

CrossRef DOI of original article:

1 Salt Profile and Content in Foods Prepared in Restaurants and 2 Bakeries: Analysis of the 2 Main Urban Centers in Cape Verde

3 Irina Maia Spencer

4 Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

5

6 **Abstract**

7 The excessive intake of sodium from salt is associated with the risk of cardiovascular diseases.
8 According to the Noncommunicable Diseases Survey (DNS, N/P), more than 35

9

10 **Index terms**— salt (NaCl) profile, salt (NaCl) content, restaurants and bakeries.

11 **1 Introduction**

12 oncommunicable diseases (NCDs) are responsible for the death of 41 million people annually, equivalent to
13 71% of all deaths worldwide, with cardiovascular diseases being the main cause (17.9 million) World Health
14 Organization, Noncommunicable diseases, 2021). In turn, hypertension is the leading cause of cardiovascular
15 disease and premature death worldwide (World Health Organization, Hypertension, 2021).

16 A medium-developed country, Cape Verde is located in the Atlantic Ocean, between the Equator and the
17 Tropic of Cancer, between latitudes 14° 23' and 17° 12' north latitude and between 22° 40' and 25° 22'
18 west longitude ("Portal informativo de Cabo Verde,"). The country imports the majority (>80%) of the food it
19 consumes (ALMEIDA, 2022). In Cape Verde, due to changes in the demographic, epidemiological and nutritional
20 profiles of the Cape Verdean population, chronic NCDs are the leading cause of mortality in the country (MS,
21 N/P). According to preliminary data from the 2019 Survey on Noncommunicable Diseases and Associated Risk
22 Factors (IDNT II, acronym in Portuguese), 30.8% of the Cape Verdean population is hypertensive.

23 According to the World Health Organization (WHO), high blood pressure is responsible for at least 45% of
24 deaths from heart disease and 51% of deaths from stroke (World Health Organization, Hypertension, 2021). The
25 worldwide prevalence of high blood pressure (systolic and/or diastolic blood pressure ?140/90 mmHg) in adults
26 (age ?18 years) is estimated at 22% (Mills, Stefanescu, & He, 2020; World Health Organization, Hypertension,
27 2021). Data from the 2019 IDNT II indicate that cardiovascular diseases and cancer are leading causes of deaths
28 in Cape Verde, highlighting poor eating habits among the most common risk factors (MS, N/P).

29 When poor eating habits are identified as one of the risk factors for circulatory system diseases and cancer,
30 among other conditions, substances such as salt (Pure salt -sodium chloride, contains 39.34% sodium or 39.340
31 mg per 100g) and other additives such as preservatives used in canned foods, meat, fish, etc., are often mentioned.
32 However, the identity and nature of these substances, as well as their effects on the body, are rarely explained
33 (MOLOGNONI, 2019). In developed countries, up to three-quarters of the total salt intake comes from foods
34 consumed outside the home and from processed foods, in contrast, the salt added to food, both at the table and
35 during home preparation, generally represents a lower proportion of the total sodium intake (Coelho, 2021; Ruiz
36 et al., 2020).

37 Sodium is an essential nutrient necessary for the normal functioning of cells. Its excessive intake is associated
38 with adverse health conditions, particularly hypertension, which in turn is considered one of the main risk factors
39 for some chronic diseases with high morbidity and mortality worldwide (National Academies of Sciences et al.,
40 2019; World Health Organization, 2012; World Health Organization, 2020). According to Nascimento et al.
41 (Nascimento, Gavron, Bowles, Chaves, & Bortolozo, 2017), sodium (Na) intake comes mainly from table salt,
42 salt-based foods and industrialized products. Complications are related to sodium intake in amounts above that
43 recommended by the WHO of a maximum of 2 g/day (World Health Organization, 2020), considering all its
44 forms of presentation.

45 Although the 2019 IDNT II (MS, N/P) indicates that close to one-third of the Cape Verdean population is
46 hypertensive, there are no data on the salt profile and content of foods prepared by restaurants and bakeries

8 D) LABORATORY ANALYSIS I. SAMPLE PREPARATION

47 in Cape Verde. Thus, the main objective of this study was to evaluate the profile and content of salt in foods
48 prepared in restaurants and bakeries in the cities of Praia and Mindelo in Cape Verde.

49 2 II.

