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Abstract-
 
The pathogenesis of human disease is commonly considered to be unique to each 

organ or system. This has led to specialization in medical practice
 
leaving little space for global 

pathogenesis concepts. In this review we have departed from a biochemical concept of 
coenzyme Q10

 
(CoQ10) deficiency and its relation to the initiation of hypoxia response in a 

systemic way. Several conditions of secondary CoQ10
 
deficiency are known in the literature by 

which the organs involved could be affected by hypoxia and switch to glycolytic metabolism. The 
most salient biomarkers of this situation are the low T3 syndrome and the elevation of IL-6. These 
parameters together with CoQ10

 
deficiency delineate a condition of acquired mitochondrial 

dysfunction. Additional related biochemical deficiency conditions affect magnesium, selenium, 
and iron levels. Visualization of glycolysis can be clearly achieved by diagnostic imaging 
methods based on the use of 18F-fluoro-deoxyglucose (18F-FDG). We present several examples 
of diagnostic imaging with 18F-FDG to demonstrate our model of acquired mitochondrial 
dysfunction and disease.  
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From the Thyroid to the Heart
Roy Moncayo α & Helga Moncayo σ

Abstract- The pathogenesis of human disease is commonly 
considered to be unique to each organ or system. This has led 
to specialization in medical practice leaving little space for 
global pathogenesis concepts. In this review we have 
departed from a biochemical concept of coenzyme Q10

(CoQ10) deficiency and its relation to the initiation of hypoxia 
response in a systemic way. Several conditions of secondary 
CoQ10 deficiency are known in the literature by which the 
organs involved could be affected by hypoxia and switch to 
glycolytic metabolism. The most salient biomarkers of this 
situation are the low T3 syndrome and the elevation of IL-6. 
These parameters together with CoQ10 deficiency delineate a 
condition of acquired mitochondrial dysfunction. Additional 
related biochemical deficiency conditions affect magnesium, 
selenium, and iron levels. Visualization of glycolysis can be 
clearly achieved by diagnostic imaging methods based on the 
use of 18F-fluoro-deoxyglucose (18F-FDG). We present several 
examples of diagnostic imaging with 18F-FDG to demonstrate 
our model of acquired mitochondrial dysfunction and disease.

I. Introduction

hrough a series of observational studies on the 
pathogenesis of benign thyroid disease we were 
able to deduce in 2021 that the central 

pathogenetic mechanism was a condition of glycolytic 

metabolism as evidenced through combined diagnostic 
imaging with 3D-power Doppler sonography and 
positron emission tomography (PET) using 18F-
fluorodeoxyglucose (18F-FDG) (Figure 6 in (1)). In the 
18F-FDG study both the thyroid and the heart displayed 
an intense tracer uptake (Figure 1), an association never 
commented before in the literature (2). Since the innate 
capability of desoxyglucose is to indicate glycolysis (3), 
we interpreted the image as an in-vivo depiction of this 
metabolic process which correlated with increased 
vascularity. Given that patients with benign thyroid 
disease frequently have low levels of coenzyme Q10

(CoQ10) and that experimental CoQ10 deficiency is linked 
to hypoxia as shown by Liparulo et al., in 2021 (4), our 
current interpretation of the diagnostic image shown 
below is that it represents glycolysis and is related to 
conditions of hypoxia. In Liparulo’s experiment with the 
human T67 glioma cell line, CoQ10 deficiency was 
produced by inhibiting its biosynthesis using the 
competitive inhibitor 4-nitrobenzoate leading finally to 
low intracellular levels of oxygen, i.e., hypoxia (4).T

Figure 1: 18F-FDG PET Study of a Patient with Recurrent Active Thyroiditis. Intense Tracer Uptake is Seen in the 
Thyroid and the Heart. The Brain Shows a Physiological Uptake. The renal pelvis, the ureters, and the urinary 
bladder Depict the Physiological Excretion Path. Panel B Shows the Simple Pathogenetic Mechanism Leading to 
Hypoxia.

Authorα: WOMED, Private Practice, Karl-Kapferer-Strasse 5, 6020 Innsbruck, Austria. e-mail: Life-RM@outlook.com
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Our previous experience with CoQ10 deficiency 
had shown that this condition is reversible when CoQ10

supplementation at a dose of 0.9mg/kg body weight 
combined with magnesium citrate 2400mg/d, and 
selenium 200µg/d was given. This reversibility can be 
demonstrated by the restitution of normal perfusion and 

morphology of the thyroid (5). The clinical investigation 
of our patients was based on a conceptual model of 
coordinated interactions between magnesium, 
selenium, iron, and CoQ10 as they relate to mitochondrial 
function (Figure 2). The clinical impact of these 
processes has been discussed elsewhere (1, 5-11).

Figure 2: The WOMED model of the interactions between magnesium, selenium, CoQ10, and ferritin in relation to 
mitochondrial function. Magnesium is required ATP synthesis, for iodine uptake, and selenium uptake. Selenium is 
the basic element of selenoproteins. Selenoproteins are related to the thyroid hormone deiodinases, to anti-oxidant 
functions, and to the endoplasmic reticulum as a resident element. Selenium is a key factor for maintaining CoQ10

levels. CoQ10 is the central element in Complex I of the OXPHOS chain and is maintained by CD36. Anti-oxidative 
actions of CoQ10 arise from the conversion of CoQ10 to ubiquinol, a process that requires selenium. Iron is essential 
for the synthesis of iron sulfur clusters which are constituents of many proteins of the OXPHOS chain. Furthermore, 
iron stabilizes the prolyl hydroxylases inhibiting the activation of HIF1. Desirable blood levels of the parameters are 
shown in the circles. The red circle signalizes the crucial situation of CoQ10 in the context of hypoxia.

