ten
107 compacts were determined. The relative density, D, were calculated as the ratio of density of the compact, D_t to
108 the particle density, D_p of individual powder or composite. The data obtained using 'ejected tablet method (out-
109 of-die)' were used to obtain the Heckel plots. The weights, W , and dimensions were then determined respectively,
110 and their relative densities, D , were calculated using the equation: ??—————(1) Where V_t
111 is the volume of the tablet in cm³, and P_s is the particle density of the solid material in gcm⁻³. $D = W / [V_t$
112 $\times P_s]$ -

113 Heckle plots of $\ln (1 / 1 - D)$ versus applied pressure "P" 6 and Kawakita plots of P/C versus P, 7 were
114 constructed for the composite excipients.

115 Linear regression analysis was carried out over a compression range 2.5, 5, 7.5, 10, and 12.5 KN. The parameters
116 from Heckel plots were calculated. The Kawakita equation was employed to determine the extent of plastic
117 deformation the material undergoes.

118 7 b. Moisture content

119 The moisture content (MC) of the powder was determined by weighing 100 g of the powder after which it was
120 heated in an oven at a temperature of 105 °C until a constant weight was obtained.

121 The moisture content was then calculated with the following formula: $MC = (1 - W_t / W_0) \times 100$ ——————
122 ——————(2)

123 vi. Determination of Flow Rate and Angle of Repose Angle of repose was determined using a standard method
124 and equation 3 bellow. vii. Densities a. True (particle) densities

125 The true (particle) densities of the primary powders (tapioca starch and mcc-derived), annealed starch,
126 annealed enzymatically hydrolyzed tapioca Where W_t and W_0 represent weight of powder after time 't'
127 and the initial weight before heating respectively.

128 starch and the composite particles were determined by the liquid displacement method using a specific gravity D
129 $p = W / [(a + W) - b] \times SG$ ——————(4)

130 Where, W , is the weight of powder, SG , is the specific gravity of the solvent, a , is the weight of bottle plus
131 solvent, and, b , is the weight of bottle plus solvent plus powder. The measurement was performed in triplicate.

132 8 b. Bulk and Tap density

133 9 Bulk density

134 These parameters were determined by weighing 50 g quantity of each granule/powder and pouring into a 100 ml
135 measuring cylinder. The volume (V_o) was recorded as the bulk volume. The total weight of the granule/powder
136 was noted. The bottom of the cylinder was raised 10 cm above the slab and made to fall on the platform
137 continuously for 100 taps. The volume of (V_t) of the granule was recorded, and this represents the volume of
138 the granules minus the voids and is called the tapped volume. The final weight of the powder too was recorded
139 as the tapped weight.

140 The bulk and tapped densities were calculated as: $B_d = W / V_o$ ——————
141 ——————(5) $B_t = W / V_t$ ——————(6)

142 Where, B_d and B_t , are bulk and tapped density respectively, and W , is the weight of the powder (50 g).

143 The results presented are the mean of three determinations.

144 10 Carr's Index

145 Carr's Index (CI) = $(B_d - B_t) / B_d \times 100\%$ ——————(7) Where B_d is the poured or bulk density and
146 B_t is the tapped density.

147 11 viii. Evaluation of Tablets

148 Weight variation Limit Test: The weights of 10 tablets were determined individually and collectively on a Metler
149 balance (Denver, XP-300, U.S.A). The mean weight, percentage (%) deviation from the mean and standard
150 deviation were calculated.

151 a. Thickness of Tablets The thickness of the tablets was measured with the aid of micrometer screw gauge.
152 Five tablets were selected randomly and the thickness for each was measured and the mean value determined.

17 III. RESULTS AND DISCUSSION

153 b. Hardness of tablets Crushing strength was determined using an electronic/digitalized tablet hardness tester
154 (model EH O1, capacity 500 N, Indian).

155 12 c. Friability

156 The friability test was performed for the tablets formulated in a friabilator (Erweka, TA 3R). The weight of 10
157 tablets was determined on a Metler balance (Denver, XP -300, U.S. A). The tablets were placed in the friability
158 and set to rotate at 25 r.p.m for 5 min after which the tablets were de-dusted gently and their weight determined.
159 The difference was calculated and the percentage loss in weight and hence the value of the friability was calculated.

