Antihyperlipidemic Property of a Dietary Supplement of Moringa Oleifera Leaves and Pleurotus Ostreatus in Wistar Rats Stressed by Combination of Ethanol-Paracetamol

Fatou Corka Kane¹, Simo Nemg Fredy Brice², Moundipa F. Paul³ and Wilfred F. Mbacham,⁴

¹ University of Yaoundé I

Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

Abstract

High amounts of triglycerides and cholesterol in the blood result in the metabolic condition known as hyperlipidemia. There is currently no specific therapy to reduce the effects of this disorder. In underdeveloped nations, metabolic diseases are treated using Moringa oleifera and Pleurotus ostreatus. Both the nutritional and therapeutic benefits of these two plants are frequently utilized. Purpose: This study aims to investigate the antihyperlipidemic property of dietary supplement of Moringa oleifera leaves and Pleurotus ostreatus in wistar rats.

Materials and methods: A variety of mushroom species were produced in the Mushroom Biotechnology Laboratory, and M. oleifera was developed in the university’s botanical garden in Dakar, Senegal.

Index terms— moringa oleifera, pleurotus ostreatus, dietary supplement, antihyperlipidemic, oxidative stress.

1 Introduction

Alcoholism and other serious health issues are brought on by excessive alcohol usage, including alcoholic liver damage (ALD). Alcoholism has been linked to several illnesses, and it is currently one of the most challenging health issues with substantial medical, social, and economic repercussions. (Pari and Karthikesan, 2001; Ponnappa et al., 2000). Alcohol abuse leads to significant illnesses such as hyperglycemia, cirrhosis, cardiovascular disease, pancreatic inflammation, and alcoholic fatty liver. (Ponnappa et al., 2000). Oxidative stress is one of the elements that are crucial in numerous pathways of alcohol-induced harm. The creation of ROS in our bodies is abnormally increased by our unhealthy eating habits and our way of life (smoking, drinking, obesity, and strenuous activity). When organisms experience oxidative stress brought on by free radical damage, antioxidants aid in coping. Antioxidant defenses come from two different sources: the diet, which includes fruits and vegetables, which are rich in vitamins C and E, carotenoids, ubiquinone, polyphenols, and lipoic acid. The other is endogenous and is made up of proteins, enzymes, or tiny molecules such as glutathione, uric acid, superoxide dismutase, and glutathione peroxidase (ferritin, transferrin, etc.). Additionally, some elements that are significant cofactors include selenium, copper, and zinc. (Pincemail et al., 2009). We were particularly interested in the plant Moringa oleifera and the edible fungus Pleurotus ostreatus because they contain significant antioxidant content. The plant Moringa oleifera Lam. (Moringaceae), also known as Nebeday in Senegal, is of Indian ancestry and is now common throughout Asia and Africa. The leaves are utilized in traditional African medicine and are commonly consumed as a legume. They are an excellent source of protein (19-35% dry matter) (Kane et al., 2017; Makkar et al., 1996; Abou-Elezz et al., 2012) and are rich in metabolizable energy (2273-2978 kcal/kg DM) (Makkar et al., 1996; Olugbemi et al., 2010). They A 11.2% dry Matter). The South African ecotype of the plant has been observed to contain 19.3% crude protein
Traditional Chinese medicine uses M. oleifera leaves to treat diabetes, headaches, fever, and malnourishment (Ndong et al., 2007; Terraraho, 1994).

Preview studies have shown the health and nutritional interest of edible mushrooms (Zhang et al., 2016; Alam et al., 2008; Pornariya and Kanok, 2009). P. ostreatus has been demonstrated for its antitumor effects, antioxidant properties, anti-hyperlipidemic effects and antidiabetic effects (Zhang et al., 2016; Abrams et al., 2011; Alam et al., 2008; Elmas et al., 2007; Jayakumar et al., 2007; Jayakumar et al., 2006). A daily intake of 15 g of dried oyster mushrooms would have an anti-hyperlipidemic effect on the subjects, it would also cover up to 50% of the recommended daily intakes of macronutrients and minerals, according to research on Pleurotus ostreatus nutritional value and anti-hyperlipidemic effects on HIV-positive individuals taking ARVs (Abrams et al., 2011; Alam et al., 2008; ?Anzi et al., 2001; ?Alam et al., 2009; ?Anzi et al., 1999 ?? Kane et al., 2017).

Given the rich nutrient, phytochemical, and organoleptic potential of M. oleifera and P. ostreatus, we designed this study to determine the anti-hyperlipidemic effect of Moringa oleifera leaves and Pleurotus ostreatus in Wistar rats stressed by a combination of Ethanol-paracetamol. In this paper, we will code the dietary supplement by FMP16.