The main messages from Figure 2 include: 1) 
daily life and physical stressors can lead to magnesium 
deficiency (12, 13) which will affect iodine and selenium 
uptake and thyroid hormone formation (14-16). 2) 
Selenium deficiency (7) will affect the anti-oxidative 
protection of the body by altering selenoprotein 
synthesis (17, 18) and altered activation of CoQ10 to 
ubiquinol through thioredoxin reductase (19), 
potentiating oxidative damage. One fact that is often 
overlooked is that CoQ10 has a positive correlation to 
selenium levels (20). 3) A decrease of magnesium 
availability will affect primarily the production of ATP 
from Mg-ADP (21) as well as the uptake of selenium. 4) 

The lack of ATP will alter the function of the unfolded 
protein response of the endoplasmic reticulum (22). Iron 
deficiency affects thyroid peroxidase (23), mitochondrial 
iron sulfur clusters (24, 25), and regulation of HIF 
through prolyl hydroxylases.

To demonstrate the concept of CoQ10

deficiency we will first review basic concepts on the 
substance and add an introduction on diagnostic 
imaging procedures based primarily on the use of 18F-
FDG.

Nuclear Medicine diagnostic imaging based on 
the use of 18F-FDG PET has been primarily considered 
as a diagnostic method for oncological work (26). This 



 
 

 

 
 

 

 

 

 

  

 
       

 

  
  

   
 

 
 

  
 

 
 

 
 

 
 

 

  

  
   

 
 

 
  

 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3

Y
e
a
r

20
23

G
lo
ba

l 
Jo

ur
na

l 
of
 
M

ed
ic
al
 R

es
ea

rc
h 

 
V
ol
um

e 
X
X
III

 I
ss
ue

 I
 V

er
sio

n 
I

  
 

(
DDDD
)

K

© 2023    Global Journ als 

From the Thyroid to the Heart

 

  

rather restrictive notion emerged during the early years 
of clinical use of 18F-FDG when tracer availability and 
imaging capacity at specialized institutions were limited 
(26). Disregarding these conceptual and practical 
limitations, in 2003 we applied the methodology for the 
diagnosis of arteritis (27). Visualization of fatty acid 
oxidation can be achieved using the specific tracer [123I]-
β-Methyl iodophenyl-pentadecanoic acid (BMIPP) (28, 

29). The beta oxidation of free fatty acids constitutes the 
primary source of energy and ATP production in the 
heart (30). Once the oxidation of free fatty acids is 
diminished, glycolysis takes over in the failing heart (31). 
This is accompanied by increased glycolytic 
metabolism. Figure 3 shows summarily mechanisms of 
CoQ10 deficiency and their relation to metabolism and 
Nuclear Medicine diagnostic imaging.

Figure 3: General changes of mitochondrial metabolism and systemic parameters under hypoxia.

a) Basic notes on coenzyme Q10

The first description of coenzyme Q10 (CoQ10)
 

was done by Festenstein in 1955 who was working on 
the general topic of quinones (32). CoQ10 is a small 
lipophilic molecule located widely in cell membranes. 
Due to its distribution, it was named ubiquitous quinone. 
Beginning in 1957 Crane and coworkers published a 
series of studies on the characterization of CoQ10. An 
early publication dealt with the isolation of a quinone 
from the mitochondria of beef heart. The authors 
described the capability of the compound to undergo 
oxidation and reduction in a reversible way. The 
denomination Q-275 for CoQ10 was derived from the 
absorption spectrum of the substance (33). Different 
compounds having quinone structure have been 
described in different species (34). In 1959 CoQ10 and 
the succinoxidase activity of the electron transport 
system were studied by Crane (35) as well as by 
Hendlin and Cook in 1960 (36). The structure of CoQ10

characterized as a 2,3-dimethoxy benzoquinone 
structure was published by Wolf et al., in 1958 (37).

The biochemical characteristics of quinones 
were summarized by Hoffmann-Ostenhof in 1947 (38). 
In 1948 Friedmann, Marrian, and Simonreuss described 
the antimitotic effects of quinones in relation to their 
structure (39). Further information on the biochemistry of 
quinones was published by Barnes in 1963 (Section 3 in 
(40)).

Gale et al., evaluated the mean content of
CoQ10 in different human organs in 1961 (41) showing 
that the brain and thyroid have the lowest 
concentrations (Figure 2).

Due to frequent incidence of thyroid disease in 
the general population, we hypothesize that organs with 
higher levels of CoQ10 can be more resistant to alteration 
and retain function. The thyroid would be at the end of 
the scale.
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Figure 4: Mean CoQ10 tissue levels in selected organs. Adapted from Gale et al. (41)

The relations between the organ content of 
CoQ10 or ubiquinone and age have been studied by 
Kalén, Appelkvist, and Dallner in 1989 (42). An abridged 

summary of their data is shown in Table 1. The highest 
levels are found in the age group 19-21 years while 
older subjects have lower levels.

Table 1: CoQ10 levels in selected organs according to age (extracted from (42)).

Ubiquinone
Age

µg/d ww

1-3 days
0.7 - 2
years

19 - 21
years

39 - 43
years

77 - 81
years

Heart 36.7 78.5 110.0 75.0 47.2

Kidney 17.4 53.4 98.0 71.1 64.0

Liver 12.9 45.1 61.2 58.3 50.8

In 1996 Ravaglia et al., evaluated the correlation 
of CoQ10 levels with body composition and found that 
levels decreased in a parallel form as did the fat-
free body mass and speculated that this diminution 
would affect muscle performance (43).

Basic information on the pharmacokinetics of 
CoQ10 can be found in the study by Tomono et al., who 

used a deuterium labeled molecule (44). A first peak in 
blood was seen at 6 hours, and the half-life was found 
to be 33 hours. Data on PET tracer biodistribution 
studies using 11C-labeled CoQ10 and 11C-ubiquinol were 
reported by Watanabe et al., in 2019 (45). We have 
interpolated and summarized their results in Table 2.

Table 2: Biodistribution of 11C-labeled CoQ10 and ubiquinol (45).