160 Compact Volume: The volume of a cylindrical tablet having radius 'r' and height 'h' is given by the following
161 equation. Compact density: The compact density of a tablet was calculated from the following equation. The
162 tensile strength of the normal tablets (T) was determined at room temperature by diametral compression 9 using
163 an hardness tester (model EH O1, capacity 500 N, Indian) and by applying the equation : ??

164 -(10) Where T is the tensile strength of the tablet (MNm-2), F is the load (MN) needed
165 to cause fracture, d is the tablet diameter (m). Results were taken from tablets which split cleanly into two
166 halves without any lamination. All measurements were made in triplicate, and the results given are the means
167 of several determinations. $T = 2 F / (?dt)$ -

168 13 Global Journal of

169 14 Medical Research Volume XII Issue VII Version I Year 2012 170 Y

171 Compression pressure: This was derived from the relationship between the applied pressure and surface area.

172 15 C.P. =

173 Applied force e. Disintegration Time ??????..(11) Surface area of tablet Disintegration apparatus (Erweka, ZT 3,
174 Germany) was employed. Three tablets were placed in each compartment of the disintegration basket which was
175 lowered into a glass beaker (1 L capacity) filled with deionized water to 800 ml mark and in turn was placed in
176 a water bath maintained at 37 °C. The time taken for the disassociated tablet particles to pass through the
177 mesh was recorded as the disintegration time. Average of three readings was taken as the disintegration time.

178 16 ix. Determination of dilution capacity

179 Ascorbic acid and paracetamol were used as model drugs representing both highly water soluble, Formulations
180 were blended by method of dilution and lubricated with 1 % magnesium stearate. Each batch was compressed
181 for 30 seconds on single moisture sensitive, and elastic/poorly water soluble active ingredient respectively.

182 Model drugs were blended in deferent ratios, ranging from 0 %, 5 %, 10 %, up to 50 % with MCTS,
183 microcrystarlac and microcrystarcellac. 7.5 KN, target weight of 500 mg. Compacts were allowed to relax
184 for 24 h post compression. Compact dimensions (diameter and thickness) were determined using a digitalized
185 vernial caliper. Crushing strength was determined using an electronic/digitalized tablet hardness tester (model
186 EH O1, capacity 500 N, Indian). A relationship between amount in percent (%) of model drug added to the
187 formulation and the tensile strength will be generated.

188 In general, the capacity was expressed by the dilution potential as being an indication of the maximum amount
189 of active pharmaceutical ingredient that can be compressed with the excipient, while still obtaining tablets of
190 acceptable quality (that is, acceptable crushing strength average of 60 N, friability, < 1.0 %, good disintegration
191 time < 15 min, and must meet the requirement of U.S.P weight variation limit test). Table 2 compares the granule
192 properties of coprocessed MSCL (MCTS 40 %: LMH 40 %: MCC 40 %) with the direct physical mixtures of the
193 same ratio, Starlac®, Cellactose® and MCC. The result illustrates an increase in flow properties of coprocessed
194 MSCL over that of the direct physical mixture as reflected by flow rate 2.0 g/s, for the former and 0.45 g/s, for
195 the later respectively. The corresponding angles of repose are 32 ° and 47.8 ° respectively. The compressibility
196 indices as reflected in the table are: 13.4 % and 52 % respectively. All these results indicate improvement in both
197 flow property and compressibility of MSCL after coprocessing over direct physical mixture of the same ratio.
198 The coprocessed granules were restructured by sieving to remove the fine and granules greater than 250 µm. The
199 MSCL granule distribution in percent cumulative retained oversize versus granule size in micrometer (Fig. ??)
200 shows that 100 % of the granules were within 90 -250 µm range. The free flowing characteristics of MSCL could
201 be attributed to this structured granule size range.

202 17 III. Results and Discussion

203 were greater than 250 µm and all the granules (100 %) were greater than 90 µm, this range of granule size
204 distribution was responsible for the improved flow property over individual and the direct physical mixture of
205 the primary excipients. Fig. ?? was an illustration of the granule size compact density with pressure, and
206 appears lower than the curves for the standard excipients this is due to low porosity of the former compare to
207 the later. As the porosity approaches zero, plastic deformation may be predominant mechanism for all powder

208 material (Heresy and Rees, 1971; York and Pilpel, 1972) Fig. 4.26 shows the result of the compactibility studies,
209 it illustrates the relationship between compression pressure and radial tensile strength for MSCL. The curve is
210 similar to Heckel plot, it has two portions, and the early part representing consolidation as a result fragmentation,
211 and some degree of plastic deformation, followed by a linear portion illustrating the consolidation behavior as a
212 result of plastic deformation.

