

CrossRef DOI of original article:

1 Physical Neuro-Urological Examinationin Patients with Spinal 2 Cord Injury Revisited

3 Wyndaele Michel

4 Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

5

6 **Abstract**

7 Study design: Retrospective cohort studyTo show that combining neuro-uurological
8 examinations in the lumbosacral area permit to refine the neurological diagnosis by evaluating
9 ascending and descending spinal cord pathways, sacral reflex arcs and the status of the related
10 muscles.

11

12 **Index terms—**

13 **1 I. Introduction**

14 esides inspection and palpation of the genitalia, a physical neurological examination is part of the neuro-uurological
15 diagnosis in patients with a suspected or known neuropathy such as a spinal cord injury (SCI). The examination
16 comprises different techniques: sensation of touch of the dermatomes in the perineal area (SENSPER), scoring
17 of the tone of the anal sphincter (AST), voluntary contraction of the anal sphincter/pelvic floor muscles (ASC),
18 anal (ASR)and bulbocavernosus (BCR)reflexes, and the cremaster reflex. The tests are notinvasive, and inform
19 about parts of the afferent and efferent peripheral innervation, the related pathways in the spinal cord, and the
20 pelvic floor muscular status (Table 1) [1].When the reasons for the tests are explained, consent is easily obtained.
21 The assessment of SENSPER includes a test of the patient's compliance and reliability by asking for sensation
22 without touching [2].

23 We looked at data from such examinations (except cremaster reflex) in a cohort of patients with SCI. Our
24 aim was to show that combining neuro-uurological examinations in the lumbosacral area permits to refine the
25 neurological diagnosis by evaluating ascending and descending spinal cord pathways, sacral reflex arcs and the
26 status of the related muscles.

27 **2 II. Materials and methods**

28 This is a retrospective study on a consecutive cohort of SCI patients, investigated in a standardised way, when
29 they presented for urodynamic evaluation during a period of 2 years. Patient age and sex, cause of SCI, and their
30 neurological status determined following the ASIA/ISCoS International Standards for Neurological Classification
31 of Spinal Cord Injury (ISNCSCI) were gathered, with the American Spinal Injury Association Impairment Scale
32 score (AIS) (2).No data were included from patients who did not have a urodynamic investigation. The tests were
33 performed 8 ± 12 years after SCI as part of regular follow up (n=77) or as part of an extra evaluation (n=44),
34 e.g. for changed spasticity, increase in AD.

35 The evaluation of the somatosensory afferent innervation was done in the dermatomes S3-S5 with light touch,
36 blinded for the patient and with fake touching introduced to check for reliability. The findings were scored as 0=absent,
37 1= presentin all dermatomes and 2= present in part of the dermatomes or only on one side, for which the
38 details are given. in the results. Then followed four tests with an intrarectal fingertip: the AST was graded by
39 gentle lateral stretching ((0= absent with flaccid muscle and sometimes open anus, 1= weak with little resistance,
40 2= strong resistance); the ASC was scored as 0= no contraction possible, 1= contraction possible, 2 =strong
41 contraction. Distinction was made with a reflex contraction provoked by the introduction of the finger. The ASR
42 was elicited by making a brisk lateral movement of the fingertip in the anus and was considered positive if the
43 sphincter grabbed the finger (0= absent, 1= present but not strong, 2= strong).Finally, the BCR was elicited
44 with a brisk squeezing of the glans penis/clitoris and the same scoring system was used as for ASR [1].The

4 IV. DISCUSSION

45 differentiation between scores 1 and 2 was subjective but made by experienced physicians. Institutional Review
46 Board permission was granted (Edge 001176).

47 Statistical analysis was done with SPSS28, using Chi-Square (value, df, p value) for categorical, ANOVA for
48 age, and Kappa (k, p value) for comparison of the outcome of two different tests. Statistical significance was set
49 at p<0.05.

