

CrossRef DOI of original article:

# 1 Line Spread Test Results for Commercially Available the White 2 Rice Porridge

3 Naomi Katayama<sup>1</sup>, Shoko Kondo<sup>2</sup>, Sahoko Ito<sup>3</sup> and Mayumi Hirabayashi<sup>4</sup>

4 <sup>1</sup> Nagoya Women's University

5 Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

6

---

## 7 **Abstract**

8 Lifelines are cut off during disasters. As a result, water, gas, and electricity cannot be used,  
9 making it impossible to prepare meals. If you always have ready-to-eat porridge, you do not  
10 need to cook it, and can eat it whenever you want. The porridge with a lot of water causes  
11 aspiration in older people. In welfare facilities and hospitals, a thickener is used to adjust the  
12 viscosity of porridge so that the elderly can safely swallow it. In this study, we measured the  
13 thickness of commercially available porridge using the line spread test (LST). First, the  
14 viscosity of commercially available white rice porridge was assumed. Next, the white rice  
15 porridge was homogenized with a mixer, and the thickness was measured. Two g of each of  
16 the four commercially available thickeners was added to white rice porridge, homogenized with  
17 a mixer, and the viscosity was measured after stirring for five minutes. Viscosity  
18 measurements were taken 30 seconds, 5 minutes, 15 minutes, and 30 minutes after each  
19 porridge placed on the measuring plate. When the white rice porridge was homogenized using  
20 a mixer, the viscosity became thin, and there was the risk of aspiration.

21

---

22 **Index terms**— commercial product, white rice porridge, lin spread test (LST), thickener.

## 23 **1 Introduction**

24 any disasters have occurred in recent years. The Japanese government calls on the general public to stockpile  
25 food for at least three days.

26 In addition, in some areas, residents are asked to collect food for a week. In that case, baby food for infants,  
27 nursing care food for the elderly, allergy-friendly food, pathological food, and the like are problematic. If lifelines  
28 are cut off, and there is no water, gas, electricity, etc., it will be impossible to cook meals. That is where ready-  
29 made commercial products come in handy. In particular, white rice porridge, which is allergy-free and contains  
30 water, is one of the foods you should always be on hand. We can make baby food by making white rice porridge, a  
31 uniform liquid with a mixer. When white rice porridge is processed in a blender, it contains a lot of water, so the  
32 viscosity is thin, and there is a risk of aspiration by the elderly. Liquid white rice porridge needs to be thickened  
33 with a commercially available thickener so that people with impaired swallowing ability can eat it safely. In this  
34 study, we report the results of viscosity measurement by line spread test using commercially available white rice  
35 porridge and four types of thickeners.

## 36 **2 II.**

## 37 **3 Materials and Methods**

38 The nutritional components of the white rice porridge used in this experiment are shown in the Table 1. The white  
39 rice porridge used had 33.2kcal and 7.86g of carbohydrates per 100g (displayed on the product packaging). Table  
40 ?? shows the content and nutritional value of the four commercially available thickeners used in this experiment.  
41 The main component of all thickeners was dextrin (displayed on the product packaging).

## 11 DISCUSSIONS

---

### 42 4 a) Sample (food with Thickener added) adjustment

43 Samples were adjusted according to previous reports 1, 2,3,4) . Each of the three foods was prepared as follows.  
44 1. The viscosity of the food product was measured without any modification (homogenize with a mixer)  
45 after 30seconds, 5minnutes, 15minnutes, and 30minutes. 2. The viscosity of the food product was measured  
46 with modification (homogenize with a mixer) after 30seconds, 5minnutes, 15minnutes, and 30minutes. 3. The  
47 viscosity was measured on the food product with modification (homogenize with a mixer) after adding 2grams  
48 of thickener (A, B, C, and D) to the food (100g) after 30seconds, 5minnutes, 15minnutes, and 30minutes.