213 18 iii. Friability of MSCL (Placebo tablets) compression pres- 214 sure on the friability of MSL compacts.

215 There is a direct relationship between tablet hardness and compression pressure. Friability declined with both
216 increase in compression pressure and tablet hardness. It can be seen that as the compression pressure increases
217 from 2.5 N to 12.5 N, friability also decreases from 1.25 % to 0.5 % for MSCL.

218 19 iv. Disintegration Time of MSCL (Placebo tablets)

219 The presence starch granules in MSCL are expected to impact disintegration property. The disintegration time
220 is mostly influenced by tablet compression force on disintegration time for MSCL, Starlac, Cellactose and MCC.
221 Disintegration time increases with increase in tablet hardness which is proportional to the applied pressure. The
222 DT for all the compacts of MSCL formed between compression force 2.5 N and 12.5 N ranges from < 2min. to 3
223 min. The corresponding values for Starlac and Cellactose are: all < 1 min., and < 1 min to 17 min., respectively.
224 The B.P.C (1988) specified standard for conventional tablet to be 15 min. MSCL with disintegration time of 3
225 min. can be regarded as having a good inherent disintegrant property. $\ln 1/[1 - D] = kp + A$

226 Where, D is the relative density of the compact, 1 -D is the pore fraction, and p is the pressure. 'A' and 'k'
227 are constants of Heckel equation. The parameter A is said to relate to low pressure densification by interparticle
228 motion, while the parameter k indicates the ability of the compact to densify by plastic deformation after
229 interparticle bonding. Fig. ?? shows the plot of $\ln 1/[1 - D]$ vs p for MSCL, Starlac®, Cellactose® and MCC.
230 The plot of MSCL can be divided into three phases, namely: $29 \text{ MNm}^{-2} < p < 58 \text{ MNm}^{-2}$, $58 \text{ MNm}^{-2} < p <$
231 116 MNm^{-2} , and $116 \text{ MNm}^{-2} < p < 144 \text{ MNm}^{-2}$, each of which basically obeys the Heckel equation. There
232 is nonlinearity in the first phase (early stage) at low pressure which suggests that MSCL undergo fragmentation
233 and rearrangement before plastic deformation ??Odeku and Itiola, 2007). Under low pressure ($p < 58 \text{ MNm}^{-2}$)
234 the compaction would mainly result in the elimination of voids among the loose particles through rearrangement,
235 fragmentation and some degree of plastic deformation, leading to rapid densification of MSCL. On the second
236 phase from $\sim 58 \text{ MNm}^{-2}$ to $\sim 116 \text{ MNm}^{-2}$, however, plastic deformation of MSCL particles would be responsible
237 for the densification of MSCL compact. The third phase from $\sim 116 \text{ MNm}^{-2}$ to $\sim 144 \text{ MNm}^{-2}$, here, following
238 decompression, an expansion in tablet height is represented by increased tablet porosity.

239 Table 3 show values of the mean yield pressure, P_y ; the relative densities D_o , D_A , and D_B for MSCL,
240 Starlac®, Cellactose® and MCC. P_y is inversely related to the ability of the material to deform plastically
241 under pressure. Low value of P_y indicates a faster onset of plastic deformation (Odeku and Itiola, 1998). The
242 P_y obtained for MSCL, Starlac®, Cellactose® and MCC are: 22.3 MNm^{-2} , 143 MNm^{-2} , 24.2 MNm^{-2} and
243 25 MNm^{-2} respectively. From the values of P_y stated above, MSCL shows faster onset of plastic deformation
244 than Starlac®, Cellactose® and MCC. The yield value of MSCL reflects better densification at low pressure than
245 Starlac®, Cellactose® and MCC. Shangraw et al., (1981) explains that, a large value of slope (i.e., low P_y value) is
246 an indication that the onset of plastic deformation occurs at relatively low pressure and vice versa. This analysis
247 has been extensively applied to pharmaceutical powders for both single and multi-component systems (Duberg
248 and Nystrom, 1986; Itiola, 1991). D_A , represents the total degree of densification at zero and low pressures

249 20 Global Journal of

250 21 Medical Research Volume XII Issue VII Version I Year 2012 251 Y

252 ii. Tablet properties (Placebo tablets) free from chipping and lamination. This is an evidence of a good and
253 acceptable tablet formulation.

