

CrossRef DOI of original article:

1 Drug/ FDA recommendation Age of the pregnancy 1 st trimester
2 2 nd trimester 3 rd trimester

3 Bourama Keita

4 Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

5

6 Abstract

7 Background: Pregnancy is a critical stage in a woman life, and the use of drugs, especially
8 antibiotics calls for concern. The service and choice of antibiotics during pregnancy depends
9 mainly on maternal factors such as health, nutrition, and socio-economic status, as well as the
10 mode of delivery. This study was aimed to assess antibiotic use among pregnant women
11 according to the Food and Drug Administration categorization of drugs based on their risk in
12 pregnancy. Methods: The study was a retrospective, cross-sectional survey. The sampling
13 consisted of all prescriptions for pregnant women with at least one antibiotic drug and
14 recorded in a registry. Methods: The study was a retrospective, cross-sectional survey. The
15 sampling consisted of all prescriptions for pregnant women with at least one antibiotic drug
16 and recorded in a registry.

17

18 **Index terms**— antibiotics, prescription, pregnancy.

19 1 Background

20 Maternal mortality and morbidity are high in sub-Saharan Africa due to complications from microbial infections [1].
21 Managing of complications related to these infections during pregnancy requires the prescription of many drugs,
22 including antibiotics. The best use of antibiotics to treat infectious diseases during the antenatal visits, in addition
23 to iron administration and dietary supplements, could reduce maternal and baby mortality during pregnancy [2].
24 Reports suggest that antibiotics account for nearly 80% of all prescription medications during pregnancy, and
25 approximately 20-25% of women receive an antibiotic during pregnancy [3][4][5]. Poor management of antibiotics
26 is one of the leading causes of antibiotic resistance in microbial agents [6]. The use and choice of antibiotics
27 during pregnancy depends on health resources, nutrition status, mode of delivery, and socio-economic factors. A
28 better knowledge of the pharmacokinetics, potential toxicity, and teratogenic risks of these drugs is essential to
29 optimize the efficacy and safety of antibiotic treatment [7]. The pharmacokinetics of antibiotics during pregnancy
30 can be affected by multiple factors, including absorption, distribution, metabolism, and elimination [8]. Some
31 antibiotics can potentially affect embryo-fetal development at different stages of pregnancy. Teratogenic effects
32 occur mainly during the embryonic period (first trimester of pregnancy) [9]. Prescribing in pregnancy always
33 raises the issue of drug risks to the embryo or fetus, an additional pharmacokinetic compartment related to
34 transplacental drug distribution. The use of medications during pregnancy is a significant concern for patients
35 and prescribers. Thalidomide in the 1960s and the teratogenic effects discovered in 1971 with diethylstilbestrol
36 are some examples of the hazards that prescription drugs may pose to pregnant patients [10,11]. Pregnancy is
37 associated with changes in the physiological, psychological, and psychosocial aspects of a woman life. Antibiotics
38 are among the more frequently prescribed medicines in pregnant women, and the use of antibiotics is increasing.
39 However, with limited studies available in this population, the safe use of antibiotics in pregnancy remains a
40 concern. The Food and Drug Administration (FDA) categorization of drugs based on their risk of pregnancy
41 should be considered before prescribing a medication to pregnant women. The health center receives pregnant
42 women for prenatal consultations and various types of care.

43 No study on antibiotics prescribed in pregnant women and their compliance with the FDA classification on
44 drug safety during pregnancy has been done in this village. This study will contribute to the improvement of
45 antibiotic prescription in pregnant women.

8 DISCUSSION

46 2 II.

47 3 Methods

48 The study was carried out in the district health centers of Kangaba, a malaria-endemic area located 80 km
49 southwest of Bamako. A cross-sectional study was carried out from January to March 2021 to collect data on
50 the use and prescription of antibiotics during the antenatal visits. The sampling consisted of all prescriptions for
51 pregnant women with at least one antibiotic drug and recorded in a registry. The nature of the antibiotic drugs,
52 the dosage, the duration of treatment, and the type of prescribed antibiotic combination were analyzed based
53 on the FDA classification guidelines. A non-compliant prescription was defined as any breach of one or more of
54 the parameters listed above concerning, to the FDA classification guidelines. In the registries, we also collected
55 information about the socio-demographic characteristics (age and sex of the patient). In addition, a report form
56 was administered to all prescriber's Data focusing on their professional qualification and their level of knowledge
57 of the FDA classification.