CoQ10distribution

Ubiquinol2
0min

% ID/g

90min
Ubiquinone2

0min 90min

Heart 0.5 0.6 1.4 0.7

Kidney 0.4 0.28 0.3 0.2

Liver 3.8 5.7 3.7 5.8

Spleen 2.0 2.2 3.5 6.0

Blood 1.9 0.8 1.4 0.6

Cerebrum 0.038 0.026

Muscle 0.04 0.03

Bentinger et al. published a study on the 
content of CoQ10 in endocrine organs (46). Table 1 of 
this publication shows the high uptake of dietary CoQ10

in steroid producing cells such as adrenal cells and 
ovaries while the thyroid had a much lower uptake.
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b) Oxidative processes, selenium, and CoQ10

Several investigators have evaluated the effect 
of external radiation and oxygen toxicity on biological 
systems since the 1940s. The biological extent of life 
has been proposed to be associated with concepts of 
cellular damage due to oxidative processes that 
produced reaction intermediates originating from 
unpaired electrons (47). In 1954 Gerschman et al., 
studied the topic of oxygen poisoning as well as x-
irradiation proposing a common mechanism which was 
related to the oxidizing free radicals (48). In 1955 
Harman published a theory of aging by describing 
deleterious effects arising from injuries due to free 
radicals (49). These investigations as well as those of 
Ritossa on the changes caused by heat shock (50), had 
in common an external component which was acting as 
a pathogenic factor affecting living cells ending with 
oxidative changes.

Early investigations on selenium addressed its 
role in liver disease. In 1957 Schwarz and Foltz (51) 
described the beneficial effect of selenium in the context 
of dietary necrotic liver degeneration. They identified 
selenium in a fraction originally called Factor 3. Modern 
research has described the complex array of 
selenoproteins with antioxidant functions including 
glutathione peroxidase (52-54).

We have chosen to consider selenium and 
CoQ10 together based on observations made by Green 
et al., in 1961 (55) and by Hidiroglou in 1967 (56) who 
found a close functional relation between both 
substances such that selenium administration improved 
the tissue levels of CoQ10 in experimental animals. 
Vadhanavikit and Ganther published similar 
observations in 1993 and 1994 (57, 58). The authors 
speculated that lowering of CoQ10 levels depended on 
the depressed activity of GSH-Px which was the 
consequence of selenium deficiency (58). This finding 
implies that hypoxia can develop starting from selenium 
deficiency which then affects CoQ10 levels. 
Unfortunately, this important physiological connection 
has not been considered in many studies. Putting the 
focus only on one of these elements in the context of 
supplementation have remained inconclusive (59-61). 
On the other hand, specific single mechanisms can be 
indeed characterized.

Ernster and Forsmark-Andrée described the 
anti-oxidant actions of ubiquinol, i.e. the reduced form 
of CoQ10, in aerobic organisms (62). Sugiyama studied 
the anti- oxidative effect of CoQ10 administering a dose 
of 2mg/k which is equivalent to ~140 mg for an adult 
with 70 k body weight. Both the in-vivo experiments as 
well as the in-vitro studies demonstrated that under 
CoQ10 lipo-peroxides were significantly lower as 
compared to the controls (Table 1 in (63)). Degli Esposti 
et al. characterized the functional role of CoQ10 in 
Complex I of the OXPHOS chain emphasizing its 
energetic function (64). In 2017 Shimizu et al. described 

an association between low CoQ10 levels and hospital 
mortality in patients with cardiac disease (65). Heart 
arrest patients also share this feature of having very low 
levels of CoQ10 (66).

Under experimental conditions the 
administration of selenium compounds has resulted in 
inhibition of angiogenesis as well as of VEGF expression 
(67, 68). In our studies we have observed a similar 
action for CoQ10 (5). We propose that these actions add 
a positive effect to counteract changes due to hypoxia.

c) Warburg and the development of 2-desoxy-D-
glucose

The theory behind the development of 2-
desoxy-D-glucose can be traced back indirectly to the 
work of Otto Warburg. In 1911 he carried out 
experiments with the sea urchin (Arbacia pustulosa) and 
with nucleated avian erythrocytes (69). The blood cells 
had been exposed to low temperatures between -15° 
and -20° C to freeze them. The frozen material was then 
exposed to 38° C to break the cells. This handling 
produced a temperature increase of approximately 
60°C. The resultant experimental acellular material was a 
dark liquid. Oxygen consumption in the material won 
from younger blood cells was higher than in intact red 
blood cells. A closer analysis of the 1923 publication by 
Warburg and Minami clearly showed the influence of 
raised temperature (70). These experiments were 
unknowingly ahead of time to those on the heat shock 
response done in 1962 by Ritossa where heat shock 
was produced by setting the temperature to 30°C for 
thirty minutes (50). Warburg’s experiments have never 
been interpreted in the context of the heat shock (71-74) 
nor of endoplasmic reticulum stress (75). Endoplasmic 
reticulum stress is a logical consequence since heat 
shock will produce protein aggregation (76). 
Experimental heat shock can induce glycolysis to 
compensate ATP balance (77) and activate the 
endoplasmic reticulum stress response mechanisms 
(78).

In 1928 Warburg published “The metabolism of 
tumors in the body” (79) where he described the 
metabolic characteristics of 2 tumor models, Flexner-
Jobling’s rat carcinoma (80), and Jensen’s rat sarcoma 
(81). In their experiment they measured the glucose 
content in in-going and out-going tumor vessels. The 
average values in the experiments with the Jensen 
sarcoma substrate revealed a mean glucose 
concentration of 124 mg % in the arterial vessels, and 54 
mg % in the venous vessel (Table II in (79)). On the 
other hand lactic acid in the tumor cavity was higher 
than in the aorta by 69 mg% (Table V in (79)).

In 1922 Bergmann, Schotte, and Lechinsky 
published their work on the development of deoxy-
glucose as an antagonist of glycolysis and added 
experimental data aimed at elucidating the reactivity of 
glucosides after introducing structural changes at the 
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C2 position of the glucose molecule (82). Further 
experimental work on deoxy- glucose as an antagonist 
of glycolysis was published by Francis B. Cramer and 
Gladys Woodward in 1952 (3, 83-85). They showed a 
reduction of approximately 60% of glucose metabolism 
under anaerobic conditions working with slices of 
Walker 256 rat carcinoma samples when an equimolar 
quantity of 2-desoxy-D-glucose was added. The Walker 
256 rat carcinoma originated in 1928 from a mammary 
gland tumor of a pregnant rat (page 261 in (86)). 
Confirmation of the avidity of Walker-256 tumor cells for 
18F-FDG was provided in 2019 by Li et al. (Figure 2 in 
(87)).