254 MSCL was subjected to compressibility and compactibility studies. The material was compacted using a single
255 punch Carver hydraulic hand press (model, C, Carver Inc. Menomonee Falls, Wisconsin, U.S.A) over a pressure
256 range of 2.5 to 12.5 KN. The MSCL tablets (Fig. 7) appeared smooth, Fig. 3 shows the effect of increasing
257 hardness. Fig. 4 shows the effect of increasing and Chow, 1981). The relative density, D_B , describes the phase
258 of rearrangement of particles in the early stages ??Paronen and Juslin, 1983; ??itrevjeji et al., 1996), (Roberts
259 and Rowe, 1985). D_o is used to describe the initial rearrangement phase of densification as a result of die
260 filling. D_o is equal to the ratio of bulk density at zero pressure to the true density of the powder (Chowhan of
261 compression and tends to indicate the extent of particle or granule fragmentation. From Table 3 Where, a and
262 b are constants ('a' gives the value of the minimum porosity of the bed prior to compression while 'b', which is
263 termed the coefficient of compression, is related to the plasticity of the material) and C is the volume reduction,
264 i.e., $C = (V_o - V) / V_o$ (here V_o and V are initial volume and the volume after compression, respectively). The

23 IV. CONCLUSION

265 Kawakita equation indicates that p/C is proportional to the applied pressure p . Fig. ?? shows the plot of p/C vs
266 p for MSCL, "Starlac®", and Cellactose®. One can see that a linear relationship exists between p/C and p in the
267 whole pressure range investigated at correlation coefficient ($R^2 = 0.982$), which indicates that the densification
268 behavior of MCTS is consistent with prediction from the Kawakita equations. By best fitting of the experimental
269 data to the equation above one obtains: $p/C = 1.64 p + 26.73$ Hence, by relating the two formulae above, the
270 value of "a" is obtained as 0.610 and "b" as 0.0613 ($1/b = 16.3$).

271 The $Di (=1 - a)$ indicates the packed initial relative density of tablets formed with little pressure or tapping
272 ??Lin and "Chain, 1995). Table 4 shows the Di values for MSCL, Starlac®, and Cellactose® as: 0.390, 0.474,
273 and 0.286, respectively. It can be seen that at low pressure MSCL tablet is better packed than Cellactose tablets,
274 but less in packing relative to Starlac tablet. This result is not far from the fact that packing of vi. Dilution
275 capacity/potential Tablets formulated from MSCL (55 %) and PCM (45 %) as shown in Figure ??1, were smooth,
276 free from chipping and lamination. More so, tablets formulated from MSCL (50 %) and AA (50 %) were also
277 characterized by the same good and acceptable tablet qualities.

278 a. Disintegration Time MSCL-Model drug Fig. 12 shows the declining disintegration time with increasing
279 percentage of API. It can be seen that the DT of MSCL -PCM and MSCL -AA ranges between ~2.1min., down
280 to ~0.42 min., for the former and ~3.8 min., down to 1.5 min., for the later respectively. One can see that
281 the disintegrant properties of MSCL is more pronounced in the formulation containing poorly compressible and
282 water insoluble API (PCM) than in formulation containing highly water soluble and moisture sensitive API (AA).
283 compaction process. The lower the value of P_k , the higher the degree of plastic deformation occurring during
284 compression (Itiola, 1991). The pressure term P_k has been shown to provide a measure of the total amount
285 of plastic deformation occurring during compression (Odeku and Itiola, 1998). Hence, from the results of P_k
286 values, MSCL is more plastically deformed during compression than Starlac®, and Cellactose®. Fig. ??0 and 11
287 Illustrates the relationship generated from the amount in percent (%) of API compressed with MSCL and the
288 crushing strength. It can be seen that tablet strength declined with increasing amount of API until it reaches a
289 point where the tablet strength, friability and the physical structure failed to meet the official standard. Table
290 ?? showed the summary of the result of the dilution potential. MSCL was compacted with PCM and AA in
291 predetermined percentages as model drug (API).One can see that MSCL was able to form acceptable compact
292 with maximum of 45 % of the former (crushing strength is 70 N and friability, 0.6 %, disintegration time, 23 sec.),
293 and with 50 % of the later (crushing strength is 68 N and friability, 0.4 %, disintegration time, 90 sec.). Hence,
294 MSCL -PCM-45 % and MCTS -AA -50 % are both acceptable dilution capacity/potential. MSCL can therefore
295 be used for formulating poorly compressible API, highly compressible, moisture sensitive API. a material with
296 applied pressure is determined by deformation propensity.