58 FDA classification of drug safety in pregnancy [12] ? Category A: No adverse effects in human pregnancies.
59 Safety established using well controlled human studies. Benefits may outweigh associated risks. ? Category X:
60 Adverse effects in pregnancies.

61 Risksoutweigh possible benefit.

62 Anti-Microbials: D and X FDA drug categories [12] ? Category D: Aminoglycosides: Gentamycin, Strep-
63 tomycin, Tobramycin, Tetracyclines, Doxycycline, Minocycline, Tetracycline, Voriconazole, Chloramphenicol,
64 Antimycotics (Amphotericin B, 5-flucytosine, Griseofulvin).

65 ? Category X: Quinine, Thalidomide, Ribavirin, Miltefosine, oral contraceptives, statins.

66 III.

67 4 Statistical Analysis

68 Data were collected on a report form, entered into Excel, and analyzed using the statistical software Epi info
69 6.04.

70 5 a) Ethical considerations

71 Our study protocol was approved by the ethics committee of the Faculty of Medicine and Odontostomatology,
72 and Pharmacy of the University of Sciences, Techniques, and Technologies of Bamako (USTTB). The health and
73 administrative authorities of Kangaba were informed before the beginning of data collection.

74 The information found in the logs was kept entirely confidential and was not disclosed to anyone outside the
75 study investigators. The personal information concerning each pregnant woman was coded. Only the principal
76 investigator could identify the patients during the data analysis for publication of the results. B Table ???: Types
77 of antibiotics prescribed to pregnant women according to FDA classification in the health center Pregnant women
78 underwent an antibiogram before the prescription of the antibiotics in 0.5% (8/1,499).

79 6 IV.

80 7 Results

81 V.

82 8 Discussion

83 Most pregnant women are exposed to some type of medication during pregnancy. Drugs prescribed during
84 pregnancy can exercise a teratogenic effect on fetuses, and those prescribed during breastfeeding can also impact
85 on infant health. Antibiotics are among the more frequently prescribed types of medications during pregnancy
86 and lactation [13].

87 The risk of antibiotic exposure was highest in the first and second trimesters but lowered in the third trimester.
88 Mensah et al. 2017 in Ghana found that the risk of antibiotic exposure was highest in the last trimester. This is
89 reassuring because the acquisition of specific fetal immunity begins in the third trimester, and is highly dependent
90 on the microbiome, which can be altered by antibiotics [14]. Amoxicillin (category A) at 36.6%, erythromycin
91 (category B) at 31.7%, and azithromycin (category A) at 15.6%, were the mainlydrugs prescribed during the first
92 trimester of pregnancy (Table 1). Erythromycin (category B) at 54.9%, azithromycin (category A) at 29.8%, and
93 metronidazole (category B) at 9.9%, were the mainly drugs prescribed during the second trimesters (Table 1). In
94 the third trimesters, erythromycin (category B) at 40.1%, metronidazole (category B) at 29.5%, and azithromycin
95 (category A) at 20.7%, were the mainly drugs prescribed (Table 1). A study carried out in northern Nigeria
96 by Ogboma et al. in 2019 reported that ciprofloxacin (25.3%) and erythromycin (21.7%) were the mainly drugs
97 prescribed during pregnancy [15].

98 In Kangaba health center, macrolides were the most prescribed antibioticsat 65.7%, followed bybeta-
99 lactamsat15.1%, and nitroimidazoleat 10.7%.Ogboma et al. in 2019 in Nigeria, and Elizabeth C. Ailes et al.
100 in 2018 in the USA reported that fluoroquinolones were the most prescribed class in pregnant women with 46.7%

101 and 32%, respectively [15,16]. A study carried out in Ghana between 2011 and 215 by Mensah et al. reported
102 that 67% of prescriptions for antibiotics in pregnant women were beta-lactams [14].

103 Prescribing macrolides during pregnancy is common, as similar results have been reported in the literature
104 [17][18][19][20]. The use of macrolides in pregnancy is, however, a growing concern [18]. Significantly, a recent
105 study by Fan et al. followed 104,605 children from birth to 14 years old, and it was concluded that prescribing
106 macrolides in any trimester was associated with an increased risk of genital malformation [18]. Whereas a previous
107 cohort of 1,033 women exposed to macrolides (erythromycin, azithromycin, clarithromycin or roxithromycin)
108 reported that there was no association between this drug and the development of significant abnormalities in the
109 fetus [17].