2 II.
3 Materials and Methods
4 a) Plant Material and Preparation of the mixture of Leaves from M. oleifera and P. ostreatus
The fresh leaves of M. oleifera were harvested at the botanical garden of the University Cheikh Anta Diop (UCAD) of Dakar, Senegal and identified at the botanical department (UCAD). The leaves were cleaned immediately after harvest, cut into small pieces, and dried in the shade for two weeks. The dried material was ground into a powder using a manual homogenizer. P. ostreatus were obtained by cultivation at the biotechnological laboratory of the University Cheikh Anta Diop of Dakar. The Moringa oleifera and Pleurotus ostreatus powders were combined in a 2:1 ratio to create the dietary supplement. The mixture was created following ?Anzi et al., Instructions (2017).

The combination was dissolved in 0.01% starch paste before being fed to the rats.

5 b) Animals and grouping
Wistar rats strain to weigh 150 to 200 g were obtained from the Animal House of the National Institute of Youth and Sports in Yaoundé. They were placed in plastic cages under standard laboratory conditions (temperature 20 to 30°C, relative air humidity 45 to 55%, and 12/12h light/dark cycle). The rats were fed with a basal diet and water ad libitum. The feed was a standard rat chow composed of carbohydrates (52%), protein (22%), fat (6.5%), water (12%), ash (6%), and fiber (4.5%). Every two days for 21 days, between 10:00 and 11:00 am, before the mixture administration of Moringa oleifera and Pleurotus ostreatus in proportion 2:1, made as reported by Kane et al., the amount of food and water ingested by each group of rats as well as body weights were recorded (2017). The experiments were performed during the day (09am-03pm).

6 c) Experimental design
Thirty (30) adult male and female Wistar rats weighing 150 to 200 g were separated into five groups of six after two weeks of acclimatization:
- Group 1 (TG): a stress-free control group that consumed only their regular diet of water, food, and vehicle (starch paste) once daily for 21 days. - Group 2 (TP): a control group that received paracetamol 12 hours after ethanol administration, was supplied in five sequential doses of 2 g. kg-1 using an orogastric tube to stress the group. For 21 days, they consumed the standard diet of water and food at their leisure in addition to the vehicle starch paste; - Group 3 (D1P): a group that received 500 mg/kg of FMP16 and was stressed by ethanol in five sequential doses of 2 g. kg-1, administered through an orogastric tube; then received paracetamol 12 h after the last dose of ethanol. They received the standard diet (water and food ad-libitum) and the vehicle starch paste once a day for 21 days. - Group 4 (D2P): a group that received 1000 mg/kg of FMP16 and was stressed by ethanol in five sequential doses of 2 g. kg-1, administered through an orogastric tube; then received paracetamol 12 h after the last amount of ethanol. They received the normal diet (water and food ad-libitum) and the vehicle starch paste once a day for 21 days. The rats were given full access to food and water, and were on 12-hour light cycle each day (dark 12h-12h light). They were force-fed FMP16 using a gastroesophageal catheter and weighed every day. They fasted for the entire day before the animal sacrifice.

On the 23rd day, the rats were given a night of rest before being slaughtered (while sedated with ether) by having their jugular veins cut. Organs such the liver, kidneys, brain, and testicles were collected along with blood. The liver, which was exclusively used in this processing day. It was then rinsed with ice-cold saline (0.9% NaCl) to eliminate any remaining blood.
7 d) Determination of the biochemical parameters in liver

- Preparation of liver supernates: Prior to biochemicals analysis, each liver sample was homogenized using a Potter proctor placed on ice and 10% homogenate was prepared using the KCL buffer solution (1.15%). The homogenates were centrifuged at 3000 rpm for 30 min at 4 °C to collect the supernatant used for analysis. The supernatant of each sample was aliquoted in 1.5 ml vials.

8 e) Statistical Analysis

IBM SPSS Statistics 20 software was used for statistical analysis and data processing. P-values less than 0.05 were regarded as significant in the statistical analysis, which was conducted using one-way analysis of variance (ANOVA) and Bonferroni’s post-test for multiple comparisons. The results are presented as the mean and standard deviation (SD).

9 III.

10 Results and Discussion

Results have shown that no significant difference was observed in final body weights (155-173g) (Table 1). Body weight gain ranged between 0.8 and 19 g for the four treatment groups. A decrease of 10% in the weight of D3N group was observed. These results corroborate those of (??lam et al., 2011 ??lam et al., 2009) who found that a diet enriched with Pleurotus ostreatus decreases the body weight of animals. However, Bobek et al., 1998; have observed that FMP16 would be an excellent cholesterol-lowering agent that could be recommended for the prevention and treatment of cardiovascular diseases. IV.