50 3 III. Results

51 The cohort consists of 121 patients, 80 males and 41 females, age 47 ± 16 years old. The examination was done
52 6.6 ± 12 years post SCI. AIS was determined 8 ± 17 days before the test.

53 There was no significant difference between gender (Chi-Square) for SENS PER ??5.55 The findings of the
54 physical examination in the groups with different spinal cord level and lesion type are presented in table 1,
55 together with the innervation used for the sensation, tone, contraction and reflexes tested.

56 The outcome of the SENS PER was unreliable in 7 patients not included in the study cohort. When the
57 neuro-uurological findings were compared in complete and incomplete lesions, a positive statistical significance(chi-
58 square) was found for SENS PER (65.51,df 2, p<0.001). In complete lesions 20/67, 30% had touch sensation;
59 in incomplete lesions SENS PER in all dermatomes or in part of them was present in 49/54 (91%) and absent
60 in 5 (9%). Absence of S4-S5 sensation was found in 5 patients with incomplete lesion (1 cervical, 2 thoracic,
61 1 thoracolumbar and 1 cauda). Twenty patients had sensation but only in parts of the dermatomes (Table 1
62 score= 2): S3 present both sides and S4-S5 absent in 12 patients, S3 present at one side with S4-S5 absent in
63 5 patients, S4-S5 present only one side 2 patients, S5 present only one side 1 patient. Interpretation of ASC was
64 uncertain because of interfering spasticity in 2 patients examined in the same period, who were not included in
65 the cohort. ASC was possible in 3/67 (4.5%) of the complete lesions and in 40/54 (74 %) of the incomplete lesions.

66 A comparison between complete and incomplete lesions is given for each test in table 1. To evaluate if the
67 different tests gave similar results Kappa was done. Between ASR and BCR an almost perfect relation was
68 found in complete (k 0.810 p<0.001) and a good relation in incomplete (k 0.734 p<0.001). Significant similarity
69 (p<0.05) was in complete lesions found between SENS PER-ASC and AST-ASR but both with a low k (0.118 and
70 0.202 respectively). In incomplete, significance in similarity of outcome in AST-ASR and AST-BCR had medium
71 k of 0.294 and 0.261 respectively.

72 The tests were repeated in 31 patients who had not shown changes in their neurological status (determination
73 of AIS was done mean 5 days before the second urodynamics and compared with the one done at the time of the
74 first urodynamics, with an interval of 32±31 weeks). All tests were highly reproducible (Table 3).

75 4 IV. Discussion

76 A neuro-uurological physical examination includes testing of motor, sensory, muscular and reflex function in the
77 lower sacral segments (table 1).

78 In our cohort the relation between AIS and SENS PER was highly positive, as would be expected as sacral
79 sensation is used to help determine AIS. But in a number of complete lesions SENS PER was positive, and
80 in a number with incomplete lesion SENS PER was absent. The reasons may be: unsuspected change in the
81 neurological situation since the last determination of AIS, sensation present in part of the perineal area not
82 examined in the original scoring (especially S3 versus S4-S5), insufficient attention to pitfalls and not introducing
83 fake tests, insufficient cooperation of the patient, and presence of multiple lesions [1][2][3]. A SCI patient may
84 strongly want to feel without being able to do so. Doubtful outcome of SENS PER was found in some patients
85 examined during the same period who reported sensation while not being touched, but they were not included
86 in this study. Finnerup et al evaluated sensation evoked by painful or repetitive stimulation below injury level in
87 patients with a clinically complete (AIS A) lesion. Their findings suggest retained sensory communication across
88 the injury in complete SCI, and they suggested the term 'sensory incomplete' (4).