110 The dosage in mg of most drugs prescribed was 500mg with 94.7% regardless of the age of pregnancy. This
111 result is similar to that observed by Ogboma et al. in 2019 in Nigeria [15]. The dosage frequency per day of most
112 drugs prescribed was twice with 81.2%. The most common route of administration was oral with, 96.7%. The
113 dosage form of most prescribed drug was tablet (96.7%). The duration of treatment in most of the prescriptions
114 was less than one week (99.2%). This does not appear to be in line with the management of antibiotic resistance,
115 where a minimum of seven days and a maximum of twenty-one days is recommended to avoid resistance that
116 could result from incomplete treatment. The duration of treatment depends mainly on the nature of the disease,
117 the severity, the presentation of the drug (dosage in mg and dosage form), the age of the pregnancy, and the
118 pharmacokinetic of medicarion.

119 Most drugs fell into category B at 54.2%, and category A at 37.8%. Mensah et al. 2017 in Ghana reported
120 that most of the antibiotics prescribed were of category B at 96.6%, followed by C and D at 2.9% and 0.5%,
121 respectively [14]. Drugs in categories C and D are toxic to the fetus but can be used during pregnancy if the
122 benefits to the mother outweigh the risks to the fetus.

123 The prescription of, ciprofloxacin (1.85%), gentamycin (8.6%) and, lincomycin (0.3%) in the first trimester
124 of pregnancy does not conform to FDA recommendations. According to the FDA, ciprofloxacin, gentamycin,
125 and lincomycin should be prescribed in the second and third trimesters of pregnancy due to their potential
embryotoxicity. ¹