50 3 Materials and Methods

51 4 a) Study design and population

52 This was an observational, cross-sectional study with a qualitative-quantitative approach conducted in restaurants
53 and bakeries in the cities of Praia and Mindelo. These cities have the largest populations in the country (Instituto
54 Nacional de Estatística de Cabo Verde, 2020). All restaurants and bakeries in the 2 cities, based on georeferencing
55 data provided by the Independent Health Regulatory Entity (ERIS, acronym in Portuguese), Municipal Councils
56 and the General Directorate of Tourism, were selected for the study, and all representatives who agreed to
57 participate did so voluntarily. In cases where the georeferenced establishment was already closed, the data
58 were collected from the nearest unreferenced establishment. Written informed consent was provided by the
59 representative of each establishment prior to data collection.

60 Inclusion criteria were being on the official list provided by the competent entity or the existence of the
61 establishment being known to field agents even though it was not on the official list, and the person responsible
62 voluntarily accepting to participate in the study, by signing the free and informed consent form.

63 As exclusion criteria, the establishment is not on the official list and its existence is not known to field agents,
64 or the person in charge does not accept to participate in the study, by signing the free and informed consent
65 form. The heading levels should not be more than 4 levels. The fond of heading and subheadings should be 12
66 point normal.

67 5 b) Participant characteristics

68 A total of 155 managers of restaurants and bakeries in the cities of Praia and Mindelo participated in the
69 study, most of whom (61.4%) were female. Most subjects were aged 25-44 years (58.2%). The mean age of the
70 respondents was 32.41 ± 8.41 years. Regarding education level, 48.1% completed secondary education, 28.5%
71 completed primary education, 15.2% completed undergraduate education, 2.5% completed vocational training,
72 1.9% had a master's degree, and 1.3% were illiterate.

73 6 c) Data collection i. Questionnaires and food samples

74 A protocol cover sheet containing the identification data of the establishment and 2 adapted self-report
75 questionnaires (Appendix I and II) (Viegas CACL, 2013) were applied to record observations on the origin,
76 transport, storage and use of salt used in the establishments under study.

77 The data were collected by 11 investigators under the supervision of 2 supervisors; the investigators were
78 distributed between the cities of Praia (6 investigators; 1 supervisor) and Mindelo (5 investigators; 1 supervisor).
79 The investigators underwent 1 week of training on techniques for questionnaire application and techniques for
80 collecting, packaging and transporting food samples, on the ethical issues of the research, and on the analysis
81 and interpretation of salt iodization data based on the instructions of the Iodized Salt Field Test Kit.

82 The food samples were collected in dry sterile polyethylene bags to avoid any possible contamination and
83 were transported in thermal bags containing cold packs in accordance with the best practices for food transport
84 (Associação de restauração e similares de Portugal, 2008). In the laboratory, the samples were stored at -20°C
85 until analysis.

86 7 ii. Rapid salt iodization test

87 In each establishment, a small amount of salt (approximately one teaspoon) was collected on a white paper sheet,
88 to which 1-2 drops of the test solution was added. Using a color table provided in the test kit, the result was
89 recorded immediately under good lighting. For cases where no color was observed after 1 minute (suspicion of
90 alkalinity in the salt sample), 5 drops of verification solution was added to a new salt sample, and 2 drops of
91 the test solution was added to the sample (World Health Organization, 2007; Jooste PL & Strydom E, 2010).
92 16,17). Last, using the color table, the result was recorded and transcribed to the questionnaire sheet.

93 8 d) Laboratory analysis i. Sample preparation

94 Bread samples were ground in a blender immediately after their removal from the freezer, and the portion needed
95 for salt content analysis was separated and set aside.

96 Samples of meals were slowly thawed, i.e., kept in a refrigerator at $\sim 4^{\circ}\text{C}$ for a period of 24 hours. Then, the
97 samples were homogenized in a blender, and the necessary portion was removed for analysis.

98 9 ii. Analysis of sodium chloride content

99 The sodium chloride content was evaluated through titration by the Mohr method. After sample preparation,
100 approximately 5 g of Portuguese bread/ wheat bread and 10 g of meals were weighed in duplicate on an analytical
101 inside 250-ml cups. Then, 100 ml of warm distilled water (50-55 °C) and 100 ml of boiling distilled water (~100
102 °C) were added to the cups containing bread and meal samples, respectively (Ward, R. E., & Carpenter, C. E.,
103 2010).

104 The solution was vigorously homogenized (30 s) twice at an interval of 1 minute. After the solution had
105 cooled to room temperature, the pH was adjusted to 6.5-10.0, and the solution was filtered through sterile gauze.
106 Next, 15 ml of the filtered solution was transferred to a 250-ml Erlenmeyer flask, and 1.5 ml of 0.1 M potassium
107 chromate indicator (K₂CrO₄) was added. The solution was then titrated with 0.1 M silver nitrate (AgNO₃)
108 until the first appearance of a brownish red color; the process was continued for another 30 s, and the volume of
109 titrant used was recorded.

