

---

# 1 Cardiac Effects of (?)-Epigallocatechin on Isolated Rat Hearts

2 Loipa Galan Martinez

3 *Received: 6 December 2017 Accepted: 31 December 2017 Published: 15 January 2018*

4

---

## 5 **Abstract**

6 (?)- Epigallocatechin is a flavonoid found in many plants, especially in tea. The consumption  
7 of flavonoid- rich foods tends to reduce the risk of cardiovascular diseases and this has been  
8 attributed to nonspecific activities such as antioxidant, anti- atherosclerotic and  
9 anti-inflammatory properties. However, little is known about direct actions of (?)-  
10 epigallocatechin on cardiac muscle. The aim of the present investigation was to evaluate the  
11 effects of (?)- epigallocatechin on electrical and contractile activities of isolated rat hearts.  
12 Surface electrogram and force of contraction were recorded in isolated rat hearts in control  
13 and in increasing concentrations of (?)- epigallocatechin from 0.001 to 3 ?M.  
14 (?)-Epigallocatechin tended to prolong the QRS interval, but this effect is significant only at  
15 the highest concentration studied (3 ?M). QTc was not significantly affected by the flavonoid.  
16 The effects of this flavonoid on RR interval were mild and statistically significant since 0.03  
17 ?M. (?)- Epigallocatechin produced a negative inotropic effect in isolated rat hearts with an  
18 IC<sub>50</sub> of 0.03 ?M. This flavonoid has direct actions on rat cardiac muscle.

19

---

20 *Index terms—*

## 21 **1 Introduction**

22 catechins are one group of natural polyphenols found in many plants, especially in green tea (leaves of *Camellia*  
23 *sinensis*) (1)(2)(3). The four main catechin derivatives mainly find in green tea include the isomers epicatechin,  
24 (-)-epicatechingallate (ECG), (-)-epigallocatechin (EGC), and (-)-epigallocatechin gallate (EGCG) (3). EGC is a  
25 flavan-3-ol containing a benzopyran-3,5,7-triol linked to a 3,4,5-hydroxyphenyl moiety. Thus, EGC is considered  
26 to be a flavonoid lipid molecule (4) (Figure 1).

27 The health benefits associated with the consumption of green tea are due to the activity of EGCG and EGC  
28 which are both present at higher amounts (5). EGC has many beneficial cardiovascular properties. However,  
29 most of these effects are nonspecific, such as antioxidant (1-2, 6-7), antiinflammatory (1,5,7), and antiatherogenic  
30 activities (8).

31 Another remarkable property attributed to tea catechins is the cholesterol-lowering action, involving the  
32 upregulation of the LDL receptor, the reduction of cholesterol absorption, and the modulation of both synthetic  
33 and metabolic pathways (see for review 9).

## 34 **2 Further**

35 investigations of the cellular mechanisms are needed to investigate the cardiovascular effects of this flavonoid.  
36 Other flavonoids such as naringenin, quercetin, and genistein have direct actions on rat cardiac and vascular  
37 smooth muscles (10). The present work evaluated the possible direct effects of EGC on electrical and contractile  
38 activities of rat isolated rat hearts.

## 8 RESULTS AND DISCUSSION

---

### 39 3 II.

### 40 4 Materials and Methods

### 41 5 a) Animals

42 Male adult (7-8 weeks) Wistar rats were brought from the National Center for Laboratory Animal Reproduction  
43 (CENPALAB; La Habana). Before the experiments, animals were for seven days adapted to laboratory conditions  
44 (controlled temperature  $25 \pm 2^\circ\text{C}$ , relative humidity  $60 \pm 10\%$ , and 12 h light/dark cycles). Tap water and  
45 standard diet for rodents supplied by CENPALAB were freely provided. All procedures fulfilled with the European  
46 Commission for the use and care of laboratory animals. The Committee for Animal Care in Research of the Center  
47 (No. 08-2012, folio 73, book 01, 2012) approved the present study.