297 22 Global Journal of

298 Table 4 shows the values of $1/b$ (P_k) obtained for MSCL, Starlac®, and Cellactose® as: 16.3, 19.1, and 17.0
299 respectively. The reciprocal of b yields a pressure term, P_k , which is the compression pressure, required to
300 reduce the powder bed by 50 % (Shivanand and Sprockel, 1992). The value of P_k gives an inverse measurement
301 of plastic deformation during vii. Brittle Fracture Index (BFI) Both MSL and MSCL possessed BFI values as
302 0.1 and 0.08 respectively (Theoretical value range is 0 -1). BFI has been used as a measure of plastoelasticity of
303 pharmaceutical powders. A low BFI value indicates the ability of the material to relieve localized stresses while
304 a value approaching unit indicates a tendency of the material to laminate or cap.

305 The P values obtained at 95 % confidence interval for MSL and MSCL sampled at 6 months interval were
306 >0.05 , hence, the mean of differences does not differ significantly.

307 The P value obtained for MSL-PCM paired with Cellactose-PCM was >0.05 , the result was considered not
308 significant.

309 The P value for MSCL-AA paired with Cellactose-AA was >0.05 , the result was also considered not significant.

310 23 IV. Conclusion

311 The crushing strength for NTS, ATS and MCTS are: 30 N, 90 N and 100 N after 3 h of annealing and hydrolysis
312 respectively, compressed at 6 metric units.

313 MSCL have improved functionality over direct physical mixture of the primary excipients. The compression
314 pressure, required to reduce the powder bed by 50 % (onset of plastic deformation) P_y (yield value) are: MSCL
315 (22.3 MNm -2)>Cellactose (24.2 MNm -2)>MCC (25 MNm -2)> Starlac (143 MNm -2). The degree of plastic
316 deformation occurring during compression (P_k) is in the following order: MSCL (16.3 MNm -2)> Starlac®(17
317 MNm -2)>MCC (18.6 MNm -2)>Cellactose® (19.1 MNm -2). From these two parameters (P_y and P_k), MSCL
318 has been established to be more superior to the three standard excipients namely: Starlac, Cellactose, and MCC.

319 The dilution potential obtained for MSCL compacted with paracetamol (PCM) and ascorbic acid (AA) as
320 active drug (API) are: 50 % AA with MSCL, 45 % PCM with MSCL. MSCL is superior in functionality than
321 Starlac, Cellactose and MCC. The hardness of MSCL active ingredient in 15min, and it can be seen from the
322 table that the T90% ranges from 12-14min for the formulations, and they compared favourably with Cellactose®
323 and much better than Starlac ®.

324 From the table 4.18, the rate constants obtained from dissolution data presents the following sequence of
325 dissolution order: KD at t = 10min. MSCL -AA (11.0×10^{-3} mg min⁻¹) > Cellactose -AA (10.3×10^{-3})
326 Cellactose -PCM (9.3×10^{-3} mg min⁻¹) > MSCL -PCM (7.5×10^{-3} mg min⁻¹).

327 MSCL performed better than MSL, Starlac®, and rated equal with Cellactose® in PCM and AA tablet
328 formulations in terms of functionality. It can be used to formulate low dose up to 225 mg poorly soluble and
329 poorly compressible API (i.e., 45 % of tablet weight) in which PCM represents the class of drug. Moreover, it
330 formed better tablet with low dose up to 250 mg poorly compressible, highly soluble and moisture sensitive API
331 (i.e., 50 % of tablet weight) this class of drug is represented by AA.