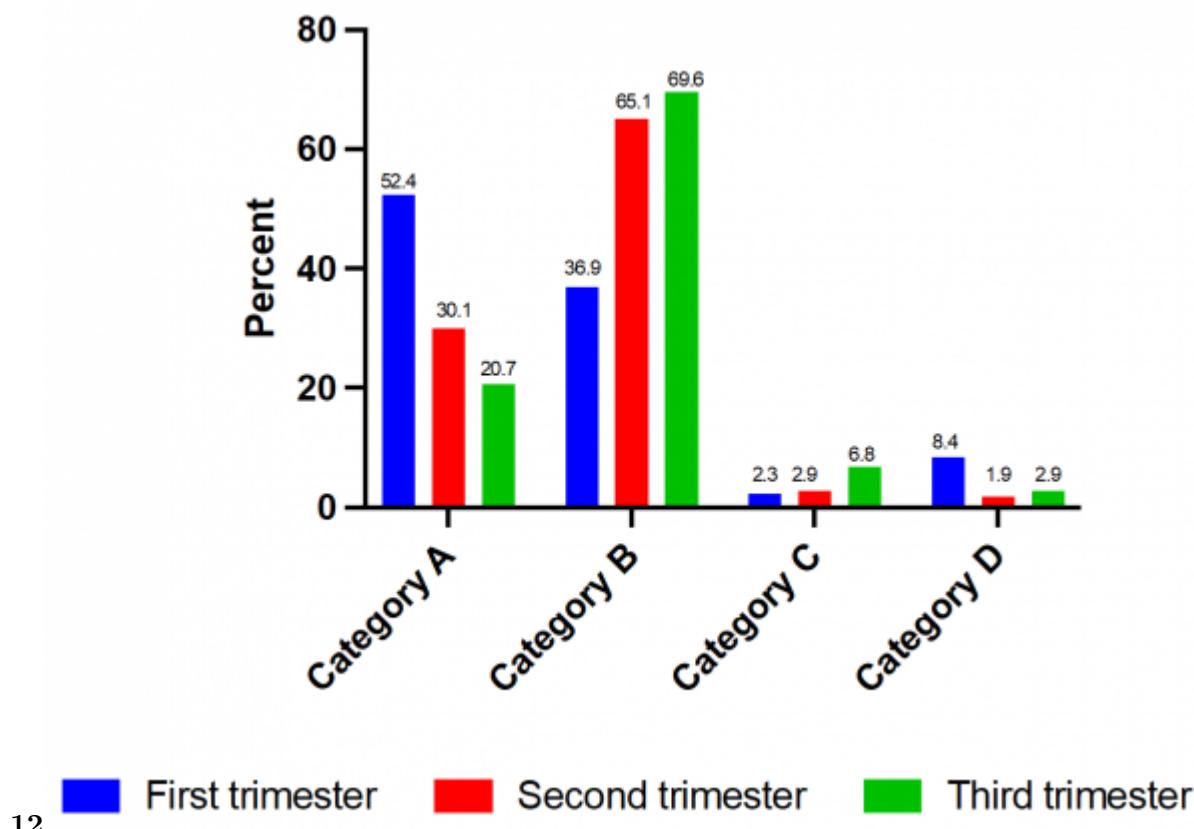


Figure 1: Figure 1 :Figure 2 :

8 DISCUSSION

Figure 2:

1

Antibiotics	Age of the pregnancy			Total n (%)
	First Trimester N (%)	Second trimester N (%)	Third Trimester (%)	
Erythromycin	225(36.6)	0(0)	0(0)	225(15)
Azithromycin	195(31.7)	355(54.9)	95(40.1)	645(43)
Metronidazole	96(15.6)	193(29.8)	49(20.7)	338(22.5)
Ciprofloxacin	28(4.6)	64(9.9)	70(29.5)	162(10.8)
	11(1.9)	19(2.9)	16(6.8)	46(3.1)

Figure 3: Table 1 :

2

Figure 4: Table 2 :

3

Therapeutic class of antibiotics	Age of the pregnancy			Total n (%)
	First trimester N (%)	Second trimester N (%)	Third trimester N (%)	
Aminosides	53(8.6)	0(0)	0(0)	53(3.5)
Bêta-lactamines	226(36.7)	0(0)	0(0)	226(15.1)
Céphalosporines	4(0.7)	0(0)	0(0)	4(0.3)
Lincosamides	2(0.3)	0(0)	0(0)	2(0.13)
Macrolides	291(47.3)	550(85)	144(60.8)	985(65.7)
Macrolides+bêta-lactamines	0(0)	1(0.2)	0(0)	1(0.06)
Macrolides+ Fusidanines	0(0)	1(0.2)	0(0)	1(0.06)
Macrolides+ Nitroimidazoles	0(0)	1(0.2)	0(0)	1(0.06)
Nitroimidazoles	28(4.6)	63(9.7)	70(29.5)	161(10.7)
Quinolones	11(1.8)	19(2.9)	16(6.8)	46(3)
Tétracyclines	0(0)	12(1.8)	7(2.9)	19(1.39)
Total	615(100)	647(100)	237(100)	1499(100)
Variables		Category (%)		
		<500mg 500mg 1000mg >1000mg	77(5.1) 1419(94.7) 3(0.2) 0	
Dosage of antibiotic in mg		Once Twice	65(4.3) 1216(81.2)	
Daily frequency of antibiotic use		Thrice Four times Tablet	13(0.9) 205(13.7) 1450(96.7)	
Forms of antibiotics		Injection <7days	49(3.3) 1487(99.2)	
Duration of treatment		7days >7days	10(0.7) 1(0.1)	

Figure 5: Table 3 :

.1 Acknowledgments

We sincerely thank the communities of Kangaba; we thank the technicians, clinicians, and the nursing staff for their assistance. We are grateful to many colleagues at the Malaria Research, and Training Center (MRTC) for providing critical reviews of the manuscript.

The prescription of, doxycycline (Category D) in second (1.2%) and third (2.9%) trimesters of pregnancy is not recommended by FDA, because doxycycline is toxic on the fetus.

.2 VI.

.3 Conclusion

The antibiotics prescribed for pregnant women fell within the FDA risk categories A and B, with rare cases of prescription occurring in categories C and D. The most frequently prescribed antibiotic in Kangaba was the macrolides.

.4 Funding

Authors did not get funding for this project. Authors paid for the cost the project.

.5 Conflict of interest: None

[Ailes et al.] , Elizabeth C Ailes , P A D S L Mph; Emmy , Tran , ; Pharmd , M Suzanne , Gilboa , E Phd; Kathryn .

[Bergogne ()] *Antibiothérapie en pratique clinique.2e édition*, P D Bergogne . 1999. Masson.