110 10 iii. Calculations

111 The sodium chloride content in each replicate sample was calculated, and the mean, median, range and standard
112 deviation were calculated.

113 11 e) Statistical analysis

114 The data were analyzed using the Statistical Package for the Social Sciences (SPSS, v. 26). The data were
115 described using absolute and relative frequencies, and the chi-square test was used to compare the salt content
116 in food prepared by the establishments in Praia and Mindelo. All tests were two-sided, and P values less than
117 0.05 were considered to be statistically significant.

118 12 f) Ethics approval of research

119 This study was approved by the National Committee on Ethics in Health Research (deliberation no. 33/2019,
120 31 May). All participants signed an informed consent form, which was filed under confidentiality at the National
121 Institute of Public Health of Cape Verde. Written informed consent for participation was obtained from managers
122 of restaurants and bakeries and their privacy and confidentiality were maintained. All personal identifiers were
123 excluded, and data was kept confidential and used for the proposed study only.

124 13 Results

125 14 a) Salt used in restaurants

126 A total of 125 restaurants were evaluated. Regarding the origin of the salt used during food preparation in the
127 restaurants, 79% of restaurants used salt of national origin, 13.7% used salt of international origin, 4% used salt
128 of both origins, and 3.2% used salt of an unknown origin.

129 Of the restaurants in which the salt used in food preparation was of national origin, 62.6% used salt from the
130 island of Sal, and 25.3% used salt from the island of Maio; for 12.1%, the island of origin was unknown. Notably,
131 the island of Santiago does not produce salt.

132 Of the restaurants in which the salt used in food preparation was of international origin, 95% used salt from
133 Portugal, and 5% used salt from France.

134 Regarding the means used to transport salt, 61.1% of restaurants used a car, 18.2% used a car and boat, 7.1%
135 used a car and plane, and 13.5% did not use any means of transport.

136 Most restaurants (58.4%) did not have a specific location for salt storage. The salt was stored in its original
137 packaging (91.9%), protected from light (38.7%), exposed to heat in a nonventilated area (19.4%), stored in the
138 presence of chemicals (9.7%), and exposed to moisture (6.5%).

139 Other forms of salt storage indicated by the respondents were in plastic buckets (30%), together with other
140 nonperishable foods (25%), in flasks (15%), in stainless steel containers (10%), in plastic bowls (10%), inside a
141 kitchen cabinet (5%) and in a bag inside a box (5%).

142 Among the restaurants that did not have a specific location for salt storage, in 79.6%, the salt was stored in
143 the kitchen; in 12.2%, the salt was stored in the pantry; in 4.1%, the salt was stored on a kitchen shelf; and in
144 2%, the salt was stored on a shelf or near the stove.

145 Regarding the lighting where the salt was stored, the location was well lit in 30.6% and lit in 26.5% of
146 restaurants, received natural light in 22.4%, low light in 12.2%, and no light in 4.1% of restaurants, and was
147 exposed to light and heat in 2% of restaurants.

148 The salt storage location was ventilated in 44.7% of the restaurants, well ventilated in 23.4%, poorly ventilated
149 in 12.8%, ventilated and exposed to heat in 6.4%, not ventilated in 4.3%, exposed to heat in 4.3% and exposed
150 to natural ventilation in 2.1%.

151 In 29.2% of the restaurants, the salt was stored in its own packaging; in 37.5%, the salt was stored in plastic
152 jars; in 12.5%, the salt was stored in a container with a lid; in 6.3%, the salt was stored in plastic bags; in 6.3%,
153 the salt was stored in jars; in 4.2%, the salt was stored in a random container; and in 4.2%, the salt was stored
154 in glass jars. In 82.1% of the restaurants, the salt was stored together with other products.

18 E) LABORATORY RESULTS

155 Most restaurants (83.3%) used a utensil for handling salt: spoon (69.8%), cup (4%), ladle (4%), stainless steel
156 scoop (1.6%), spoon and jar (1.6%), milk pitcher (0.8%), jar (0.8%) and wooden spoon (0.8%).

157 15 b) Salt used in bakeries

158 A total of 30 bakeries were evaluated. Most of the salt used in the preparation of bread was of national origin,
159 with 55.6% of bakeries using salt from the island of Sal and 37% using salt from the island of Maio; 7.4% reported
160 not knowing the provenance.

161 The car was the most commonly used means for transporting salt (76.7%), followed by boat and car (20.0%)
162 and plane and car (3.3%). Most bakeries purchased salt locally (76.7%) and stored it in a specific location (80%).
163 Of these, 78.3% stored the salt in its original container, 47.8% stored the salt protected from light, 30.4% stored
164 the salt in a location exposed to heat, 4.3% stored the salt in a nonventilated area, and 4.3% stored the salt in
165 the presence of chemicals.