### 49 5 b) Viscosity measurement method

50 Using Line Spread Test Start Kit (LST) manufactured by SARAYA, the viscosity of each food was measured.  
51 The measurement procedure is as follows. The line spread test (LST) was performed in a room with room  
52 temperature of 24 degrees. Viscosity measurements by line spread test (LST) were performed three times using  
53 the same sample. Data was obtained by averaging the viscosity results of three repeated measurements. The  
54 measurement method was according to Line Spread Test Start Kit (LST) manufactured by SARAYA.

55 1. Place the sheet on a level surface. Place a ring with an inner diameter of 30mm in the center of the  
56 concentric circles. 2. Add the liquid to be measured to the total thickness of therig (20ml) and let stand for  
57 30 seconds. 3. Lift the ring vertically, and after 30 seconds, measure the spread distance of the solution. Six  
58 points on the outermost circumference of the sample spread concentrically were measured, and the average value  
59 was calculated as the result of LST values. 4. After still standing for 5 minutes, the spread of the samples is  
60 measured again at 6 points, and the average value is recorded as the LST value.

### 61 6 c) Criteria for viscosity

62 There are three levels of classification by LST value 5) . The first stage is mildly thick with a viscosity that falls  
63 within the range of 43mm to 36mm (50-150 mPa?s). As for the properties, when the spoon is tilted, it flows  
64 down quickly 2) . The second stage is moderately thick with a viscosity that falls within the range of 36mm to  
65 32mm (150-300 mPa?s). As for the properties, when you tilt the spoon, it flows to the surface 2) . The third  
66 stage is highly thick with a viscosity that falls within the range of 32mm to 30mm (300-500 mPa?s). Even if the  
67 spoon is tilted, the shape is maintained to some extent, and does not flow easily 5) .

### 68 7 a) Statistical processing results

69 The line spread test results and statistical processing results are shown in Table ??-9. Except for the white rice  
70 porridge with Thickener D, the viscosity was statistically significantly weakened from 30 seconds to 5 minutes.  
71 The white rice porridge with Thickener D, the viscosity was statistically significantly weakened from 5 minutes  
72 to 15 minutes. However, all the viscosities of the white rice porridge fell into the highly thick.

### 73 8 d) Statistical processing

74 This study was statistically processed using statistical processing software (Excel 2010: SSRI Co., Ltd). The  
75 data to be compared were first tested for normal distribution by F-test. For comparisons between correlated  
76 data, the paired Student-t test was used for normally distributed data. Wilcoxon test was used for non-normally  
77 distributed data.

## 78 9 III.

## 79 10 Results

80 Table 3 shows the line spread test results. The viscosity of white rice porridge decreased from extremely thick  
81 to moderately thick with time. When the white rice porridge was processed with a mixer to become a uniform  
82 liquid, the viscosity became mildly thick. And then, the thickener was added to the liquid white rice porridge,  
83 the thickness of liquid white rice porridge remained highly dense. IV.

## 84 11 Discussions

85 People with impaired swallowing function are at risk of aspiration from ingesting food mixed with small solids.  
86 In the case of white rice porridge, there is a possibility of aspiration depending on the physical condition of the  
87 person who eats it because there are rice grains left. If the porridge is made into a uniform liquid using mixer,  
88 the porridge has high water content. It thus becomes less dense, further increasing the possibility of aspiration  
89 by the person 6,7) . The safe consumption of liquid porridge requires the addition of thickeners. All four types of  
90 thickeners used this time were able to increase the thickness of the porridge that was made into a uniform liquid  
91 using a mixer, making into highly thick. The use of thickeners is effective for providing safe meals. To respond  
92 to disasters, we think it is realistic to stockpile porridge and Thickener together.

93 In the future, we would like to conduct similar tests on various types of rice porridge on the market, accumulate  
94 the results, and report them.

95 V.

---

## 96 12 Conclusion

97 An attempt was made to adjust the viscosity for people with impaired swallowing function by using commercially  
98 available retort porridge and a commercially available thickening agent, which are also helpful in times of disaster.  
99 As a result, when commercially available retort white rice porridge becomes a uniform liquid using a mixer, its  
100 viscosity decreases, making it a dangerous ingredient for people with weakened swallowing functions. Therefore,  
101 a commercially available thickener was used to adjust the thickness of the liquid porridge. As a result, the liquid  
102 porridge became highly dense and stable. We think it is necessary to stockpile thickeners along with rice porridge  
so that many people can eat it safely even in the event of a disaster.