89 Muscle tone is the continuous and passive partial contraction of the muscle or the muscle's resistance to passive
90 stretch during the resting phase [5]. If the AST is slack (our score 0), it mostly indicates peripheral motor
91 denervation while a normal or strong tone (our score 1 and 2) points at decentralization. Previous interventions
92 on the anus or lower bowel must be considered, and an overfilled rectal canal at the time of the examination must
93 be avoided. We found the AST globally not related to the AIS score. We also did not find a relation between
94 AST and ASC, while AST was positively related to ASR (minor significance in complete/mediocre in incomplete)
95 and BCR (mediocre in incomplete lesions), suggesting some role of the lowest spinal reflex activity for the tone
96 of the anal sphincter. A negative relation between AST and ASC has been found in non-neurogenic women with
97 provoked vestibulodynia who combined greater PFM resting stiffness with a decrease in the strength of the pelvic
98 floor muscle contraction [6]. Malouf and Kamm presented the case of a women who had suffered a SCI T12-L1
99 24 years previously [7]. On rectal examination her anus was closed at rest but gaped after digital examination for
100 several minutes. Palpable voluntary ASC was absent. This sign should be distinguished from the "gaping anus"
101 seen in some patients with faecal incontinence or rectal prolapse, where the AST is permanently diminished, and
102 the sphincter remains always open. In patients with a lesion below L1 (n=17) we found in 4 patients an atonic
103 sphincter which on palpation remained open for a short time. A closed but slack sphincter was present in 1,
104 and AST was normal in 12. The perianal skin sensation to light touch was reduced in the Malouf and Kamm's

105 patient. In our group we did not find a statistical relation between SENSPER and AST, which may suggest that
106 pudendal afferent pathways are only playing a reflex related role in AST.

107 Voluntary contraction of the anal sphincter and the pelvic floor muscles is normally present if the corticospinal
108 tract is preserved and is a sign that the SCI is motor incomplete. The anal sphincter contraction and anorectal
109 motility was studied by Sun et al in a small sample [8]. They found in patients with incomplete spinal lesions
110 (6 high, 11 low and 3 mixed) a low squeeze pressure of the anal sphincter. In those with T10-L1 lesion in our
111 study tone was present in the anal sphincter in the majority, while ASC was mostly absent. This again indicates
112 the importance of the integrity of the lower spinal cord in the preservation of the anal sphincter tone and the
113 independence of descending spinal cord pathways.

114 It has been described that healthy men have a stronger anal sphincter pressure compared with women, and
115 findings were similar in cases with chronic constipation [9]. It is generally accepted that the condition of muscles
116 diminishes with age, and also in our data such influence was seen. Nielsen and Pedersen found no significant
117 correlation between external sphincter thickness and age on endosonography [10]. When the SCI is motor
118 incomplete, Vasquez et al showed in selected cases that a 6-weekprogram of pelvic floor muscle training (PFMT)
119 may have a beneficial effect on promoting voluntary control of neurogenic detrusor overactivity and may reduce
120 incontinence [11]. This indicates that PFMT can interact more broadlythan only through an increase of the
121 muscle strength.

122 We have no explanation why in our sample ASR was more absent in women, while no gender differences were
123 found for any of the other tests.

124 The ASR reflex has afferents in the pudendal nerve, which take synapse in the spinal cord and travel back via
125 the inferior hemorrhoidal nerve to the external anal sphincter [12][13][14].

126 The BCR is multisynaptic, mediated mostly by the roots S2-4 , occasionally with synapses as high as L5
127 [15][16]. The efferent innervation can include S5 [16].Impulses from the glans penis and the frenulum run via
128 the dorsal nerve of the penis/clitoris or perineal nerve, mostly through the dorsal roots andback from the motor
129 neurons and pudendal nerves to the external anal sphincter and bulbocavernosus muscles [17][18].Wang et all
130 showed in suprasacral SCI patients with detrusor overactivity, that 63.0% (58 of 92) had a normal bulbocavernosus
131 reflex (BCR) response (19).

132 ASR and BCR were in our study statistically significantly related ($p > 0.001$), likely due to the similar
133 innervation involved in both reflexes. But some differences between ASR and BCR were seen and may be
134 caused by a difficulty to elicit, especially the BCR, as seen in healthy individuals [20][21].