### 48 6 b) Isolated hearts

49 As previously reported (11), under pentobarbital anesthesia rat hearts were removed and placed in cold Tyrode  
50 (see below). Hearts were carefully dissected, mounted on a Langendorff column and perfused at constant flow (10  
51 mL/min) with a Tyrode solution of the following composition (mmol/L): 140 NaCl, 2.5 KCl, 0.5 MgCl<sub>2</sub>, 2 CaCl<sub>2</sub>,  
52 10 Tris-hydroxymethyl amino methane, 10 Glucose (pH =7.4, gassed with O<sub>2</sub>; T = 35°C). On the ventricular  
53 epicardium was placed a bipolar platinum recording electrode to record the surface electrocardiogram. Another  
54 bipolar platinum electrode was placed near the atrioventricular ring and was connected to an electronic stimulator.  
55 To record the force of contraction (FC), the cardiac apex was fixed to a force-displacement transducer with a  
56 surgical 6-0 silk thread. Surface electrocardiogram and FC values were recorded at the heart rate and a fixed  
57 stimulus rate (500ms RR interval).

### 58 7 c) ECG and chemicals

59 Stock solutions of ECG were prepared in ethanol, and diluted in the bathing solution on the day of the experiment.  
60 All chemicals were from Sigma Aldrich. Means and standard errors of means expressed the results. Student's  
61 t-test evaluated the statistical significance for paired samples, previously checked that the data complied with  
62 the premise of normality. Differences were considered statistically significant for  $p < 0.05$ . The graphics and the  
63 statistical processing were done using the software OriginPro 8 SRO v8.0724 (MA, USA).

## 64 8 Results and Discussion

65 The corrected QT (QTc) interval of the surface electrocardiogram (QTc = QT/?RR) was not significantly affected  
66 by EGC at concentrations from 0.001 to 3  $\mu\text{M}$  (Table 1).

67 These results should be possible because this flavonoid could exert multiple actions on different ionic channels,  
68 resulting in an apparent absence of effects on QT interval of the cardiac surface electrogram. As a fat, catechins  
69 modulate several ionic channels (12)(13)(14)(15).

70 EGC showed a tendency to increase QRS interval of the surface electrocardiogram, but only at the highest  
71 concentration studied (3  $\mu\text{M}$ ) this increase was statistically significant ( $p < 0.05$ ) (Table 1). EGCG, catechin  
72 structurally related to EGC, at 30  $\mu\text{M}$  prolonged QRS interval in isolated spontaneously beating guinea pig hearts  
73 (15). The QRS wave is dependent on sodium channel activity, Kang et al., 2010 showed that EGCG inhibited  
74 the cloned human cardiac sodium channel Nav1.5 in a dose-dependent manner with  $45.7 \pm 6.9\%$  inhibition at  
75 100  $\mu\text{M}$  (15). EGCG reduced the amplitude of voltage-gated sodium channel current in a concentration-depend  
76 manner in the range of 0.1 -400  $\mu\text{M}$  in rat hippocampal CA1 neurons (13).

77 On the other hand, EGC prolonged the RR interval of surface electrocardiogram and this increase was  
78 statistically significant ( $p < 0.05$ ) since 0.03  $\mu\text{M}$  (Table 1).

79 EGCG at 30  $\mu\text{M}$  did not affect heart rate of guinea pig hearts (15). Green tea extract used with dietary  
80 supplements did not alter heart rate (16). Other study concluded that *Camellia sinensis* has effect on heart rate,  
81 it decreases the heart rate in normotensive female individuals and increases the heart rate in the normotensive  
82 male individuals (17). In the present study in the concentration range from 0.001 to 3  $\mu\text{M}$ , EGC significantly  
83 decreased the force of contraction (FC) in isolated rat hearts (Figure 2); concentrations as low as 0.001  $\mu\text{M}$  of  
84 EGC decreased FC by  $28.4 \pm 8.7\%$ . Since EGC slightly changed RR interval, hearts were paced at 500-ms  
85 stimulus interval (over the spontaneous RR interval under control condition;  $531.05 \pm 18.9$  ms) to avoid any  
86 frequencydependent change in FC. Experimental data were fitted to a Hill function (Figure 2), and the estimated  
87 IC50 for inhibition of contraction was  $0.03 \pm 7.8$   $\mu\text{M}$  for EGC. The action of EGC on FC was not reversible upon  
88 washout with the normal Tyrode solution. Although further studies are needed to see if EGC has any direct  
89 effect on calcium channels, the decrease of force of cardiac contraction by EGC should be at least partly due to  
90 an inhibition of calcium channels.