Our results on lipid metabolism in rats revealed a significant decrease in total cholesterol in the 500, 1000 and 1500 mg/kg dose groups (figure 2). There was a 28%, 39%, 30% and 38% difference in TP, D1P, D2P and D3P compared to TG. In addition, a difference of 15% and 14% of D1P and D3P compared to TP. However, there was no significant difference in HDL cholesterol levels (Table 2). The results of the Triglycerides levels (Table 2) showed a difference of 47% and 41% of the 500 and 1000 mg/kg dose compared to the TG control group. There was also a 28% decrease in triglycerides levels at the 500 mg/kg dose compared to the dose 1000 mg/kg. In most of the studies on the effects of Pleurotus ostreatus and Moringa oleifera, they found a decrease in the concentration of LDL cholesterol which is more related to cardiovascular diseases (Bobek and Galbavy, 1999; ??obek et al., 1998; ??ossain et al., 2003). These results are also in agreement with those of Alam et al., 2009, Schneider et al., 2011; Chumarak et al., 2008, Kane et al., 2022. Our results (figure ??) and those of previous studies suggest that FMP16 would be an excellent cholesterol-lowering agent that could be recommended for the prevention and treatment of cardiovascular diseases. IV.
11 Conclusion

A dietary supplement of Moringa oleifera leaves and Pleurotus ostreatus in wistar rats shows that the powders of M. oleifera leaves and P. ostreatus mixture have an antihyperlipidemic effect as it significantly lowers total and LDL cholesterol levels in rats stressed by combination of ethanol and paracetamol. The dose 1000 mg/kg is most appropriate for chemically stressed animals. FMP16 would have no effect on albumin and testosterone levels.

<table>
<thead>
<tr>
<th>GROUPES</th>
<th>Starting Body weight (g)</th>
<th>Final Body weight (g)</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG</td>
<td>154 ± 3,34</td>
<td>173,67 ± 9,16</td>
<td>0,02</td>
</tr>
<tr>
<td>TP</td>
<td>154,33±3,44</td>
<td>177,33±4,840,01</td>
<td>d</td>
</tr>
<tr>
<td>D1P</td>
<td>154±2,53</td>
<td>185,67±2,860,01</td>
<td>e</td>
</tr>
<tr>
<td>D2P</td>
<td>153,20±2,68</td>
<td>157±7,14</td>
<td>0,6</td>
</tr>
<tr>
<td>D3P</td>
<td>153±3,03</td>
<td>175±7,14</td>
<td>0,13</td>
</tr>
</tbody>
</table>

*ANOVA test; TG: control group; TP: stressed group ethanol+paracetamol; D1P: stressed and treated group 500 mg/kg; D2P: stressed and treated group 1000 mg/kg; D3P: stressed and treated group 1500 mg/kg; a, d, e: mean statistically different with D3P à p <0,05 (test de Bonferoni)

Figure 1: Table 1:

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>ALAT (U/I)</th>
<th>ASAT (U/I)</th>
<th>ALBUMINE (g/dl)</th>
<th>TESTOS. (ng/dl)</th>
<th>HDL-C (mg/dl)</th>
<th>Triglyc. (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG</td>
<td>32,74±7,09</td>
<td>160,92±30,02</td>
<td>1,53±0,20</td>
<td>0,31±0,06</td>
<td>39,07±2,18</td>
<td>52,03±0,68</td>
</tr>
<tr>
<td>TP</td>
<td>48,48±3,32</td>
<td>196,35±33,40</td>
<td>1,61±0,37</td>
<td>0,47±0,12</td>
<td>38,88±1,88</td>
<td>78,14±12,69</td>
</tr>
<tr>
<td>D1P</td>
<td>43,16±8,80</td>
<td>209,16±25,74</td>
<td>1,80±0,10</td>
<td>0,53±0,08</td>
<td>36,30±2,89</td>
<td>71,02±18,92</td>
</tr>
<tr>
<td>D2P</td>
<td>34,31±4,55</td>
<td>141,86±11,19</td>
<td>1,60±0,20</td>
<td>0,44±0,04</td>
<td>35,08±2,53</td>
<td>98,18±7,64</td>
</tr>
<tr>
<td>D3P</td>
<td>43,66±2,13</td>
<td>145,86±22,20</td>
<td>1,75±0,18</td>
<td>0,43±0,03</td>
<td>34,17±5,47</td>
<td>87,83±21,97</td>
</tr>
</tbody>
</table>

Figure 2: Table 2:

1 The values are expressed as mean ± SD. TG: Control group rats with food and water ad libitum, TP: stressed rats without treatment, D1P: dose of 500 mg/kg, D2P: dose of 1000 mg/kg, D3P : dose of 1500 mg/kg.
[Note: The values are expressed as mean ± SD. TG: Control group rats with food and water ad libitum, TP: stressed rats without treatment, D1P: dose of 500 mg/kg, D2P: dose of 1000 mg/kg, D3P: dose of 1500 mg/kg. a, b, c, d statistically different mean compared to TP, D1P, D2P and D3P at p<0.05 (LSD test) e, f mean statistically different from D1P and D3P at p<0.05 (LSD test)]

Figure 3:
.1 Acknowledgements

The authors would like to thank the Biotechnology Laboratory of the University Cheikh Anta Diop of Dakar, Senegal, and the Faculty of Science, the FODRUS-LAPHER-Biotech of the University of Yaoundé I, Cameroon. The project was part of a scholarship provided to Fatou Corka KANE through Africa for Innovations, Mobility, Exchange, Globalization and Quality (AFIMEGQ) program sponsored by the European Commission’s EACEA program.