166 Of the 6 bakeries that did not have a specific location for salt storage, 50% stored it in the pantry, 33.3%
167 stored it in the production area, and 16.7% stored it in a location with other products. In 66.7% of the bakeries,
168 the salt was stored away from light; in 50%, the salt was stored in its own container; in 33.3%; the salt was
169 exposed to heat; and in 16.7%; the salt was stored in an unventilated location.

170 A total of 96.4% of the bakeries used a utensil to handle the salt: cup (25.9%), ladle (25.9%), stainless steel
171 scoop (14.8%), bowl (7.4%), shaker (7.4%), and either a spoon, scale plate, spatula, cake pan or jar (3.7% each).

172 16 c) Profile of the salt used in restaurants

173 Only 12% of the restaurant managers stated that they followed standard guidelines for the amount of salt to be
174 used in food preparation.

175 Most (67.2%) restaurant managers believe that there are differences between different types of salt, whereas
176 30.4% think there are no differences and 2.4% do not know. Of those who reported the existence of differences
177 between the types of salt, 59.5% referred to the quality, with emphasis on the presence of iodine (30%).

178 Table 1 shows the proportion of salt per meal used by restaurants in Praia and Mindelo. In both the soup
179 and the main dish, most establishments used less than 1 g of salt. Regarding the daily dose of salt recommended
180 by the WHO, 48% of respondents were unaware of the existence of a WHO recommendation on the amount of
181 salt that should be consumed daily per person; 18.4% were aware of such a recommendation. Only 37.3% of the
182 respondents knew the relationship between salt and sodium.

183 17 d) Profile of the salt used in bakeries

184 Regarding the existence of a standard that regulates the amount of salt to be used in the preparation of bread,
185 83.3% of the bakeries reported that they followed a standard; for the remaining 16.7%, there was no compliance
186 with any standard.

187 Iodized salt was the most used salt type (90%), followed by sea salt, fleur de sel and others, with 3.3% each.

188 Most respondents (69%) stated that there were differences between types of salt; the remaining 31% responded
189 that no differences exist between different types. The most reported differences between the types of salt were
190 quality (41.2%), followed by texture (17.6%). Among the respondents, 11.8% considered iodized salt the best,
191 and differences were reported in terms of appearance, taste/aroma, presence of iodine, importance for health and
192 salt content in the recipe (5.9% each).

193 The amount of salt per kg of dough was greater than 14 g/kg in 3 bakeries, and in 2 bakeries, the amount
194 of salt was greater than 6 g per loaf (Table 2). The majority of the bakery managers (96.7%) believe that salt
195 has an impact on the health of all individuals. Only 3.3% considered that it has an impact only on the health of
196 individuals with some disease.

197 Most respondents (66.7%) were unaware of the daily dose of salt recommended by the WHO (5 g/day); 6.7%
198 were aware of such a recommendation.

199 Regarding the relationship between salt and sodium, 36.7% of the respondents answered that salt contains
200 sodium; 53.3% did not know the relationship between the 2.

201 18 e) Laboratory results

202 A total of 155 food samples were collected and analyzed, 30 of which were bread (Portuguese/wheat bread) and
203 125 of which were meals ready for consumption. Of these, 75 were collected in the city of Praia (16 bread samples
204 and 59 meal samples), and 80 were collected in the city of Mindelo (14 bread samples and 66 meal samples).

205 Of the bread samples analyzed, 53.3% (n = 16) had salt contents above the limit recommended by the
206 Portuguese standard (Decree Law no. 75/2009, of 12 August). This standard defines a maximum permitted salt
207 content, i.e., 1.4 g per 100 g of baked bread (or 0.55 g of sodium per 100 g of bread). Of the samples with salt
208 contents greater than 1.4 g/100 g, 43.75% (n = 7) were collected in the city of Praia, and 57.14% (n = 8) were
209 collected in the city of Mindelo (Appendix I).

210 Approximately 59.3% (n=35) of the meal samples collected in the restaurants in Praia and 42.4% in Mindelo
211 had a NaCl greater than 5.0 g/meal, with a median of 5.03 g (table 3). All of these samples had a common
212 component (meat) that underwent some traditional preserving process (use of salt as a preservative).