91 The L-type calcium channel was inhibited by 20.8% at 30  $\mu\text{M}$  by EGCG, reached a maximum of  $37.1 \pm 4.2\%$   
92 at a concentration of 100  $\mu\text{M}$  (15). Tadano et al., 2010 reported that EGC had no significant effects on cardiac  
93 myofilament Ca<sup>2+</sup>-sensitivity. However ECG and EGCG were found to decrease Ca<sup>2+</sup> sensitivity, they were  
94 Ca<sup>2+</sup> desensitizers acting through binding to cardiac troponin C (18).

95 At concentrations within the same range at which similar flavonoid EGCG have vasorelaxant effects related to  
96 the inhibition of Ca<sup>2+</sup> influx in smooth muscle cells (19), in the present results, EGC concentrationdependently  
97 relaxed with almost equal effectiveness the contraction of rat hearts.

98 On the strength of these results, the physiological relevance of the decrease of force of cardiac contraction  
99 by EGC can be asserted by considering the data available on the in vivo level of the related catechin EGCG  
100 ([EGCG] = 0.3-7.5  $\mu$ M in the blood of green tea consumers (20).

101 Three-month supplementation with green tea capsules decreased systolic (SBP) and diastolic blood pressure  
102 (DBP) by four mmHg in obese hypertensive (21) but not obese subjects (22). A recent metaanalysis which  
103 included eleven trials concluded that short-term consumption (>6 months) of black tea could decrease SBP and  
104 DBP by 1-2 mmHg and green tea by three mmHg (23).

105 IV.

## 106 9 Conclusions

107 The present study revealed that EGC has direct cardiac effects. The results presented here con firm the role of  
108 tea catechin EGC, as a precursor for the development of novel drugs for the treatment of cardiovascular disorders.