332 The combination of plastic and brittle materials in both MSL and MSCL helped to reduce storage of elastic
333 property. Lamination or capping is normally a result of high storage of elasticity. viii. In-vitro Drug ig.13
334 also illustrate the graphs of percentage (%) drug release versus time (min) for MSCL -PCM and MSCL-AA.
335 The table 4.19 shows T90% to be 13min and 12min respectively, and 100% of the drugs were released from both
336 formulations in 15 min. The dissolution rate constant (KD) for both formulations at 10min were calculated to
337 be 7.5×10^{-3} mg min⁻¹ and 11.0×10^{-3} mg min⁻¹ respectively.

338 **24 ix. Statistics**

Figure 1:

339 1 2 3 4 5

¹© 2012 Global Journals Inc. (US) © 2012 Global Journals Inc. (US) 2

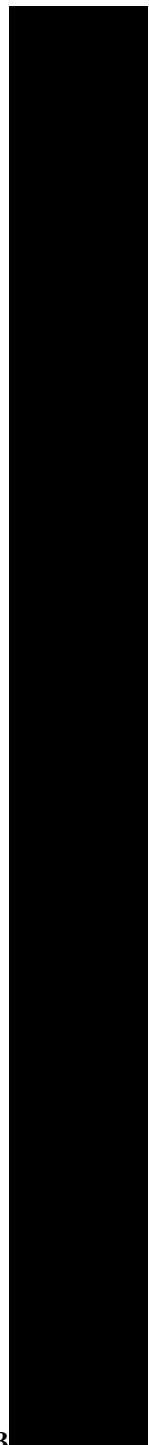
²© 2012 Global Journals Inc. (US) bottle with Xylene as displacement fluids, and the particle density, D p , computed according to the following equation: Design & Evaluation of A 3-Component Composite Excipient "Microcrystarcellac" As A Filler-Binder for Direct Compression Tableting & it's Utilisation in The Formulation of Paracetamol & Ascorbic Acid Tablets

³© 2012 Global Journals Inc. (US)

⁴© 2012 Global Journals Inc. (US) © 2012 Global Journals Inc. (US)

⁵Design & Evaluation of A 3-Component Composite Excipient "Microcrystarcellac" As A Filler-Binder for Direct Compression Tableting & it's Utilisation in The Formulation of Paracetamol & Ascorbic Acid Tablets

Figure 2:



2

Figure 3: $V_c = h?r$ 2

Figure 4:

123

Figure 5: MSCLFigure 1 :Figure 2 :Figure 3 :

1

Figure 6: Table 1 :

2

filler-binder

[Note: Y NB. MSCL, MCTS, NTS, LMH, and MCC represent: microcrystarcellac, microcrystalline tapioca starch, native tapioca starch, β -lactose monohydrate, and microcrystalline cellulose. B2 and B3 represent batch 2 and batch 3. Batch 2 consist of MCTS, LMH, and MCC in ratio 40 %, 40 % and 20 % respectively; while batch 3 consist of MCTS, LMH, and MCC in ratio 35 %, 35 % and 30 % respectively. Ratio]

Figure 7: Table 2 :

3

Material	K	P Y (MNm ⁻²)	A	e -A	D o	D A	D B
Microcrystarcellac (B2)	0.048	22.3	1.0	0.368	0.470	0.632	0.162
Starlac	0.007	143	1.7	0.183	0.413	0.817	0.404
Cellactose	0.041	24.2	0.6	0.545	0.298	0.455	0.157

[Note: NB: A and K represent: constants of Heckel equation. PY represent: mean yield value. Do, DA, and DB represent: initial rearrangement phase of densification, total degree of densification at zero pressure and rearrangement phase of particles in the early stages of compression respectively.]

Figure 8: Table 3 :

4

Material	a	1/a	D i =(1 -a)	1/b	P K (MNm ⁻²)
Cellactose ®	0.526	1.9	0.474	17	17
Starlac ®	0.714	1.4	0.286	19.1	19.1
Microcrystarcellac B 2					

Figure 9: Table 4 :

ear 2012
Y

Figure 10:

4

Figure 11: Table 4 .

340 Iranian Journal of Pharmaceutical Research 2007; 6 (1): 17-23.

341 [Paronen and Juslin] , P Paronen , M Juslin .

342 [Nystrom et al.] , C Nystrom , G Alderborn , M Duberg\, P G Karel .

343 [Kitazawa et al. ()] , S Kitazawa , I John , T Minouchi , J Okada . *J. Pharm. Pharmacol* 1977. 29 p. 453.