135 The presence of sacral reflexes below the level of injury is key to determining an UMN lesion, absence of sacral
136 reflexes defines a lower motor neuron (LMN) lesion [22].

137 Extrapolation from the neurological examination to the nature of the neurogenic LUTD is only possible to a
138 certain extent. Wyndaele found a correlation between different levels of SCI, the function of the bladder neck
139 and sphincter, and the ACR and BCR. Higher lesions corresponded more with a reflex lower urinary tract and
140 somatic motor activity, lower lesions more with areflexia. With a lesion between thoracic 10 and lumbar 2 as many
141 reflective as a-reflective dysfunctions were found. Detrusor and striated sphincter reflexia/areflexia corresponded
142 significantly with the presence/absence of bulbocavernosus and anal reflexes. The presence or absence of perineal
143 sensation of light touch has been shown to correspond significantly with the presence or absence of sensation in
144 the lower urinary tract [23]. In SCI patients with thoracolumbar fractures pinprick sensation in the perineal area
145 was shown to have negative predictive value: absence of pinprick sensation predicted poor bladder recovery [24].
146 Alexander et al found that subjects with greater preservation of sensation in S3-S5 reported greater ability to
147 initiate and control voiding [25].

148 For a detailed diagnosis of the LUT function after SCI clinical examination alone is not sufficient [23], as also
149 concluded by Moslavac et al [26].Dartoscremaster reflex is predictive of some aspects of sexual and bladder neck
150 function in men [27]. It has in our study be done in a few patients only and was thus not included in the results.

151 Pavese et al could predict urinary continence and complete bladder emptying 1 year after traumatic SCI
152 with the full prediction model relying on lower extremity motor score (LEMS), light-touch sensation in the S3
153 dermatome of ISNCSI, and SCIM subscale respiration and sphincter management. [28] In patients with ischemic
154 SCI the same model was also useful to predict functional bladder outcome [29].

155 We conclude that different techniques of lumbosacral physical examination give each a complementary
156 information in the neurological diagnosis after SCI. Our results show that in most tests a different outcome
157 is seen. Only BCR and ASR gave good to perfect similarity in the results. But their outcome can be different
158 as seen in some of our cohort. Combining the tests permit to evaluate ascending and descending spinal cord
159 pathways, sacral reflex arcs and the status of the related muscles.

160 Limitations of our study are that it is retrospective., the interpretation of the tests is done manually by
161 clinicians and is subjective based on experience. Electrodiagnostic tests and cerebral imaging permit semiobjective
162 and objective measurements which are today not often done outside research.

163 5 Statement of Ethics:

164 We certify that all applicable institutional and governmental regulations concerning the ethical use of the data
165 were followed during this research.

166 6 Conflicts of**1**

Author Contributions:

? Wyndaele Jean Jacques collected the file data, put them in a database, made evaluations and wrote the text.

? Wyndaele Michel contributed to data interpretation and read and corrected the text.

Funding: there was no funding for this study

Figure 1: Table 1 :

2

Level injury	Number patients	SENSPER			AST	ASC		ASR		BCR
		0	1	2		0	1	2	0	
C5 Complete	3	3	-	-	-1	2	3	-	1	1
C5 Incomplete	4	1	3	-	-4	-	3	1	2	2
D8 Complete	5	5	-	-	-3	2	5	-	1	2
D8 Incomplete	2	-2	-	-	-2	-	2	-	1	1
L1 Complete	2	2	-	-	-2	-	2	-	1	1
L1 Incomplete	5	1	2	2	3	2	5	-	4	1
Cauda Complete	4	1	1	2	1	2	4	-	-	4
Cauda Incomplete	3	1	2	-	2	1	3	-	2	1

[Note: A]

Figure 2: Table 2 :