Figure 1:

1

Contents Nutrient contents (Per 100g)  
Energy

Figure 2: Table 1 .

103

3

|                                       | After 30 seconds | After 5 minutes | After 15 minutes | After<br>minu<br>tes |
|---------------------------------------|------------------|-----------------|------------------|----------------------|
| None mixer processing (NMP)           | 28.7 ± 2.9       | 33.7 ± 4.8      | 33.6 ± 2.7       | 33.4<br>3.0          |
| Mixer processing (MP)                 | 44.8 ± 3.8       | 50.9 ± 8.7      | 50.2 ± 10.0      | 50.2<br>10.1         |
| MP with Thickener A (Toromicria)      | 25.8 ± 3.8       | 27.4 ± 3.9      | 27.8 ± 4.3       | 28.0<br>4.5          |
| MP with Thickener B (Turuinko)        | 24.4 ± 5.0       | 28.6 ± 11.1     | 26.4 ± 5.3       | 26.9<br>5.7          |
| MP with Thickener C (Toromifaiver)    | 25.5 ± 3.3       | 27.6 ± 3.7      | 28.3 ± 4.1       | 29.7<br>4.1          |
| MP with Thickener D (Neohaitoromi-ru) | 22.7 ± 5.3       | 22.8 ± 5.1      | 23.9 ± 5.5       | 23.6<br>5.4          |

Table 4. Line spread test (LST) measurement results of white rice porridge

| After 30 seconds                  | After 5 minutes | After 15 minutes | After<br>15<br>min-<br>utes |
|-----------------------------------|-----------------|------------------|-----------------------------|
| Average value ±Standard deviation | 28.7±2.9        | 33.7±4.833.7±4.8 | 33.6±2.7                    |
| ? test                            | P=0.020*        | P=0.010**        | P=0.334                     |
| Paired Student t-test             |                 |                  | P=0.781                     |
| Wilcoxon test                     | P=0.042*        | P-0.327          |                             |
| After 30 seconds                  | After 5 minutes | After 15 minutes | After<br>15<br>min-<br>utes |
| Average value ±Standard deviation | 44.8±3.8        | 50.9±8.750.9±8.7 | 50.2±10.0                   |
| ? test                            |                 |                  | P-<br>0.579                 |
| Paired Student t-test             |                 | P=0.409          |                             |
| Wilcoxon test                     | P=0.001**       |                  |                             |

Figure 3: Table 3 .

---

5

|                                        | P=0.0001**      |                 | P=0.200            |                  | P=0.475          |                  |
|----------------------------------------|-----------------|-----------------|--------------------|------------------|------------------|------------------|
| After 30 seconds                       | After 5 minutes | After 5 minutes | 5 After 15 minutes | After 15 minutes | After 30 minutes | After 30 minutes |
| Average value $\pm$ Standard deviation | 25.8 $\pm$ 3.8  | 27.4 $\pm$ 3.5  | 27.4 $\pm$ 3.5     | 27.8 $\pm$ 4.3   | 27.8 $\pm$ 4.3   | 28.0 $\pm$ 4.5   |
| ? test                                 |                 |                 |                    |                  |                  |                  |
| Paired Student t-test                  | P=0.030*        |                 | P=0.444            |                  | P=0.547          |                  |
| Wilcoxon test                          |                 |                 |                    |                  |                  |                  |

Figure 4: Table 5 .