Woodward and Cramer (3) included only two 
literature references in their publication: their previous 
work and a 1930 translation of Warburg’s previous work 
(88). The word “relation” was used to connect the 
content of both publications.

In 1957 Wick et al. described the primary 
metabolic block on glucose that 2-deoxyglucose 
produces (89). In 1961 Barban described this 
mechanism as follows: “… inhibits glycolysis and 
growth of cultured human cells” (page 1890 in (90)). 
These results clearly associated 2-deoxyglucose with 
glycolysis. With the development of 18F-labelled 
desoxyglucose by Som in 1980, a diagnostic tool for 
glycolysis imaging became available (91).

d) Narrative description of hypoxia and cardiac 
metabolism

Hypoxia stands for a biochemical state where 
oxygen availability is limited. According to Richalet in 
“The Invention of Hypoxia”, the term appeared in the 
literature about 1909 in a publication originating from 
Germany (92). At this time Joseph Barcroft published 
two studies dealing with the consequences of 
insufficient oxygen supply to the body. In 1908 he 
presented a review of the scientific evidence known up 
to that time (93). In 1920 he discussed the 
consequences of insufficient oxygen supply as follows: 
“The statement has been made that “anoxaemia not 
only stops the machine, but wrecks the machinery” (94). 
In modern times we can interpret this statement as 
suggesting multi-organ failure (95).

In 1964 Nunn and Freeman discussed that 
tissue hypoxia can arise from hemorrhagic shock 1964 
(96). In 1969 Henderson (97) and McDowall (98) 
presented summaries of the biochemical concepts of 
hypoxia which appeared in the British Journal of 
Anesthesiology. In 1977 Alberti discussed the 
consequences of hypoxia on biochemical terms. 
Equation 11 of this publication identified the role of 
CoQ10 in the synthesis of ATP (99).

In 1987 Bihari discussed the relation of hypoxia 
to septic shock (100). Some biochemical characteristics 
of hypoxia were described by Webster in 1987 who 

reported the relation between hypoxia and activation of 
glycolysis (101).

In 1988 Goldberg, Dunning, and Bunn 
characterized the oxygen sensing function as being 
associated with heme protein (102). In 1992 Loike et al. 
showed that when endothelial cells were exposed to 
hypoxia an upregulation of glucose transport could be 
observed (103). At a cellular level, the metabolic 
consequences of hypoxia include diminution of fatty 
acid oxidation and activation of glycolysis (Figure 1 in 
(104)) as well as an increased expression of interleukin 6 
(105).

The transcriptional adaptation to experimental 
hypoxia was characterized in 1993 by Wang and 
Semenza defining a role for the hypoxia inducible factor 
1 (HIF-1 α) using hepatoma tumor cells (Hep3B) (106). 
In 1999 Ouddir et al. demonstrated that the expression 
of the glucose transporter in alveolar epithelial cells 
could be upregulated by hypoxia. In their experiments 
this was reflected by increased uptake of deoxyglucose 
(Figure 2 in (107)) which is connected to increased 
glycolysis.

In 2010 Solaini et al. described major changes 
in mitochondria found in hypoxia. Figure 1 depicted a 
connection between hypoxia and diminished electron 
transport and increased ROS production. The authors 
conceived these changes as stabilizing factors of HIF 
(108). Lee, Chandel, and Simon discussed mechanisms 
of cellular changes following hypoxia adding the 
involvement of endoplasmic reticulum stress and of the 
unfolded protein response (Figure 2 in (109)).

Recent reviews on hypoxia research have been 
published by Thompson in 2016 (110) as well as by Luo 
et al. in 2022. Luo’s publication included an informative 
pictorial summary of relevant landmarks (111). Kierans 
and Taylor idealized that increased glycolysis was the 
event that goes directly from hypoxia to HIF-1α
expression ending with the expression of enzymes 
involved in glycolysis (112). Della Rocca and coworkers 
summarized clinical data on diseases related to hypoxia 
in 2022 (113).

The beta oxidation of free fatty acids constitutes 
the primary source of energy and ATP production in the 
heart (30). Tateno and coworkers have demonstrated 
that myocardial infarction patients show a diminished 
utilization of free fatty acids which did not correlate with 
the findings of myocardial perfusion (114). Changes in 
cardiac fatty acid utilization show a dynamic course as 
reported by Zen et al., (115). Biswas et al., 
demonstrated lower BMIPP uptake following acute 
infarction of the myocardium (116) as well as a negative 
correlation between left ventricular ejection fraction and 
tracer wash out rate. They also described a positive 
correlation between washout rate of BMIPP and blood 
level of NT-proBNP (Figures 4 and 5, respectively in 
(117)).
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The graphical appearance of decreased BMIPP 
uptake as seen in planar images was shown in Figure 6 
by Biswas. Increasing levels of NT-proBNP, a biomarker 
of heart failure (118), correlated positively with an 
increased wash-out rate of BMIPP (Figure 5 in (119)) as 
well as a higher incidence of cardiac events when 
cardiac tracer uptake was low (Figure 6 in (119)).

e) Clinical situations associated with CoQ10 deficiency
Low levels of CoQ10 can be found in a series of 

situations. A clinical review by Boreková found that 
situations of poor nutrition, infection, and a variety of 
stressors can diminish the availability of CoQ10 (120). 
The publication included data from a previous study by 
Anna Gvozdjáková which had shown such conditions.

Figure 6: CoQ10 levels in relation to stressors. Taken from Boreková M, Hojerová J, Koprda V, Bauerová K. 
Nourishing and Health Benefits of Coenzyme Q10. Czech J Food Sci (2008) 26(4): 229-41. doi: 
https://doi.org/10.17221/1122-CJFS. License CC BY NC 4.0

Low levels of CoQ10 have been found in children 
who presented food allergies (121). The same applied 
to acute influenza (122). A similar situation can be found 
in patients after cardiac arrest as well as septic patients 
(66, 123) and in critical illness (124). Studies on post-
operative follow-up have shown indirectly that surgery 
induces a decrease of CoQ10 levels. This drop can be 
prevented by supplementation with CoQ10 (125).