.2 Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.


11 CONCLUSION

[Pei ()] ‘Ethnobotanical approaches of traditional medicine studies: Some experiences from Asia’. S J Pei .

[Richter et al. ()] ‘Evaluation of nutritional quality of moringa (Moringa oleifera Lam) leaves as an alternative
protein source for Nile tilapia (Oreochromisniloticus L)’. N Richter, P Siddhuraju, K Becker . Aquaculture

[FAO (Food and Agriculture Organisation) The State of food insecurity in the world Internationals goals 2015 hunger reduction:
’FAO (Food and Agriculture Organisation) The State of food insecurity in the world’. Internationalsgoals

[Vinotkumar et al. ()] ‘Hepatoprotective and antioxidant properties of aqueous rhizome extracts of Picrorhiza
kurroa on CCl4 induced liver toxicity in albino rats’. P Vinotkumar, A Sivaraj , K Devi, B Senthilkumar

[Sivaraj et al. ()] ‘Hepatoprotective and antioxidant properties of Coccinia grandis aqueous leaf extract on
ethanol induced liver toxicity in albino rats’. A Sivaraj, P Vinotkumar, K Sathiyaraj, K Devi, B

[Khatun et al. ()] ‘Huque R Effect of gamma radiation on antioxidant marker and microbiobial safety of fresh bitter
(IJB) 2012. 2 (11) p .

[You et al. ()] ‘In vitro antioxidant activity and in vivo antifatigue effect of loach (Misgurnus anguillicaudatus)
peptides prepared by papain digestion’. L J You, M M Zhao, J M Regenstein, J Y Ren . Food Chemistry

[Olson ()] ‘Introduction to Moringa family’. M E Olson . The Miracle Tree: The Multiple Attributes of Moringa,
L J Fuglie (ed.) (Wageningen, The Netherlands; Dakar, Senegal) 2001. p . CTIA

[Fuglie] ‘Introduction to the multiple uses of Moringa (7-10)’. L J Fuglie . The Miracle Tree: The Multiple
Attributes of Moringa, L .

[Gazzaneo et al. ()] ‘Knowledge and use of medicinal plants by local specialists in a region of Atlantic forest
in the state of Pernambuco (North Eastern Brazil)’. L R Gazzaneo, Paiva De Lucena, RF , Paulino De

[lieber et al. ()] ‘Microsomal acetaldehyde oxidation is negligible in the presence of ethanol’. C S Lieber , Y S

[Ponnappa and Rubin ()] ‘Modeling alcohol’s effect on organs in animal models’. B C Ponnappa , E Rubin .

[Handa et al. ()] ‘Natural products and plants as liver protecting drugs’. S S Handa , A Sharma , K K Chakraborti

[Makkar and Becker ()] ‘Nutritional value and antinutritional components of whole and ethanol extracted Moringa


[Alam et al. ()] ‘Nutritional Analysis of Cultivated Mushrooms in Bangladesh -Pleurotus ostreatus, Pleurotus
sajor-caju, Pleurotus floriida and Calocybe indica’. N Alam , R Amin , A Khan , AraI , Ja Shim , M , Woong

[Moyo et al. ()] ‘Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves’. B Moyo , P J Masika,

[Mbacham ()] ‘Nutritional value of a dietary supplement of Moringa oleifera and Pleurotus ostreatus’. Mbacham

[Okwulehie ()] ‘Okorie DO Chemical composition and nutritional value of mature and young fruiting-bodies of
Pleurotus Pulmonarius produced on Andropogon gayanus straw and Khaya ivorensis Sawdust’. I C Okwulehie

[Badalyan ()] ‘Potential of mushroom bioactive molecules to develop healthcare biotech products’. M S Badalyan
. Proceedings of the 8th International Conference on mushroom biology and mushroom products (ICMBMP8),

[Sivaraj et al. ()] ‘Preventive effect of aqueous leaf extract of Alternanthera sessilis L. on CCl4 induced hepatic
damage in albino mice’. A Sivaraj, P Vinnotkumar, S Palani , K Devi, E K Elumalai, B Senthilkumar

[Jayakumar and Thomas ()] ‘Protective effect of an extract of the oyster mushroom, Pleurotus ostreatus, on
42 p .