6

|                                        | P=0.430         |                 | P=0.356          | P=0.430          |
|----------------------------------------|-----------------|-----------------|------------------|------------------|
| After 30 seconds                       | After 5 minutes | After 5 minutes | After 15 minutes | After 30 minutes |
| Average value $\pm$ Standard deviation | 24.4 $\pm$ 5.0  | 28.6 $\pm$ 11.2 | 28.6 $\pm$ 11.1  | 26.5 $\pm$ 5.3   |
| ? test                                 | P=0.001**       |                 | P=0.002**        | P=0.408          |
| Paired Student t-test                  |                 |                 |                  | P=0.001**        |
| Wilcoxon test                          | P=0.0001**      |                 | P=0.059          |                  |

Figure 5: Table 6 .

8

|                                        | After 30 seconds | After 5 minutes | After 5 minutes | 5 After 15 minutes | After 15 minutes | After 30 minutes |
|----------------------------------------|------------------|-----------------|-----------------|--------------------|------------------|------------------|
| Average value $\pm$ Standard deviation | 25.5 $\pm$ 3.3   | 27.6 $\pm$ 3.7  | 27.6 $\pm$ 3.7  | 28.3 $\pm$ 4.3     | 28.3 $\pm$ 4.3   | 29.7 $\pm$ 4.1   |
| ? test                                 | P=0.316          |                 | P=0.350         |                    | P=0.488          |                  |
| Paired Student t-test                  | P=0.0001**       |                 | P=0.059         |                    | P=0.034*         |                  |
| Wilcoxon test                          |                  |                 |                 |                    |                  |                  |

Figure 6: Table 8 .

9

|         |         |         |
|---------|---------|---------|
| P=0.443 | P=0.373 | P=0.476 |
|---------|---------|---------|

Figure 7: Table 9 .



### **104 .1 Acknowledgments**

**105** We would like to thank Ms. Sahoko Ito for her cooperation in the LST experiment.

**106** [De Saint-Aubert et al. ()] *Comparison of 2 tests used for the classification of food thickeners in the management*  
**107** *of dysphagia. Gums and stabilisers for the food industry*, Claire De Saint-Aubert , Graham Sworn , Jun  
**108** Kayashita . 2014. 17.

**109** [Murray et al. ()] 'Intake of thickened liquids by hospitalized adults with dysphagia after stroke'. J1 Murray , M  
**110** Miller , S Doeltgen , I Scholten . *International Journal of Speech-Language Pathology* 2014. 16 p. .

**111** [Leder et al. ()] 'Promoting safe swallowing when puree is swallowed without aspiration but thin liquid is  
**112** aspirated: nectar is enough'. S B Leder , B L Judson , E Sliwinski , L Madson . *Dysphagia* 2013. 28 p.  
**113** .

**114** [Hirabayashi et al. ()] *Research on the Combination of Commercially Available Thickeners and Commercially*  
**115** *Available Nursing Food -Aiming for Viscosity Adjustment that can be done at Home-Global Journal of Medical*  
**116** *Research*, Mayumi Hirabayashi , Shoko Kondo & Naomi , Katayama . 2020. 20 p. .

**117** [Katayama and Hirabayashi Shoko Kondo ()] 'Research on the Combination of Commercially Available Thick-  
**118** eners and Commercially Available Nursing Food -By using Universal -Design Food: UDF (Do not have to  
**119** Bite)'. Naomi Katayama , Mayumi Hirabayashi & Shoko Kondo . *Global Journal of Medical Research* 2020.  
**120** 20 (1) p. .

**121** [Hirabayashi and Kondo Naomi Katayama ()] 'Research on the Combination of Commercially Available Thick-  
**122** eners and Commercially Available Nursing Food-Universal Design Food: UDF (Can be Crushed with Gums)'.  
**123** Mayumi Hirabayashi , Shoko Kondo & Naomi Katayama . *Global Journal of Medical Research* 2020. 20 (1)  
**124** p. .

**125** [Kondo et al. ()] 'Research on the combination of commercially available thickeners and nutritional supplemental  
**126** drink -aiming at the care food that can be done in the general family-. Advances in Nutrition and Food science'.  
**127** Shoko Kondo , Megumi Oohashi , Naomi Katayama . *References Références Referencias* 2641-6816. 2019. 1  
**128** (1) p. .