Experimental studies done by Fischer et al., 
have shown alterations in CoQ10 levels after dietary 
restriction (126). Experimental burns can lead to 
mitochondrial damage and dysfunction and can be 
corrected by CoQ10 administration (127). Similar 
observations have been published by Xu et al., relating 
CoQ10 administration to protection against myocardial 
cell changes induced by heat stress (128, 129).

Experimental hypoxia in skeletal muscle of 
rabbits is accompanied by a reduction of the levels of 
ubiquinone (130). A decrease of the CoQ10 levels goes 
along with low ATP levels in isolated rabbit ventricles 
under hypoxia (Table 2 in (131)).

The administration of antineoplastic antibiotics 
such as adriamycin can inhibit the synthesis of CoQ10

(132). This interference could arise from the similar 
quinone structure of both CoQ10 and adriamycin (133-
138). A further effect of this inhibition is the decrease of 

free fatty acid oxidation. In 2000 and 2003, Saito et al. 
demonstrated that cardiac BMIPP uptake was 
decreased after doxorubicin (139) and taxan (140) 
administration. On the other hand, it has been shown 
that doxorubicin cardiotoxicity can be prevented by 
administration of CoQ10 (141). Bradamante et al. 
considered hypoxia to be a risk factor for doxorubicin-
induced cardiotoxicity (142). Muhammed, Ramasarma, 
and Kurup described in 1983 that adriamycin inhibited 
oxidative phosphorylation in freshly prepared 
mitochondria (135).

In 2013 Umezawa et al., demonstrated that 
external radiation therapy affected BMIPP uptake. The 
irradiated area of the heart (red arrows in Figure 4) 
showed no tracer uptake (143). Although the CoQ10

levels were not evaluated, the image pattern is highly 
suggestive of induced CoQ10 deficiency. In a 
subsequent publication the authors described a relation 
between the radiation dose applied and the degree of 
BMIPP alteration (144).
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Figure 4: Taken from Umezawa (143). The Figure is used on the basis of Creative Common CC-BY-NC. Umezawa R, 
Takase K, Jingu K, Takanami K, Ota H, Kaneta T, et al. Evaluation of Radiation-Induced Myocardial Damage Using 
Iodine-123 Β-Methyl-Iodophenyl Pentadecanoic Acid Scintigraphy. J Radiat Res (2013) 54(5): 880-9. Epub 
2013/02/16. doi: https://doi.org/10.1093/jrr/rrt011

Following the concept of metabolic switch from 
free fatty oxidation to glycolysis, Yan et al., have 
demonstrated that radiation-induced changes in 
myocardial metabolism are accompanied by a high 
uptake of 18F-FDG (Figures 2 and 3 in (145)), thus 
reflecting glycolysis.

A series of studies have demonstrated that 
altered free fatty acid oxidation can be restituted by 
administrating the ACE-inhibitor enalapril (146-150) 
(Figure 5).

Figure 5: Taken from Watanabe et al. (148). Copyright granted for this reproduction. Watanabe K, Sekiya M, 
Tsuruoka T, Funada JI, Miyagawa M. Usefulness of 123i-Bmipp with Myocardial Imaging for Evaluation of the Efficacy 
of Drug Therapy in Patients with Chronic Heart Failure. J Card Fail (2001) 7(3): 257-64. doi: https://doi.org/ 
10.1054/jcaf.2001.26313

f) Clinical situations associated with diminished BMIPP 
uptake

The uptake mechanism of free fatty acids 
requires a transport system that involves the CD36 
molecule. When there is a deficiency of this structure, 
18F-FDG uptake has been shown to be increased. This 
alteration can be corrected by administrating carvedilol 
(151) (Figure 6).
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Figure 6: Taken from Hirooka et al. (151). Hirooka K, Yasumura Y, Ishida Y, Komamura K, Hanatani A, Nakatani S, et 
al. Improvement in Cardiac Function and Free Fatty Acid Metabolism in a Case of Dilated Cardiomyopathy with 
Cd36 Deficiency. Jpn Circ J (2000) 64(9): 731-5. doi: https://doi.org/10.1253/jcj.64.731. License granted

The complementary situation, i.e., diminished 
free fatty oxidation, can be found in patients with CD36 
deficiency. Nishimura demonstrated that subjects with 
CD36 deficiency and cardiomyopathy had low BMIPP 

uptake. This defect could be corrected by the 
administration of CoQ10 using a dose of 30mg/d for 35 
days (152) (Figure 7).

Figure 7: Taken from Kim et al.(152). Therapeutic Effect of Co-Enzyme Q10 on Idiopathic Dilated Cardiomyopathy: 
Assessment by Iodine-123 Labelled 15-(P-Iodophenyl)-3(R,S)- Methylpentadecanoic Acid Myocardial Single-Photon 
Emission Tomography. European journal of nuclear medicine (1997) 24(6): 629-34. Epub 1997/06/01. License 
CCBY. https://doi.org/10.1007/bf00841400.
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The images presented above demonstrate the 
ability of Nuclear Medicine to reveal the metabolic 
situation of the heart. Besides the therapeutic use of 
CoQ10, enalapril administration has also led to 
normalization of BMIPP defects. This supports the 
clinical value of enalapril in the treatment of patients with 
heart failure with reduced cardiac function (153). The 
data suggest that there is a restitution of normal 
oxidative phosphorylation (154-156).

Alba Timón-Gómez, and Antoni Barrientos have 
summarized data on changes of the functional status of 
mitochondrial Complex I from active to dormant under 
hypoxia (157). In addition to this the microRNA 
molecule miR-210 has been found to be involved in 
these changes.

Inhibition of NDUFS, NDUFA4, and NDUFA4L2 
affect also Complex I and Complex IV (Figure 1 in (157)). 
NDUFS is the mitochondrial NADH-ubiquinone 
oxidoreductase 75 kDa subunit and NDUFA 
corresponds to NADH:ubiquinone oxidoreductase 
subunit A. Alterations of these molecules affect the 
function of Complex I.

The scientific literature contains scarce 
information about CoQ10 and hypoxia in human disease. 
Hypoxemia is a recognized problem associated with 
congenital heart disease (158), and with viral infections 
(Figure 2 in (159), Figure 2 in (160)). The role of hypoxia 
in chronic kidney disease has been discussed by Wang 
et al., (161). Chen et al., depicted the progression of 
kidney disease linking hypoxia and fibrosis (Figure 4 in 
(162)). Hypoxia in the context of COVID-19 has been 
recently summarized by Østergaard in 2022 setting a 
focus on capillary changes (163).