213 In the present study, the amount of Na varied between 0.26 g and 6.89 g per meal (Appendix II), with a
214 median of 2.01 g (table 3), indicating a high Na content based on the recommended daily intake of less than 2
215 g of Na established by WHO (World Health Organization, 2020). Bakeries and restaurants in Mindelo used a
216 mean of 1.50 ± 0.3 g of salt/100 g of bread and 1.4 ± 0.5 g of salt/100 g of meal respectively. In Praia, the mean
217 salt content in bread was 1.35 ± 0.25 g/100g, and that in meals was 1.3 ± 0.5 g/100 g respectively (Table 3 and
218 table 4). There were no significant differences between Praia and Mindelo regarding the salt content used in the
219 bakeries ($?2 = 71,778$; $p = 0.419$) and in the restaurants ($?2 = 367,488$; $p = 0.641$).

220 Most of the salt samples collected (97%) contained iodine.

221 19 IV. discussion

222 Most restaurants did not have a specific location for storing salt. It was stored in its own packaging, protected
223 from light, exposed to heat, stored in a nonventilated place, stored in the presence of chemicals, and exposed
224 to moisture. Several studies have shown that storing iodized salt in a dry or cold place protected from sunlight
225 preserves its composition (World Health Organization, 2007; Goris, J. M., et al., 2018; Mekonnen, T. C., et al.,
226 2018; Abebe, Z., Gebeye, E., & Tariku, A. 2017).

227 In this study, most salt samples contained iodine (97%), a result that is in accordance with the WHO
228 recommendations (? 90%) established to eliminate iodine deficiency disorders (World Health Organization,
229 2007).

230 The high percentage (97%) of use of iodized salt by the restaurants and bakeries may be due to the efforts
231 of the Cape Verdean government to stimulate improvements in the iodine status in recent years. This rate
232 is consistent with that found in a study conducted in Nigeria (95%) and is higher than that found in studies
233 in Ghana (75.6%) and Senegal (10%) on the salt iodine content in the household diet and associated factors
234 (Anteneh, Z. A., Engidayehu, M., & Abeje, G. 2017; Obssie, G. F., Ketema, K., & Tekalegn, Y. 2020).

235 In this study, 50% of the analyzed bread samples revealed a salt content greater than the limit recommended
236 by the Portuguese standard, which is 1.4 g/100 g of bread or 0.55 g of sodium/100 g of bread (Assembleia da
237 República, 2009). Bread is one of the most consumed foods in the world, accounting for an average of 30% of
238 daily salt intake (2,3). It contributes a significant percentage of salt to the diet of the Cape Verdean population.

239 Of the samples with salt contents greater than or equal to 1.4 g/100 g, 57.8% ($n = 11$) were collected in
240 the city of Mindelo, and 42.2% ($n = 8$) were collected in the city of Praia (Assembleia da República, 2009).
241 Similar results were found in a study on the evaluation of salt content in bread regularly consumed in the Eastern
242 Mediterranean region (Assembleia da República, 2009; Al Jawaldeh, A., & Al-Khamaiseh, M. 2018).

243 The results of the present study indicate that the salt content in meals prepared in restaurants in Cape Verde
244 is high (? = 5.44 g/meal) based on the WHO recommendation (World Health Organization, Salt reduction,
245 2020).

246 A higher salt content was observed in meals that contained meat, french fries, chorizo or shellfish. This may
247 be due to some traditional preservation processes (use of salt as a preservative) (Ludwig, L. M., et al., 2021).
248 Conversely, the samples consisting essentially of salad had low salt contents (Nascimento RFd, et al., 2017).

249 In the present study, the amount of Na ranged from 780 mg to 4,330 mg/meal, with a median of 1,900 mg/meal,
250 which exceeds not only the recommendation for a meal (18,27,28) but also the WHO daily recommendation, which
251 establishes a maximum intake of 2,000 mg of Na/day (World Health Organization, Salt reduction, 2020).

252 The present findings draw attention to the greater sodium intake Approximately 59,3% ($n=35$) of the meal
253 samples collected in the restaurants in Praia and 42,4% in Mindelo had a NaCl greater than 5.0 g per meal, with a
254 median of 5.03 g, suggesting a much higher daily NaCl intake than the maximum limit (<5 g/day) recommended
255 by the WHO (World Health Organization, Hypertension, 2021; World Health Organization, Salt reduction, 2020).
256 An intake of less than 5 g of salt per day in adults helps to reduce blood pressure and the risk of cardiovascular
257 disease, stroke and heart attack (World Health Organization, Salt reduction, 2020).

258 The results should be interpreted considering that the data were collected only in the 2 main population
259 centers. Thus, it is possible that there are other bakeries and restaurants that were not taken into account.

260 V.

261 20 Conclusions

262 In general, food managers/handlers in restaurants and bakeries in the cities of Praia and Mindelo are unaware of
263 the origin of the salt they use, the way in which it is transported and stored before reaching establishments. The
264 lack of guidelines regarding the proper use of salt for each food preparation, thus contributing to its indiscriminate
265 use.

