

1 Biomechanical Structure of Skilled Female Gymnast's Technique 2 In the «Handspring» Vault

3

4 *Received: 11 December 2012 Accepted: 3 January 2013 Published: 15 January 2013*

5

6 **Abstract**

7 The paper deals with the problem concerning the substantiation and development of special
8 programs to improve sports technique of skilled female gymnasts in «Handspring» vault with
9 an apparatus «vaulting table».

10

11 **Index terms**— technique of motor actions, female gymnast, ?handspring? vault, vault table, biomechanical
12 analysis.

13 **1 Introduction**

14 The important task in improvement of vault performance in artistic gymnastics is to identify those informative
15 biomechanical characteristics of gymnast's motor actions that influence to sport result. So we need to study the
16 biomechanical structure of gymnast's vault technique. One of the areas of the technique improvement is to use
17 the methodological approaches [1,4]. At this stage of artistic gymnastics it was found that the optimal methods
18 of teaching to complicated vaults must be justified biomechanically [2,3,7].

19 The objective of our research is to substantiate the improvement of female gymnast's vault performance on
20 the table by using the biomechanical motion analysis.

21 **2 II.**

22 **3 Methods**

23 We used the video based recording and 2D analysis technology by Sony Handicam DCR-VX2100E digital camera
24 (25 frames per second) positioned in line with the table, perpendicular to the direction of the runway. We
25 performed manual tracking motion analysis by using the «BioVideo» software that designed by kinesiology
26 department, National University of Physical Education and Sports of Ukraine. 20 skilled female gymnasts -the
27 members of Ukraine's National Team -have participated in the researches. Skilled female gymnasts performed
28 «Handspring» vaults on «vault table» which were filmed using Sony Handicam DCR-VX2100E digital camera
29 positioned in line with the table, perpendicular to the direction of the runway. Then we defined angles, distances
30 and velocities by videogram processing with the «BioVideo» software.

31 **4 III.**

32 **5 Results**

33 The «Handspring» vault movement was divided into seven separate phases: I -approach; II -hurdlestep; III
34 -on-board; IV -pre-flight; V -on-table; VI post-flight; VII -landing.

35 As a result of the biomechanical analysis of female skilled gymnast's motor actions, the following quantitative
36 kinematic parameters: the velocity of general center of gravity (GCG) of gymnast's body in the run-up to the
37 board; the duration of hurdle-step phase; the duration of on-board phase; the velocity of the GCG of gymnast's
38 body at take-off the board; the angles in knee and hip joints at take-off the board; the duration the pre-flight
39 phase; the duration of on-table phase; the velocity of the GCG of gymnast's body at take-off the table; the angle
40 in shoulder joint at take-off the table; the duration, height and horizontal distance of the post-flight phase; the
41 angle between horizontal and body at take-off the table; the turn angle at the ascending part of the post-flight

7 CONCLUSION

42 trajectory; the angle in hip joint in piked/tucked salto forward off; the angle between the vertical and body
43 at the landing; the angle in knee joint at the landing were determined. Center of gravity was calculated using
44 mathematical models developed by Hanavan model. The GCG trajectory of female gymnast's body has been
45 also analysed. Thus, the duration of post-flight phase in "Handspring" vault is 0.863 s (SD = 0.019 s), the height
46 of flight is 1.26 m (SD = 0.11 m), and the horizontal distance of flight is 2.19 m (SD = 0.24 m).

47 The leading elements of the "Handspring" vault motor structure on the table are the kinematic characteristics of
48 female gymnast's motor actions in post-flight phase: its duration, height of flight trajectory and flight horizontal
49 distance. This was confirmed by the results of further statistical evaluation with correlation analysis. The
50 correlation coefficients between these characteristics and total score of the "Handspring" vault are from 0.59 to
51 0.72 at a significance level $p < 0.05$ (Fig. ??). We determined experimentally that the indicator of skilled female
52 gymnast's body position was the angle in her hip joint in post-flight phase that equaled to $53,0^\circ$ ($SD=2,6^\circ$) in
53 the "Handspring" vault.