The condition of chronic hypoxemia is 
associated with diminished cardiac function and low 
levels of ATP (164). Morita et al. described the beneficial 
effect of CoQ10 in an experimental model of hypoxemia-
reoxygenation injury done with heart tissue 
homogenates (164).

Recent studies on the rare disease Moyamoya 
have revealed some single possible similarities to the 
changes we have found in patients with thyroid disease. 
These findings include excessive collateral vessels and 
elevated VEGF levels (165), expression of HIF-1 and 
TGF-beta in the endothelium (166) as well as specific 
vascular changes (167). In 2022 Ma et al., described 
that the blood levels of CoQ10 in this rare disease were 
significantly lower as compared to controls (168).

The selective evolution of mitochondrial diversity 
has been described as a central element for cell type-
specific expression (Figure 1 in (169)). A recent 
statistical meta- analysis has added information on the 
polymorphisms of the hypoxia-inducible factor 1-alpha 
gene finding specific associations with different entities 
such as cardiovascular disease, skin disease, COPD, 
and complications of diabetes (170). Following 

stabilization of HIF there is a downstream signaling 
activation in several organs (171). This finding tells us 
that hypoxia has different phenotypes.

g) Clinical conditions and biochemical features 
associated with hypoxia

Figure 8 shows our theoretical abstraction of 
biochemical processes arising from hypoxia where we 
place CoQ10 deficiency as a key central element. In the 
following sections we will describe the biochemical 
changes associated with hypoxia such as the the low T3 
syndrome and elevation of interleukin-6 (IL-6) levels.
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Figure 8: Biochemical pathways involved in hypoxia. Key elements include the initiation of glycolysis arising from 
diminished levels of CoQ10 together increased ROS production, low-T3 syndrome, and diminished ATP production. 
Glycolysis can be detected by Nuclear Medicine diagnostic imaging using 18F-Fluor deoxyglucose. An equivalent 
image of glycolysis in the thyroid can be achieved by 3D power Doppler sonography. This method shows a 
condition of increased vascularity.

h) Hypoxia and the low T3 syndrome – a causal path?
The low T3 syndrome or euthyroid sick 

syndrome has been described by several authors as 
being associated with many different conditions. In 1974 
decreased levels of total triiodothyronine were observed 
in patients with chronic liver disease, chronic obstructive 
lung disease, chronic renal failure, and intensive care 
situations. The authors attributed these changes to 
lower production of TRH following stress or 
undernutrition (172). A review on the euthyroid sick 
syndrome by Wartofsky and Burman published 1982 
mentioned possible endocrine mechanisms behind this 
condition. In Table 2 they listed fasting, anorexia 
nervosa, and protein-calorie malnutrition as conditions 
that presented the low T3 situation. Many other factors 
related to the low T3 syndrome can be found in this 
review. One interesting postulate was that this condition 
is related to energy conservation by reducing 
catabolism (173).

In 1983 Vitek, Shatney, Lang, and Cowley 
studied the time relation between induction of 
hemorrhagic shock in dogs and changes in the level of 
thyroid hormones. They described lower levels of T3 and 
T4 after 20 minutes of shock. A similar situation was 
described in 3 patients with trauma or shock. The 
authors interpreted the changes as belonging to the 
euthyroid sick syndrome (174). In the late 1990s, several 

investigators had observed changes of thyroid function 
parameters in relation to severe illness (172), systemic 
illness (173), and aging (175). This last study by 
Schroffner considered the low T3 syndrome to be quite 
frequent in different clinical conditions (175). The 
mechanisms leading to this condition were described as 
reduced activation of T4 (176), and as increased 
degradation of thyroid hormone in septic shock patients 
(177). In 1980, Moshang et al. reported that hypoxia 
affected thyroid function parameters (178). Also in 1980, 
Becker et al., described low levels of triiodothyronine in 
patients who had suffered thermal injuries (179). In 1990 
Sawhney, and Malhotra had demonstrated that hypoxia 
was related to low levels of thyroid hormones (Figure 1 
in (180)).

In 2001 Ross and Petros reviewed the 
euthyroid sick syndrome in pediatric cardiac patients 
including those treated at the intensive care unit (181). 
The authors discussed three potential settings in this 
situation: adaptive reduction of the metabolic rate, 
contributor to the disease, of simply due to the severity 
of illness (181). Table 2 included potential triggers, 
however hypoxia was not included.

In 2003 Iervasi et al. found that the low T3 
syndrome had a prognostic relevance predicting fatal 
outcome in cardiac patients. The authors evaluated the 
data from 1058 patients seen at a National Council 
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Research Institute of Clinical Physiology in Pisa in 1999 
(182). The authors expressed doubt as to whether 
changed thyroid metabolism had contributed to 
impairment of heart function.

In 2007 Adler and Wartofsky reviewed the 
euthyroid sick syndrome and considered iit to represent 
an adaptation to several clinical conditions (183).

An important mechanistic finding relating 
thyroid hormone metabolism to hypoxia was described 
in 2008 by Simonides et al.. In their study HIF interacted 
with thyroid hormone deiodinases leading to the low T3 
syndrome (184). Their study was based on a previous 
observation that transforming growth factor beta, a 
target for HIF, could promote thyroid hormone 
inactivation (185). This process resulted in lower levels 
of T3, which are the key feature of the low-T3 syndrome.
Considering that deiodinases are selenoproteins (186, 
187) and that our model of acquired mitochondrial 
dysfunction includes selenium deficiency (10, 11), we 
must add that selenium deficiency must be quite severe 
to affect the deiodinase system (188). The study by 
Fraczek-Jucha et al., demonstrated that selenium 
deficiency does not correlate with the low T3 condition. 
Their study found a significant association between low 
T3 and elevated NT-proBNP levels (Table 2 in (189)). 
Elevated levels of NT-proBNP correlate with diminished 
dysfunction of the left ventricle in cardiac disease 
patients (190).