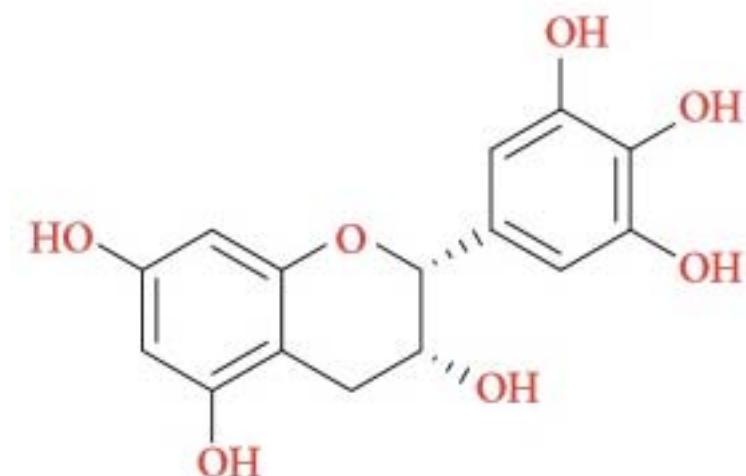
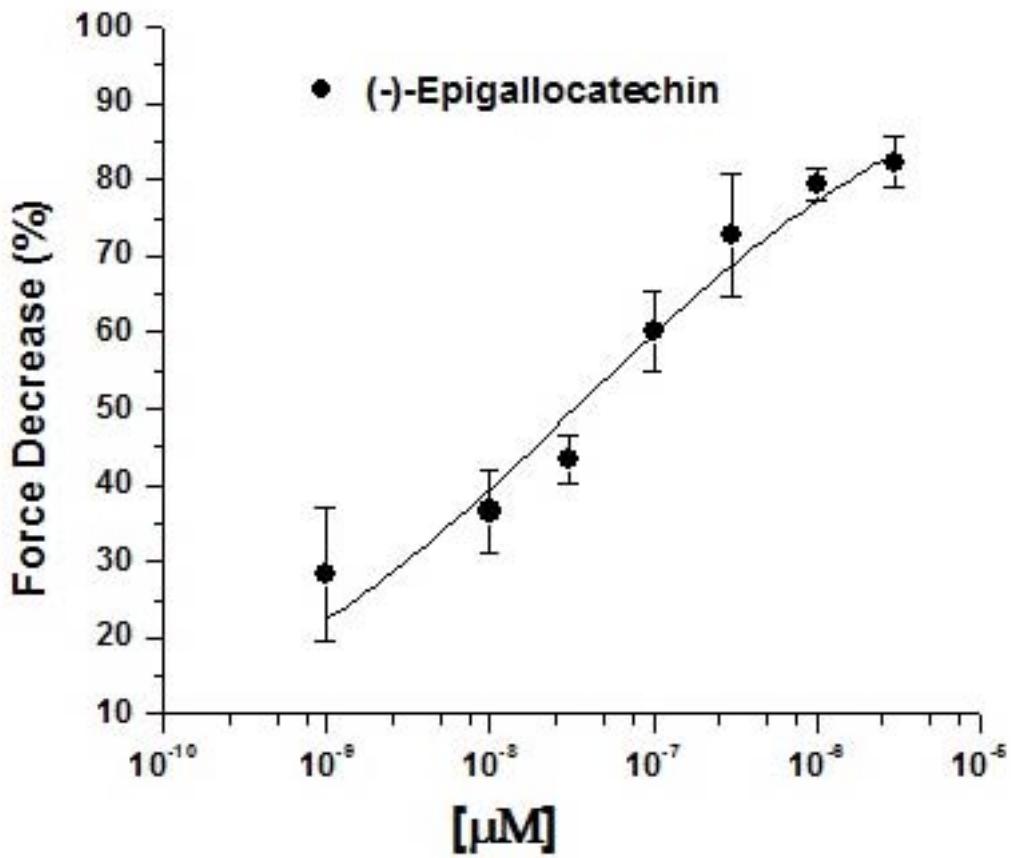




Figure 1: Figure 1 :

108  
109 1



2

Figure 2: Figure 2 :

1

|              | QTc (mseg)       | p    | QRS (mseg)        | p    | RR (mseg)           | p     |
|--------------|------------------|------|-------------------|------|---------------------|-------|
| Control      | $88.55 \pm 7.2$  |      | $11.80 \pm 0.7$   |      | $531.05 \pm 18.9$   |       |
| EGC 0.001 ?M | $84.20 \pm 4.7$  | 0.71 | $12.50 \pm 0.1$   | 0.36 | $541.48 \pm 20.2$   | 0.72  |
| EGC 0.003 ?M | $98.01 \pm 7.1$  | 0.46 | $12.65 \pm 0.2$   | 0.28 | $552.20 \pm 20.1$   | 0.47  |
| EGC 0.01 ?M  | $84.20 \pm 11.2$ | 0.74 | $12.85 \pm 0.3$   | 0.22 | $605.63 \pm 41.4$   | 0.15  |
| EGC 0.03 ?M  | $98.70 \pm 0.3$  | 0.39 | $13.20 \pm 0.3$   | 0.12 | $639.13 \pm 37.5$ * | 0.04  |
| EGC 0.1 ?M   | $90.02 \pm 10.0$ | 0.91 | $13.30 \pm 0.2$   | 0.09 | $669.50 \pm 30.1$ * | 0.008 |
| EGC 0.3 ?M   | $86.50 \pm 5.5$  | 0.86 | $13.40 \pm 0.3$   | 0.08 | $676.50 \pm 33.4$ * | 0.009 |
| EGC 1 ?M     | $87.40 \pm 6.7$  | 0.91 | $13.60 \pm 0.3$   | 0.05 | $682.78 \pm 33.4$ * | 0.008 |
| EGC 3 ?M     | $95.10 \pm 13.1$ | 0.65 | $13.78 \pm 0.3$ * | 0.04 | $678.05 \pm 34.8$ * | 0.009 |

p < 0.05 vs.  
Control

Figure 3: Table 1 :