54 Basing on the results of biomechanical analysis, we have developed the training program for skilled female
55 gymnasts in order to improve their «Handspring» vault performance [6]. This program includes: strategy,
56 purposes, exercises complex, training tools and methods, dosage, recreation intervals and seven exercise complexes
57 (5 exercises per complex) for each vault phase (a total of 35 exercises), performance criteria and scales for
58 biomechanical monitoring of female skilled gymnast's technique in the "Handspring" vault. One separate
59 complex solves the problem in achieving of those biomechanical parameters which sport performance depended
60 on directly. Our program is designed for trainers working with skilled female gymnasts and aiming to improve
61 their performance of handspring vault. The efficiency of author's special program was confirmed through the
62 direct comparative pedagogical experiment. 20 gymnasts were divided by random selection into two groups of
63 10 gymnasts both in control and experimental group. Gymnasts in both groups had no statistically significant
64 differences by biomechanical characteristics of vault technique at the beginning of the pedagogical experiment
65 (Table 1).

66 6 IV. Discussion

67 Knoll & Krug [5], using a laser speed measurement system for the competition analysis of the women vaults
68 in world championship 2007 found that handspring-type vaults averaged 7.74 m/s on the vaulting table. Our
69 investigation indicated that skilled female gymnasts showed the average velocity from 6.27 m/s ($SD=0.14$ m/s)
70 at board contact in vault on "new table" in experimental group before the experiment to 7.97 m/s ($SD=0.55$
71 m/s) after the experiment.

72 V.

73 7 Conclusion

74 1. The parameters of kinematic structure of skilled female gymnast's motor actions in the "Handspring" vault are
75 the velocity of general center of gravity of gymnast's body in the run-up to the board; the duration of hurdle-step
76 phase; the duration of onboard phase; the velocity of the GCG of gymnast's body and the angles in knee and
77 hip joints at take-off the board; the duration the pre-flight phase; the duration of on-table phase; the velocity
78 of the GCG of gymnast's body and the angle in shoulder joint at take-off the table; the duration, height and
79 horizontal distance of the post-flight phase; the angle between horizontal and body at take-off the table; the turn
80 angle at the ascending part of the post-flight trajectory; the angle in hip joint in piked/tucked salto forward
81 off; the angle between the vertical and body at the landing; the angle in knee joint at the landing. The leading
82 elements of sports technique in the "Handspring" vault are the kinematic characteristics of post-flight phase:
83 the duration, the height and horizontal length of GCG's trajectory of female gymnast's body. The correlation
84 coefficients between these parameters and total score in the "Handspring" vault are $r = 0.59-0.72$ ($p < 0.05$). 2.
85 The biomechanical characteristics of skilled female gymnast's motor actions and the laws of their changing in the
86 «Handspring» vault allowed ¹

¹()K

	Phase	Characteristic	Control group		Experimental group	
I			mean	SD	mean	SD
	approach	velocity, m?s ⁻¹	6.28	0.246	6.27	0.138
II	hurdle-step	time, s	0.278	0.006	0.276	0.008
III	on-board	time, s	0.106	0.019	0.108	0.017
		velocity at take-off	4.75		4.74	0.15
		the board, m?s ⁻¹	158.80		157.50	8.79
		angle in knee joint, degrees				
		angle in hip joint, degrees	147.4	12.08	150.3	8.5
IV	pre-flight	time, s	0.246	0.010	0.252	0.021
		time, s	0.224	0.011	0.216	0.008
		velocity at take-off	3.51		3.48	0.18
V	on-table	angle between horizontal and body at take-off	60.4		60.0	5.9
		the table, degrees				
		angle in shoulder joint, degrees	133.8		133.0	6.2
VI	post-flight	time, s	0.864	0.016	0.862	0.022
		turn, degrees	367.0		367.2	31.2
		height off the flight, m	1.26		1.27	0.12
		horizontal distance, m	2.19		2.20	0.24
		piked/tucked joint, degrees	53.4		52.7	2.3
		salto forward off				
VII	landing	angle between vertical and body, degrees	50.6		49.8	3.5
		angle in knee joint, degrees	78.9		78.5	7.2
		Vault total	1.689		1.712	0.023
		A score	4.54		4.60	0.23
		B score	8.30		8.36	0.212
		Total score	12.84		12.96	0.32

Pedagogical experiment was carried out during 12 months at the training to main starts in the Ukrainian and World Championships. Gymnasts in both groups trained on a single plan per 3 hours twice a day, six days a week. The only difference between the groups was that the control group trained under the traditional program and the experimental group trained by our program.