[Reali ()] 'Antibiotic therapy in pregnancy and lactation'. A Reali . *J Chemother* 2005. 17 (2) p. .

[Martinez De Tejada ()] 'Antibiotic use and misuse during pregnancy and delivery: benefits and risks'. B Martinez De Tejada . *Int J Environ Res Public Health* 2014. 11 (8) p. .

[Mensah et al. ()] 'Antibiotic use during pregnancy: a retrospective study of prescription patterns and birth outcomes at an antenatal clinic in rural Ghana'. K B Mensah , K Opoku-Agyeman , C Ansah . *J Pharm Policy Pract* 2017. 10 p. 24.

[Nahum et al. ()] 'Antibiotic use in pregnancy and lactation: what is and is not known about teratogenic and toxic risks'. G G Nahum , K Uhl , D L Kennedy . *Obstet Gynecol* 2006. 107 (5) p. .

[Arnold et al. ()] 'Antibiotics Dispensed to Privately Insured Pregnant Women With Urinary Tract Infections'. Md; Dana Arnold , Md; Jennita Meaney-Delman , Phd Reefhuis . *Morbidity and Mortality Weekly Report (MMWR)* 2014. 2018.

[Heikkila ()] 'Antibiotics in pregnancy—a prospective cohort study on the policy of antibiotic prescription'. A M Heikkila . *Ann Med* 1993. 25 (5) p. .

[De Jonge ()] 'Antibiotics prescribed before, during and after pregnancy in the Netherlands: a drug utilization study'. L De Jonge . *Pharmacoepidemiol Drug Saf* 2014. 23 (1) p. .

[Fan ()] 'Associations between macrolide antibiotics prescribing during pregnancy and adverse child outcomes in the UK: population based cohort study'. H Fan . *BMJ* 2020. 368 p. 331.

[Administration ()] 'Content and Format of Labeling for Human Prescription Drug and Biological Products; Requirements for Pregnancy and Lactation Labeling'. F A D Administration . *Federal Register* 2008. p. 73.

[Bahat Dinur ()] 'Fetal safety of macrolides'. A Bahat Dinur . *Antimicrob Agents Chemother* 2013. 57 (7) p. .

[Ramsey ()] 'Maternal and transplacental pharmacokinetics of azithromycin'. P S Ramsey . *Am J Obstet Gynecol* 2003. 188 (3) p. .

[Mccarter-Spaulding ()] 'Medications in pregnancy and lactation'. D E Mccarter-Spaulding . *MCN Am J Matern Child Nurs* 2005. 30 (1) p. .

[Sarkar ()] 'Pregnancy outcome following gestational exposure to azithromycin'. M Sarkar . *BMC Pregnancy Childbirth* 2006. 6 p. 18.

[Santos et al. ()] 'Prevalence and predictors of anti-infective use during pregnancy'. F Santos , D Oraichi , A Berard . *Pharmacoepidemiol Drug Saf* 2010. 19 (4) p. .

[Kim ()] 'Prevalence of birth defects in Korean livebirths'. M A Kim . *J Korean Med Sci* 2005-2006. 2012. 27 (10) p. .

[Pernia and Demaagd ()] 'The New Pregnancy and Lactation Labeling Rule'. S Pernia , G Demaagd . *P T* 2016. 41 (11) p. .

[Who ()] 'UNFPA, Trends in maternal mortality: 1990 to 2013: estimates by WHO, UNICEF, UNFPA, the World Bank and the United Nations population division'. U Who . *World Health organisation* 2014. 2014. p. 56. (Yamane)

8 DISCUSSION

179 [Chow and Jewesson ()] 'Use and safety of antimicrobial agents during pregnancy' A W Chow , P J Jewesson .
180 *West J Med* 1987. 146 (6) p. .

181 [Ogbonna et al. ()] 'Utilization of Antibiotics Among Pregnant Women in two'. B O Ogbonna , O C Ejim , C E
182 Isiboge , P D Soni , J S Orji , C E Nduka , S O Nduka , J I Ohiaeri , I G Uzodinma , S U Iweh , M I Ofomata
183 , C J Isidienu , C P Eze , Uih Onwuchuluba , EE , Akonoghrere Ro , I L Ejie . *Hospitals in Southeast Nigeria: A Pharmacoepidemiological Survey. EC Pharmaology and Toxicology* 2019.

184