266 Our study revealed unprecedeted data on the profile and content of salt in the 2 main urban centers of Cape
267 Verde (Praia and Mindelo). Thus contributing to the redesign of salt intake reduction strategies in these cities
268 and in the country. It is imperative and urgent that national legislation regulates the unit weight of bread and
269 the amount of salt that ready-to-eat food, including bread, should contain. What is the amount of salt you use,
270 per person, to make a soup? ? <1 g (less than 1/2 teaspoon) ? 1 to 2 g (1/2 to 1 teaspoon) ? 2 to 4 g (1 to 2
271 teaspoons) ? 4 to 6 g (2 to 3 teaspoons) ? >6 g (more than 1 tablespoon) 14. How much salt do you use, per
272 person, to prepare a main dish? ? <1 g (less than 1/2 teaspoon) ? 1 to 2 g (1/2 to 1 teaspoon) ? 2 to 4 g (1

20 CONCLUSIONS

273 to 2 teaspoons) ? 4 to 6 g (2 to 3 teaspoons) ? >6 g (more than 1 tablespoon) 15. Do you consider that salt
274 intake has an impact on health? ? Yes, for all individuals ? Yes, but only for individuals with some disease ? No
275 16. What is the daily dose of salt recommended by the World Health Organization? ? 12 g/day ? 10 g/day ? 5
g/day ? 3 g/day ? Other _____

Figure 1: 8. 1 .

276

i. Guideline statement

Resolution No. 33/2019

1. It was submitted, under the terms of article 9 of Decree-Law No. 26/2007, of 30 July, for the

[Note: purposes of the National Committee on Ethics in Health Research (CNEPS, acronym in Portuguese) opinion in order to authorize the realization of the Project entitled "Salt profile and content in foods prepared in restaurants and bakeries: Analysis of the 2 main urban centers in Cape Verde", presented by the National 6. As supporting documents, were presented, (i) the Letter addressed to CNEPS, (ii) the Research Project, (iii) the Schedule, (iv) the Indicative Budget, (v) the Information Sheets, (vi) the Terms of Free and Informed Consent, (vii) the Questionnaires to be applied and, (viii) the CV of the principal investigator? 7. CNEPS performed the document analysis of the research project during its 92nd Ordinary Meeting, held on April 25, 2019, and the project was pending additional information (see deliberation 28/2019). 8. On May 15, 2019, the research project with the corrections was submitted for reconsideration by the CNEPS. 9. CNEPS reassessed the research project during its 92nd Ordinary Meeting, held on May 30, 2019, having found that the aspects highlighted in the aforementioned determination were remedied, therefore, pursuant to article 11 of Decree-Law no. 26/2007, of 30 July, it decided to approve it.III.]

Figure 2:

1

Salt	Soup		Restaurants	
	n	%	n	%
< 1 g	75	59.5	65	51.6
1 to 2 g	25	19.8	40	31.7
2 to 4 g	7	5.6	14	11.1
4 to 6 g	1	0.8	2	1.6
> 6 g	-	-	5	4
Does not cook	17	13.5	-	-
Does not know	1	0.8	-	-
Total	126	100	126	100

Figure 3: Table 1 :

2

Salt	n	kg of dough	%	n	Loaf	%
< 1 g	4		14.3	21		75
1 to 2 g	1		3.6	5		17.9
2 to 4 g	1		3.6	-		-
4 to 6 g	1		3.6	-		-
> 6 g	21		75	2		7.1

Figure 4: Table 2 :

3

Statistical analysis	NaCl	Results (g/100g)	Cl	NaCl (g)/meal	Na (g)/meal
		Na		(g)/meal	
Mean	1,34	0,54	0,81	5,44	2,18
Median	1,30	0,52	0,78	5,03	2,01
Minimum	0,50	0,20	0,30	0,66	0,26

Figure 5: Table 3 :

4

Statistical analysis	NaCl	Results (g/100g)	Na	Cl
Mean	1,46	0,58	0,88	
Median	1,405	0,562	0,843	
Minimum	1,1	0,44	0,66	
Maximum	2,3	0,92	1,38	
Range	1,2	0,48	0,72	
SD	0,27	0,11	0,16	

Figure 6: Table 4 :

Salt Profile and Content in Foods Prepared in Restaurants and Bakeries: Analysis of the 2 Main Urban Centers in Cape Verde

15 54 91	8	Praia
	Min-	1,80
	delo	0,90
	Praia	0,80
	Praia	
16 55 92	9	Praia
	10	Praia
	Praia	1,90
	Praia	2,60
	Min-	1,90
	delo	
17 56 93	11	Praia
	Praia	1,30
	Praia	1,50
	Min-	2,00
	delo	

? 12 g/day ? 10 g/day ? 5 g/day ? 3 g/day ? Other _____ 17. The following describes the relations

Vol17mPraia Mindelo Mindelo 18 Praia Mindelo Mindelo 19 20 21 22 23 24 25 26 27 28 29 30 Mean SD Amo
XXII

Is-

sue

VI

Ver-

sion

I

(

D

D

D

D

)

K

Med-

277 .1 Acknowledgments

278 The authors would like to thank everyone who contributed to this study.

279 .2 Conflict of Interest

280 No funding was obtained for this study. The authors declare that they have no financial and/or personal conflicts
281 of interest in the design and implementation of this study.