3

Test	No change	Appearance		Total	Missing values
		while originally present	Disappearance while originally absent		
SENSPER	26 (84%)	4	1	31	0
AST	24 (83%)	1	4	29	2
ASC	27 (90%)	3	-	30	1
ASR	16 (59%)	7	4	27	4
BCR	16 (67%)	6	2	24	7

Figure 3: Table 3 :

168 .1 Acknowledgement:

169 We thank E Roelandt for her help with the statistics.

170 [Rodriguez et al. ()] , G Rodriguez , J C King , S A Stiens . *Physical Medicine and Rehabilitation. Neurogenic*
171 *Bowel* 2011. p. .

172 [Lijec Vjesn ()] , *Lijec Vjesn* 2014. 136 p. .

173 [Malouf and Kamm ()] *A winking anus may signify spinal injury 'GUT*, A J Malouf , A M Kamm . 2001. 48 p. .

174 [Sun et al. ()] 'Anorectal function in incontinent patients after cerebrospinal disease'. W M Sun , N W Read , T
175 C Donnelly . *Gastroenterology* 1990. 99 p. .

176 [Nielsen and Pedersen ()] 'Changes in the anal sphincter with age. An endosonographic study'. M B Nielsen , J
177 F Pedersen . *Acta Radiol* 1996. 37 p. .

178 [Wyndaele ()] 'Correlation between clinical neurological data and urodynamic function in spinal cord injured
179 patients'. J J Wyndaele . *Spinal Cord* 1997. 35 p. .

180 [Soler et al. ()] 'Dartos reflex as autonomic assessment in persons with spinal cord injury'. J M Soler , J G
181 Previnaire , G Amarenco . *Spinal Cord Ser Cases* 2017. 3 p. 17097.

182 [Lapides and Bobbitt ()] 'Diagnostic value of bulbocavernous reflex'. J Lapides , J M Bobbitt . *J Am Med Assoc*
183 1956. 162 p. .

184 [Wyndaele and Vodusek (ed.) ()] *Fr eds) Handbook of clinical neurology 130 3d series . Neurology of sexual and*
185 *bladder disorders*, J J Wyndaele , D B Vodusek . Vodusek DB, Boller (ed.) 2015. Elsevier. p. . (Approach to
186 the male patient with lower urinary tract dysfunction)

187 [Zakari et al. ()] 'Gender differences in chronic constipation on anorectal motility'. M Zakari , J Nee , W Hirsch
188 , B Kuo , A Lembo , K Staller . 10.1111/nmo.12980. *Neurogastroenterol Motil* 2017. 29.

189 [Morin et al. ()] 'Heightened Pelvic Floor Muscle Tone and Altered Contractility in Women with Provoked
190 Vestibulodynia'. M Morin , Y M Binik , D Bourbonnais , S Khalifé , S Ouellet , S Bergeron . *J Sex Med* 2017.
191 14 p. .

192 [Yang and Bradley ()] 'Innervation of the human glans penis'. C C Yang , W E Bradley . *J Urol* 1999. 161 p. .

193 [Kirshblum et al. (2014)] 'International Standards for Neurological Classification of Spinal Cord Injury: cases
194 with classification challenges'. S C Kirshblum , F Biering-Sorensen , R Betz , S Burns , W Donovan , D E
195 Graves . *J Spinal Cord Med* 2014 Mar. 2014 Jul. 37 (2) p. 481. (J Spinal Cord Med)

196 [Katner and Kasarskis] 'Muscles tone: Encyclopedia of the neurological sciences'. T L Katner , E J Kasarskis .
197 *Daroff RB* Elsevier. p. . (second edition 2014. Edit chief Aminoff MJ)

198 [Vodu?ek ()] *Neural Control of Pelvic Floor Muscles*, D B Vodu?ek . 2008. London; London: Springer. p. . (Pelvic
199 Floor Re-education)

200 [Bors and Comarr ()] *Neurological Urology. Physiology of micturition, its neurological disorders and sequelae*, E
201 Bors , A E Comarr . 1971. Basel: Karger. p. 166.