The low T3 syndrome has been found to show 
an inverse correlation with coronary artery disease (191) 
as well as with elevated blood levels of NT-proBNP (192, 
193).

Bolen et al., described an association of low T3 
syndrome with elevated levels of IL-6 (194). In a clinical 
study with patients that had presented an acute 
coronary syndrome, Brozaitiene et al., found an 
association between mortality and low T3 levels as well 
as with elevated values of NT-proBNP (195). Minai 
analyzed the data from 625 heart failure patients in 2021 
and found that low T3 and NT-proBNP showed an 
inverse correlation (196).

Many publications hypothesize that changes 
leading to the low T3 syndrome arise from the thyroid 
(Figure 1 in (197)) or from the heart in patients with heart 
disease (Figure 5 in (198)). The incidence of the low T3 
syndrome in patients with congestive heart failure has 
been called “unexpectedly high” (199).

Biegelmeyer et al., reported that low T3 levels 
are prevalent among non-critically ill patients and that 
they are predictive of 30-day hospital mortality (200). 
Cerillo added an observation as to the relation between 
low T3 and decreased cardiac output in patients 
scheduled for coronary bypass surgery (201). Abdu et 
al. reported a higher incidence of cardiac events in 
patients with MINOCA (Figure 1 in) (202).

A review published by Langouche, Jacobs, and 
Van den Berghe in 2019 described the appearance of 

the nonthyroidal illness syndrome across all ages. The 
authors added a comment as to the still unknown 
causality of the disease (203).

i) Sepsis and critical illness
Several Investigations on the metabolism of 

sepsis by L'Her, and Sebert have described an 
environment of altered mitochondrial function where 
oxygen utilization and Complex I function are affected 
(204, 205) stating: “Energy- metabolism disturbances 
during sepsis are characterized by enhanced glycolytic 
fluxes and reduced mitochondrial respiration. However, 
it is not known whether these abnormalities are the 
result of a specific mitochondrial alteration, decreased 
pyruvate dehydrogenase (PDH) complex activity, 
depletion of ubiquinone (CoQ10; electron donor for the 
mitochondrial complex III), or all 3”.

Low levels of CoQ10 have been described in 
patients with sepsis (123). He et al., conducted a study 
on pediatric sepsis evaluating levels of CoQ10 as well as 
the activity of Complex I and III. They found that low 
levels of these parameters were associated with 
mortality in children affected by sepsis (206).

Vassiliou et al., reported that septic patients in a 
critical condition had low levels of CoQ10 (207). 
Coppadoro et al., described that low levels of CoQ10 are 
found in a broad range of critically ill patients (124).

Abitagaoglu et al., reported carried out an 
experimental study on the effect of CoQ10 administration 
in sepsis. They found that multi-organ involvement of the 
heart, kidney, and spleen, was decreased under this 
treatment (208). Soltani et al., carried out a clinical study 
on the effect of CoQ10 in sepsis and found a positive 
effect on clinical parameters and mitochondrial function 
(209). In 2001 Fink advanced the notion of cytopathic 
hypoxia as a mechanism of disease (210). In 2002 
Brealey et al., discussed the association between 
outcome of septic shock and mitochondrial dysfunction 
(211). Cornu et al., evaluated the prognostic value of low 
T3 syndrome in patients with septic shock and found an 
association with high mortality (212).

j) Energetics and physical exercise: nutritional theories 
vs. 18F-FDG imaging

Several publications dealing with nutritional 
theories and energetics have a common element, i.e., 
the so-called reference man. The original publication on 
the reference man from 1974 (ICRP 23) corresponds to 
a description of the chemical composition of the body, 
the mass of the organs, as well as to data on physiology 
(213). This publication originated from the need to 
respond to concerns about the medical effects of 
ionizing radiation. The International Commission on 
Radiological Protection was founded in 1928 at the 
second International Congress of Radiology (ICRP). It is 
obvious, that energy intake analysis was not the primary 
worry of the ICRP. Section B of the publication deals 
with Energy Expenditure stating that food and oxygen 
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The classic role of mitochondria is oxidative phosphorylation, which generates ATP by utilizing the 
energy released during the oxidation of the food we eat. ATP is used in turn as the primary energy 
source for most biochemical and physiological processes, such as growth, movement and 
homeostasis.

are used according to energy requirements. Oxygen 
was described together with the process of combustion. 
Section B7 described energy requirement arising during 
pregnancy and lactation showing that these conditions 
require a higher level of energy. The ICRP 23 publication 
was followed by ICRP 89 in 2002 which was again 
dedicated to workers dealing with radiation protection 
(214).

The concept of energetics in the field of ecology
does not include biochemical parameters in relation to 
function (Figure 1 in (215)). In the field of life history 
research, the economics model discussed by Pontzer 
and McGrosky mentions metabolic energy as being 
involved, however the publication contains no evidence 
as to how energy can be generated in the mitochondria 
(216). One important aspect included in Life History 
Theory is that of trade-off between survival and 
reproduction (217) as well as resource allocation (218). 
An example of this philosophy can be taken from 
Jasieńska, who described suppressed ovarian function 
in relation to physical work (219). This concept is closer 
to general physiology since it considers at least 2 bodily 
functions while conventional medical physiology picks 
out single players, e.g., the heart, the thyroid, or human 
reproduction. It should be noted that classical research 
on resilience also lacks the inclusion of basic 
biochemical processes (220, 221).

Energetics changes occurring during lactation 
have been described since decades. Bauman and 
Currie discussed a process of nutrient partitioning in 
1980 (222). Mowry et al. described metabolic changes 
aimed at increasing mitochondrial efficiency in relation 

to reproduction (223). Energetics and fatigue in sports 
have been described as being related to brain and 
body functions (224). The theory launched by St. Clair 
Gibson, Swart, and Tucker has little connection to 
biochemistry. Their model idealizes a competitive 
homeostasis system that involves psychological and 
physiological elements without mentioning 
mitochondrial function.

Lavin et al., discussed the spectrum of 
adaptations to exercise at a molecular level putting the 
item physiological resilience on top (Figure 3 in (225)). 
Their definition or resilience states “resilience (i.e., ability 
to tolerate and recover from stressors)” (Page 11 in 
(225)).