282 .3 Supplementary

283 Questionnaire applied to restaurants A -SOCIODEMOGRAPHIC CHARACTERISTICS 1. Gender:
284 ? F ? M 2. Age: _____ 3. Education level: _____ 4. Profession/role
285 _____ 5. In your establishment, is there
286 a standard that dictates the ideal amount of salt to be used in food preparation? ? Yes ? No
287 [Portal Informativo De Cabo and Verde] , Portal Informativo De Cabo , Verde . <http://www.caboverde-info.com/Identidade/Geografia/Artigos/Coordenadas-geograficas>
288 [World Health Organization ()] , <https://www.who.int/news-room/fact-sheets/detail/hypertension> World Health Organization 2021. (Hypertension)
289 [Pfdc ()] *A prática social do consumo insustentável de alimentos para viagem no Brasil e Alemanha*, Coelho Pfdc
290 . <https://repositorio.ufc.br/handle/riufc/57926> 2021.
291 [Anuário Estatístico -Cabo Verde ()] *Anuário Estatístico -Cabo Verde*, <https://ine.cv/publicacoes/anuario-estatistico-cabo-verde-2018/> 2018. Instituto Nacional de Estatística de Cabo Verde
292 [Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers World Health Orga
293 'Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers'.
294 <https://apps.who.int/iris/handle/10665/43781> World Health Organization 2007. (3rd ed)
295 [Jawaldeh and Al-Khamaiseh ()] *Assessment of salt concentration in bread commonly consumed in the Eastern
296 Mediterranean Region. Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale
300 = al-Majallah al-sihhiyah li-sharq al-mutawassit*, Al Jawaldeh , A Al-Khamaiseh , M . 2018. 24 p. .
301 [Obssie et al. ()] 'Availability of Adequately Iodized Dietary Salt and Associated Factors in a Town of South-
302 east Ethiopia: A Community-Based Cross-Sectional Survey'. G F Obssie , K Ketema , Y Tekalegn .
303 10.1155/2020/1357192. <https://doi.org/10.1155/2020/1357192> *Journal of nutrition and metabolism*
304 2020. 2020. 1357192.
305 [Mekonnen et al. ()] 'Availability of adequately iodized salt at household level in Dessie and Combolcha Towns,
306 South Wollo, Ethiopia'. T C Mekonnen , S Eshete , Y Wasihun , M Arefaynie , N Cherie . 10.1186/s12889-
307 018-6066-5. <https://doi.org/10.1186/s12889-018-6066-5> *BMC public health* 2018. 18 (1) p. 1152.
308 [Ruiz et al. ()] 'Can Meals Outside Homes Impact Sodium Intake'. A Ruiz , M G Lima , L Medina , R L
309 Pinto , M Barros , A Filho . 10.1093/cdn/nzaa091. <https://doi.org/10.1093/cdn/nzaa091> *Current
310 developments in nutrition*, 2020. 4.
311 [Código de boas práticas para o transporte de alimentos ()] *Código de boas práticas para o transporte de ali-
312 mentos*, https://ahresp.com/app/uploads/2018/10/Codigo-CBPH_AHRESP.pdf 2008. Associação
313 de restauração e similares de Portugal
314 [Rfd et al. ()] 'Determination of the sodium and potassium levels in meals served in a university restaurant in
315 the south of Brazil'. Nascimento Rfd , A B Gavron , S Bowles , E S Chaves , Eafq Bortolozo . 10.1590/1981-
316 6723.16716. <http://dx.doi.org/10.1590/1981-6723.16716> *Braz. J. Food Technol.*, v 2017. e2016167.
317 20.
318 [Ludwig et al. ()] 'Estudo do processo de salga na produção de paleta suína salgada curada dessecada / Salting
319 process study in obtaining a dried cured salted pork shoulder'. L M Ludwig , F C Freitas , De , M A Chaves
320 , C Canan , M P Corso . 10.34117/bjdv7n8-675. <https://doi.org/10.34117/bjdv7n8-675> *Brazilian
321 Journal of Development* 2021. 7 (8) p. .
322 [Feeding Guide for the Brazilian Population: Promoting the Health Food ()] *Feeding Guide for the Brazilian
323 Population: Promoting the Health Food*, https://bvsms.saude.gov.br/bvs/publicacoes/guia_324_alimentar_populacao_brasileira_2008.pdf 2008. Brasília: Ministério da Saúde.
325 [Guideline: sodium intake for adults and children World Health Organization ()] 'Guideline: sodium intake for
326 adults and children'. <https://www.who.int/publications/i/item/9789241504836> World Health
327 Organization 2012.
328 [Molognoni et al. ()] 'Interactions of preservatives in meat processing: Formation of carcinogenic compounds,
329 analytical methods, and inhibitory agents'. L Molognoni , H Daguer , G E Motta , T C Merlo ,
330 J D Lindner . 10.1016/j.foodres.2019.108608. <https://pubmed.ncbi.nlm.nih.gov/31554117/> *Food
331 research international* 2019. 125 p. 108608.