202 [Vásquez et al. ()] 'Pelvic floor muscle training in spinal cord injury and its impact on neurogenic detrusor over-
203 activity and incontinence'. N Vásquez , S L Knight , J Susser , A Gall , P H Ellaway , M D Craggs . *Spinal*
204 *Cord* 2015. 2013. Wolters Kluwer. 53 p. 581. (Campbell WW. The superficial (cutaneous) reflexes. In: De
205 Jong's the neurologic examination. 7th ed)

206 [Scivoletto et al. ()] 'Prediction of bladder outcomes after ischemic spinal cord injury: A longitudinal cohort
207 study from the European multicenter study about spinal cord injury'. G Scivoletto , C Pavese , L M Bachmann
208 , M Schubert , A Curt , Finazzi Agro , E . *Neurourol Urodyn* 2018. 37 p. .

209 [Pavese et al. ()] 'Prediction of Bladder Outcomes after Traumatic Spinal Cord Injury: A Longitudinal Cohort
210 Study'. C Pavese , M P Schneider , M Schubert , A Curt , G Scivoletto , E Finazzi-Agrò . *PLoS Med* 2016.
211 13 p. e1002041.

212 [Finnerup et al. ()] 'Sensory perception in complete spinal cord injury'. N B Finnerup , C Gyldensted , A
213 Fuglsang-Frederiksen , F W Bach , T S Jensen . *Acta Neurol Scand* 2004. 109 p. .

214 [Blaivas et al. ()] 'The bulbocavernosus reflex in urology : a prospective study of 299 patients'. J G Blaivas , A
215 A Zayed , K B Labib . *J Urol* 1981. 126 p. .

216 [Donovan ()] 'The importance of the anal exam in neurologic classification of spinal cord injury'. W H Donovan
217 . *Spinal Cord Ser Cases* 2018. 4 p. 4.

218 [Comarr ()] 'The practical urological management of the patient with SCI'. A E Comarr . *Br J Urol* 1959. 31 p.
219 .

220 [Previnaire and Alexander ()] 'The sacral exam-what is needed to best care for our patients?'. J G Previnaire ,
221 M Alexander . *Spinal Cord Ser Casus* 2020. 6 p. 3.

6 CONFLICTS OF

- 222 [Campbell ()] *The superficial (cutaneous) reflexes*. In: *De Jong's the neurologic examination*, W W Campbell .
223 2013. Philadelphia: Wolters Kluwer. p. 581. (7th ed)
- 224 [Alexander et al. ()] 'The use of the neurologic exam to predict awareness and control of lower urinary tract
225 function post SCI'. M S Alexander , C Carr , Y Chen , A McLain . *Spinal Cord* 2017. 55 p. .
- 226 [Wang et al. ()] 'The Video-Urodynamic and Electrophysiological Characteristics in Patients With Traumatic
227 Spinal Cord Injury'. Z Wang , H Deng , X Li , L Liao . *Int Neurourol J* 2021. 25 p. .
- 228 [Moslavac et al.] *Urološka disfunkcija u osoba s ozljedom kralježnicne mozdine*, S Moslavac , I Dzidi? , A Moslavac
229 , P Vlahek , Z Filipan . (Urinary tract dysfunction in spinal cord injury patients)
- 230 [Schurch et al. ()] 'Value of sensory examination in predicting bladder function in patients with T12-L1 fractures
231 and spinal cord injury'. B Schurch , D M Schmid , K Kaegi . *Arch Phys Med Rehabil* 2003. 84 p. .
- 232 [Wyndaele et al. (2022)] *What is the clinical meaning of a negative bulbocavernosus reflex in spinal cord injury
233 patients?* *Spinal Cord Ser Cases*, J J Wyndaele , J Quaghebeur , M Wyndaele . 2022 Feb 18. 8 p. 24.