We calculated quantitative "before-after" pedagogical experiment to analyze skilled female

gymnast technique in Handspring vault. experiment, gymnasts of the experimental increased on average A score from 4.60 ± 0.22 , $p < 0.05$; B score from 8.36 ± 0.16 , $p < 0.05$; gymnasts of the control increased A score from 4.54 ± 0.13 to 4.60 ± 0.05 ; B score from 8.30 ± 0.37 to 8.64 ± 0.21 (Table 2).

7 CONCLUSION

2

Phase	Characteristic	Control group		Experimental group		Difference between groups
		mean	SD	mean	SD	
I approach	velocity, m?s ⁻¹	6.58	0.518	7.97	0.548	p<0.05
II hurdle-step	time, s	0.274	0.010	0.272	0.010	p>0.05
III on-board	time, s	0.106	0.013	0.092	0.014	p<0.05
	velocity at take-off the board, m?s ⁻¹	5.42	0.384	6.32	0.432	p<0.05
	angle in knee joint, degrees	161.8	7.3	169.4	7.3	p<0.05
IV pre-flight	angle in hip joint, degrees	154.0	7.1	164.8	6.2	p<0.05
	time, s	0.224	0.016	0.188	0.023	p>0.05
	time, s	0.210	0.017	0.192	0.010	p<0.05
	velocity at take-off the table, m?s ⁻¹	4.13	0.393	4.99	0.531	p<0.05
V on-table	angle between horizontal and body at take-off the table, degrees	61.0	5.7	66.7	5.7	p<0.05
	angle in shoulder joint, degrees	141.1	6.3	155.3	9.3	p<0.05
	time, s	0.875	0.021	0.896	0.018	p<0.05
VI post-flight	turn, degrees	376.1	32.1	397.0	28.3	p<0.05
	height off the flight, m	1.50	0.111	1.77	0.157	p<0.05
	horizontal distance, m	2.43	0.209	2.80	0.132	p<0.05
	piked/tucked angle in hip joint, degrees	45.2	3.1	38.1	4.7	p<0.05
	salto forward off					
VII landing	angle between vertical and body, degrees	48.7	4.1	7.2	45.0	3.2
	angle in knee joint, degrees	79.1			86.6	7.8
						p<0.05
						p<0.05
Vault	total time, s	1.689	0.029	1.640	0.034	p<0.05
	A score	4.60	0.189	4.84	0.227	p<0.05
	B score	8.64	0.246	8.90	0.163	p<0.05
	Total score	13.24	0.344	13.74	0.310	p<0.05

Figure 2: Table 2 :

87 [Bohne et al. ()] 'A biomechanical analysis of the Yurchenko layout vault'. M Bohne , C J Mecham , K Mitchell
88 , J Smith . *Research Quarterly for Exercise and Sport* 2000. 71 p. A19. (Suppl. 1)

89 [Kashuba et al.] 'Biomechanical analysis of skilled female gymnasts' technique in "round-off, flic-flac'. V Kashuba
90 , I Khmelnitska , S Krupenya . *Journal of Physical Education and Sport (JPES)* (4) p. .

91 [Brüeggmann ()] 'Biomechanics of gymnastic techniques'. G P Brüeggmann . *Sport Science Review*, R Nelson, &
92 V Zatsiorsky (ed.) (Champaign, IL) 1994. Human Kinetics. 3 p. .

93 [Naundorf et al. ()] *Development of the velocity for vault runs in artistic gymnastics for the last decade*, F
94 Naundorf , S Brehmer , K Knoll , A Bronst , R Wagner , Y Kwon , J Shim , J K Shim , I Shin , Isbs Xxvi
95 Conference . 2008. Seoul, Korea. p. .

96 [Krupenya and Khmelnitska] *Improvement of sports equipment skilled gymnasts vault on the modified apparatus*
97 *design // Science in the Olympic Sports*, S Krupenya , I Khmelnitska . 1 p. .

98 [Atikovi? (2011)] *The impact of biomechanical parameters on initial vault values following the fig rules in men's*
99 *artistic gymnastics // Homo*, A Atikovi? . Sporticus Jun. 2011. 13 p. .

100 [Knoll and Krug ()] *The vaulting table -a new vaulting apparatus in artistic gymnastics*, K Knoll , J Krug .
101 <http://www.coachesinfo.com/category/gymnastics/61/> 2002. 2003. (Retrieved 11.06.)