20 CONCLUSIONS

332 [Anteneh et al. ()] 'Iodine content of dietary salt at household level and associated factors using Iodometric
333 titration methods in Dera District'. Z A Anteneh , M Engidayehu , G Abeje . 10.1186/s40795-017-0203-x.
334 <https://doi.org/10.1186/s40795-017-0203-x> *Northwest Ethiopia. BMC nutrition* 2017. 3.

335 [Goris et al. ()] 'Iodine status of children and knowledge, attitude, practice of iodised salt use in a remote
336 community in Kerema district, Gulf province, Papua New Guinea'. J M Goris , V J Temple , N Zomerdijk ,
337 K Codling . 10.1371/journal.pone.0197647. <https://doi.org/10.1371/journal.pone.0197647> *PloS one* 2018. 13 (11) .

339 [Da ()] *Lei n.º 75/2009 de 12 de agosto Diário da República, 1.ª série*, Assembleia Da , República . 2009. p.
340 5225.

341 [Jooste and Strydom ()] *Methods for determination of iodine in urine and salt. Best practice & research Clinical
342 endocrinology & metabolism*, P L Jooste , E Strydom . 2010. 24 p. .

343 [Viegas ()] *O sal na alimentação dos jovens: avaliação e percepção do sal das refeições*, Cacl Viegas . <http://hdl.handle.net/10362/13224> 2013.

345 [Abebe et al. ()] 'Poor dietary diversity, wealth status and use of un-iodized salt are associated with goiter among
346 school children: a cross-sectional study in Ethiopia'. Z Abebe , E Gebeye , A Tariku . 10.1186/s12889-016-
347 3914-z. <https://doi.org/10.1186/s12889-016-3914-z> *BMC public health* 2017. 17 (1) .

348 [Mills et al. ()] 'The global epidemiology of hypertension'. K T Mills , A Stefanescu , J He . 10.1038/s41581-
349 019-0244-2. <https://doi.org/10.1038/s41581-019-0244-2> *Nature reviews. Nephrology* 2020. 16 (4)
350 p. .

351 [Oria Harrison Stallings ()] 'The National Academies Collection: Reports funded by National Institutes of
352 Health'. <https://www.ncbi.nlm.nih.gov/books/NBK538102/> *Dietary Reference Intakes for Sodium
353 and Potassium*, M Oria, M Harrison, V A Stallings (ed.) (Washington) 2019.

354 [Almeida S ()] *Todas as medidas do governo são no sentido de afastar o cenário da fome e mitigar a insegurança
355 alimentar, Expresso das ilhas*, Almeida S . <https://expressodasilhas.cv/pais/2022/06/18/todas-as-medidas-do-governo-sao-no-sentido-de-afastar-o-cenario-da-fome-e-mitigar-a-inseguranca-80611> 2022.

358 [Ward and Carpenter ()] 'Traditional methods for mineral analysis'. R E Ward , C E Carpenter . *Food analysis*,
359 (New York) 2010. Springer. p. 207. (4th ed)

360 [US) Subcommittee on the Tenth Edition of the Recommended Dietary Allowances ()] *US) Subcommittee on
361 the Tenth Edition of the Recommended Dietary Allowances*, 1989. US: National Academies Press. National
362 Research Council (Recommended Dietary Allowances: 10th Edition)

363 [World Health Organization, Noncommunicable diseases ()] *World Health Organization, Noncommunicable
364 diseases*, <https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases> 2021.

366 [World Health Organization, Salt reduction ()] *World Health Organization, Salt reduction*, <https://www.who.int/news-room/fact-sheets/detail/salt-reduction> 2020.