110 [Ullmann et al. ()] 'A single ascending dose study of epigallocatechin gallate in healthy volunteers'. U Ullmann  
111 , J Haller , J P Decourt , N Girault , J Girault , A S Richard-Caudron , B Pineau , P Weber . *J. Int. Med. Res* 2003. 31 p. .

113 [Hertog and Feskens ()] 'Antioxidant flavonols and coronary heart disease risk'. M G Hertog , E J Feskens ,  
114 KromhoutD . *Lancet* 1997. 349 p. 699.

115 [Chacko et al. ()] *Beneficial effects of green tea: A literature review*, S M Chacko , P T Thambi , R Kuttan , I  
116 Nishigaki . 2010. p. 13.

117 [Tadano et al. ()] 'Biological actions of green tea catechins on cardiac troponin C'. N Tadano , C K Du , F  
118 Yumoto , S Morimoto , M Ohta , M F Xie , K Nagata , D Y Zhan , Q W Lu , Y Miwa , F Takahashi-Yanaga  
119 , M Tanokura , I Ohtsuk , T Sasaguri . *Br. J. Pharmacol* 2010. 161 p. .

120 [Galán et al. ()] 'Characteristics of Ca<sub>2+</sub> channel blockade by oxodipine and elgodipine in rat cardiomyocytes'.  
121 L Galán , K Talavera , G Vassort , J L Alvarez . *Eur. J. Pharmacol* 1998. 357 p. .

122 [Chyu et al. ()] 'Differential effects of green tea-derived catechin on developing versus established atherosclerosis  
123 in apolipoprotein E-null mice'. K Y Chyu , S M Babbidge , X Zhao , R Dandillaya , A G Rietveld , J Yano ,  
124 P Dimayuga , B Cercek , P K Shah . *Circulation* 2004. 109 p. .

125 [Galán-Martínez et al. ()] 'Direct actions of the flavonoids naringenin, quercetin and genistein on rat cardiac and  
126 vascular muscles'. L Galán-Martínez , I Herrera-Estrada , A Fleites-Vázquez . *J. Pharm. Pharmacogn. Res*  
127 2018. 6 (3) p. .

128 [Seifert et al. ()] 'Effect of acute administration of an herbal preparation on blood pressure and heart rate in  
129 humans'. J G Seifert , A Nelson , J Devonish , E R Burke , S J Stohs . *Int. J. Med. Sci* 2011. 8 p. .

130 [Ullah et al. ()] 'Effect of Green tea on Heart Rate of Male and Female'. N Ullah , M A Khan , A H Asif , A A  
131 Shah , S Anwar , H Wahid , A Nazir . *Asian J. Med Sci* 2011. 3 (4) p. .

132 [Kim et al. ()] 'Effects of (-)-epigallocatechin-3-gallate on Na(+) currents in dorsal root ganglion neurons'. T H  
133 Kim , J M Lim , S S Kim , J Kim , M Park , J H Song . *Eur. J. Pharmacol* 2009. 604 p. .

134 [Deng et al. ()] 'Effects of EGCG on voltage-gated sodium channels in primary cultures of rat hippocampal CA1  
135 neurons'. H M Deng , S T Yin , D Yan , M L Tang , C C Li , J T Chen , M Wang , D Y Ruan . *Toxicology*  
136 2008. 252 p. .

137 [Suliburska et al. ()] 'Effects of green tea supplementation on elements, total antioxidants, lipids, and glucose  
138 values in the serum of obese patients'. J Suliburska , P Bogdanski , M Szulinska , M Stepien , D Pupek-  
139 Musialik , A Jablecka . *Biol. Trace elem Res* 2012. 149 p. .