344 [Bonding Surface Area and Bonding Mechanism] *Bonding Surface Area and Bonding Mechanism*,

345 [Shivanand and Srockel ()] 'Compaction Behaviour of Cellulose Polymers'. P Shivanand , O I Srockel . *Powder Technol* 1992. 69 (2) p. .

346 [Lin and Cham ()] 'Compression Behaviour and Tensile Strength of Heat-treated Polyethylene glycols'. C Lin , T Cham . *Int. J. Pharm* 1995. 118 p. .

347 [Compression Charateristic of Four Starches J. Pharm. Pharmacol ()] 'Compression Charateristic of Four Starches'. *J. Pharm. Pharmacol* 1983. 35 p. .

348 [Itiola ()] 'Compressional Characteristics of Three Starches and the Mechanical Properties of their Tablets'. O Itiola . *Pharm. World J* 1991. 8 (3) p. .

349 [Heckel ()] 'Density-Pressure relationships in Powder Compaction'. R Heckel . *Trans. Metal. Soc. AIME* 1961. 221 p. .

350 [Fell and Newton ()] 'Determination of Tablet Strength by Diametral-Compresion Test'. J T Fell , J M Newton . *J. Pharm. Sci* 1970. 59 p. .

351 [Kumer and Kothari ()] 'Effect of Compressional Force on the Crystallinity of Directly Compressible Cellulose'. V Kumer , S H Kothari . *Int. J. Pharm* 1999. 177 p. .

352 [Odeku and Itiola ()] 'Evaluation of Khaya Gum as a Binder in a Paracetamol Formulation'. O A Odeku , O Itiola . *Pharm. Pharmacol. Commun* 1998. 4 p. .

353 [Tsai et al. ()] 'Modifcation of Physical Characteristics of Microcrystalline Cellulose by Codrying with Cyclodextrin'. T Tsai , J Wu , H Ho , M Sheu . *J. Pharm. Sci* 1998. 87 p. .

354 [Shangraw and Wallace ()] 'Morphology and Functionality in Tablet Excipients for Direct Compression: Part 1'. R F Shangraw , J W Wallace . *Pharm. Technol* 1981. 5 (9) p. .

355 [Grace and Cassava Processing ()] *Plant Production and Protection series*, M R Grace , Cassava Processing . 1977. FAO, Rome.

356 [Tukomane et al. ()] *Preparation and Characterization of Annealed Enzymatically hydrolyzed Tapioca starch*" Coden STRKA6, T Tukomane , P Leerapongnum , S Shobsngob , S Varavinit . 2007. p. .

357 [Kawakita and Ludde ()] 'Some Considerations on Power Compression Equations'. K Kawakita , K H Ludde . *Powder Technology* 1970/71. 4 p. .

358 [Mitrevej et al. ()] 'Spray-Dried Rice Starch: Comparative Evaluation of Direct Compression Fillers'. A Mitrevej , N Sinchaipanid , D Faroongsang . *Drug Dev.Ind.Pharm* 1996. 22 p. .

359 [Radley ()] 'Starch Production Technology'. J Radley . *Applied Science Publishers* 1976. p. 587.

360 [Duberg and Nystrom ()] 'Studies on Direct Compression of Tablets. XVII Porosity-pressure curves for characterization of volume reduction mechanisms in powder compression'. M Duberg , C Nystrom . *Powder Technol* 1986. 46 p. .

361 [Roberts and Rowe ()] 'The Effect of Punch Velocity on the Compaction of a Variety of Materials'. R J Roberts , R Rowe . *J. Pharm. Pharmacol* 1985. 37 p. .

362 [Khan and Rhodes ()] 'The Production of Tablets by Direct Compression, Can'. K A Khan , C T Rhodes . *J. Pharm. Set* 1973. 8 p. 5.

363 [Casahoursat et al. ()] 'The use of Stress Relaxation Trials to Characterize Tablet Capping'. I Casahoursat , G Lemagen , D Larrouture . *Drug Dev. Ind. Pharm* 1998. 14 p. .

364 [two important factors for the understanding of powder compactability Drug Dev. Ind. Pharm ()] 'two important factors for the understanding of powder compactability'. *Drug Dev. Ind. Pharm* 1993. 19 p. .