140 [Xuan ()] 'Epigallocatechin gallate exerts protective effects against myocardial ischemia/reperfusion injury  
141 through the PI3K/Akt pathway-mediated inhibition of apoptosis and the restoration of the autophagic flux'.  
142 F Xuan , Jian , J . *Int. J. Mol. Med* 2016. 38 p. .

143 [Aneja et al. ()] 'Epigallocatechin, a green tea polyphenol, attenuates myocardial ischemia reperfusion injury in  
144 rats'. R Aneja , P W Hake , T J Burroughs , A G Denenberg , H R Wong , A B Zingarelli . *Molecular  
Medicine* 2004. 10 (1-6) p. .

146 [Mozzicafreddo et al. ()] 'Epigallocatechin-3-gallate potently inhibits the in vitro activity of hydroxy-3-methyl-  
147 glutaryl-CoA reductase'. M Mozzicafreddo , M Spina , M Tran , C N Falconi , M Eleuteri , AM , Angeletti ,  
148 M . *J. Lipid. Res* 2010. 52 p. .

149 [Hartley et al. ()] 'Green and black tea for the primary prevention of cardiovascular disease'. L Hartley , N  
150 Flowers , J Holmes , A Clarke , S Stranges , L Hooper , Rees , K . *Cochrane Database Syst. Rev* 2013. 6 p.  
151 D009934.

152 [Graham ()] 'Green tea composition, consumption, and polyphenol chemistry'. H N Graham . *Preventive  
Medicine* 1992. 21 (3) p. .

154 [Bogdanski et al. ()] 'Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress  
155 and improves parameters associated with insulin resistance in obese, hypertensive patients'. P Bogdanski , J  
156 Suliburska , M Szulinska , M Stepien , D Pupek-Musialik , A Jablecka . *Nutr. Res* 2012. 32 p. .

157 [Kelemen et al. ()] 'Green tea flavonoid epigallocatechin-3-gallate (EGCG) inhibits cardiac hERG potassium  
158 channels'. K Kelemen , C Kiesecker , E Zitron , A Bauer , E Scholz , R Bloehs , D Thomas , J Greten , A  
159 Remppis , W Schoels , H A Katus , C A Karle . *Biochem. Biophys. Res. Commun* 2007. 364 p. .

160 [Tipoe et al. ()] 'Green tea polyphenols as an antioxidant and anti-inflammatory agent for cardiovascular  
161 protection'. G L Tipoe , T M Leung , M W Hung , M L Fung . *Cardiovascular and Hematological Disorders-  
Drug Targets*, 2007. 7 p. .

163 [Kang et al. ()] 'In vitro electrocardiographic and cardiac ion channel effects of (-)-epigallocatechin-3-gallate, the  
164 main catechin of green tea'. J Kang , H Cheng , J Ji , J Incardona , D Rampe . *J. Pharmacol. Exp. Ther*  
165 2010. 334 p. .

## 9 CONCLUSIONS

---

166 [Fechtner et al. ()] 'Molecular insights into the differences in anti-inflammatory activities of green tea catechins  
167 on IL-1 $\beta$  signaling in rheumatoid arthritis synovial fibroblasts'. S Fechtner , A Singh , M Chourasia , Ahmed  
168 , S . *Toxicol. Appl. Pharmacol* 2017. 329 p. .

169 [Record Name: (-)-Epigallocatechin (2018)] Record Name: (-)-Epigallocatechin, <http://www.hmdb.ca/metabolites/HMDB0038361>. Consulted february 27. 2018. (Human Metabolome Database (HMDB))

171 [Leung et al. ()] 'Theaflavins in black tea and catechins in green tea are equally effective antioxidants'. L Leung  
172 , Y Su , R Chen , Z Zhang , Y Huang , Z Y Chen . *J. Nutr* 2001. 131 p. .

173 [Huang et al. ()] 'Vasorelaxant effects of purified green tea epicatechin derivatives in rat mesenteric artery'. Y  
174 Huang , A Zhang , C W Lau , Z Y Chen . *Life Sci* 1998. 63 p. .