In a previous publication we launched a 
concept of shared resources as being the central event 
related to health and disease. When the level of 
resources is sufficient, survival is assured resulting in 
resilience. Unbalanced levels of resources are 
connected to disease (Figure 12 in (1)). Elements of 
organ function as well as the so- called psychosomatic 
components of life can be traced down to specific 
biochemical parameters where magnesium deficiency 
plays a central role (9).

Mitochondrial function and the generation of 
ATP via oxidative phosphorylation constitute a central 
biochemical element in physiology. This function was 
summarily described by Brand, Orr, Perevoshchikova,
and Quinlan in 2013 (226) stating that ATP generation 
results from the energy release after nutrients have been 
oxidated (Box 1).

Box 1: Role of oxidative phosphorylation in relation to food. Adapted from (226)

The topic of mitochondrial adaptation to nutrient 
availability was addressed by Liesa and Shirihai in 2013 
(227). In 2022 Kyriazis et al., described processes of 
mitochondrial adaptation to changes in diet (Figure 5 in 
(228)). The simplistic idea that dietary evaluations and 
simple calory counting reflect the level of energetics in 
the body contradict this physiological principle. Anorexia 
nervosa represents a condition of severe nutritional 
alteration. It has been included in the list of diseases 
associated with low-T3 syndrome (173). Niklowitz et al., 
described signs of CoQ10 depletion in patients with 
anorexia nervosa (229).

A similar situation can be found in the setting of 
physical exercise. Loucks and Callister published a 
study that combined energy cost and exercise intensity 
in 1993 (230). They showed that the low T3 condition 
occurred in amenorrhoeic women under energy 
limitation. They concluded that exercise could have 

compromised energy availability. Low energy availability 
is a term used frequently in relation with physical 
exercise. Slater, Brown, McLay-Cooke, and Black 
evaluated this aspect in exercising subjects (231). 
Loucks discussed the role of energy availability in 
relation to reproductive disruption in 2003 (232).

In the field of sports physiology, the term 
“Relative Energy Deficiency in Sport (RED- S)” is being 
used currently. A recent review on this topic published 
by Cabre et al. in 2022 insisted on the concept of energy 
availability in terms of kcal/kg (Figure 1 in (233)). The 
publication does not include any biochemical data as to 
how the body can use this apparent energy supply 
(Table 2 in (233)). This simplified model contrasts 
sharply with the biochemical adaptation of mitochondrial 
respiration responding to energetic needs and nutrient 
availability as described by Bennett, Latorre-Muro, and
Puigserver (Figure 2 in (234)). We have taken the 
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following statement from Box 3 to reinforce our 
hypothesis:

Following our line of thought on hypoxia we 
would like to add data related to exercise. Exercising 
subjects can develop hypoxemia (235, 236) and 
physical activity can lead to HIF activation in skeletal 
muscle (237). Experimental hypoxia in skeletal muscle of 
rabbits is accompanied by a reduction of the levels of 
ubiquinone (130). A decrease of the CoQ10 levels is 

seen together with diminished ATP levels in isolated
rabbit ventricles under hypoxia (Table 2 in (131)). 
Metabolic changes related to exercise can be seen with 
diagnostic 18F-FDG imaging. Nakase et al., 
demonstrated focal uptake in football players (238) 
(Figure 9).

Figure 9: Taken from Nakase J, Inaki A, Mochizuki T, Toratani T, Kosaka M, Ohashi Y, et al. Whole Body Muscle 
Activity During the Fifa 11+ Program Evaluated by Positron Emission Tomography. PLoS One (2013) 8(9):e73898. 
Epub 2013/09/26. doi: https://doi.org/10.1371/journal.pone.0073898. License: Creative Commons Attribution 
License

Tracer uptake can be more intense according to 
the intensity of exercise such as weightlifting as shown 
by Yoshimizu et al., in 2022 (239). Not only the muscle 
involved in weightlifting but also the heart showed 
intense tracer uptake (figure 10) revealing the systemic 
dimension of exercise.
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Figure 10: Taken from Yoshimizu R. Whole Body Muscle Activity During Weightlifting Exercise Evaluated by Positron 
Emission Tomography (2022). Available from: https://www.researchsquare.com/article/rs-612816/v2. License: CC 
BY 4.0

k) COVID-19: the low T3 syndrome, IL-6, and 18F-FDG 
imaging

Zou et al., evaluated the data from 149 COVID-
19 patients in 2020 looking for the characteristics of the 
low T3 syndrome, which was indeed found in forty-one 
cases. Disease severity and parameters of inflammation 
were significantly associated with the changes of thyroid 
parameters (240). The low T3 syndrome is an indicator 
of poor prognosis and mortality in COVID-19 patients 
(241). The low T3 syndrome together with elevated 
levels of NT-proBNP are indicators of poor outcome 
(242).

Leyfman et al. discussed an interaction of IL-6 
and hypoxia in COVID-19 patients. They postulated an 
interaction between viruses and different organs which 
led to IL- 6 elevation (Figure 1 in (243)). In this depiction, 
hypoxia appears as an isolated element. This idea of 
disease can be found in many publications, e.g., (the 
graphical abstract in (112)), (Figure 1 in (244)).

COVID infection is related to glycolysis (245), 
therefore diagnostic imaging with 18F- FDG should 
demonstrate organs affected by hypoxia. The 
characterization of persisting symptoms of long-COVID 
has been recently demonstrated by Kiatkittikul et al., 
(246). The image panel shows a variety of 18F-FDG 
uptake patterns (Figure 10) including skeletal muscles, 
heart, vessels, and the lung. We interpret these changes 
as being related to hypoxia and consequently highly 
suggestive of CoQ10 deficiency and altered 
mitochondrial function.

http://www.researchsquare.com/article/rs-612816/v2�
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Figure 10: Taken from Kiatkittikul P, Promteangtrong C, Kunawudhi A, Siripongsatian D, Siripongboonsitti T, 
Ruckpanich P, et al. Abnormality Pattern of F-18 Fdg Pet Whole Body with Functional Mri Brain in Post-Acute Covid-
19. Nucl Med Mol Imaging (2022) 56(1): 29-41. Epub 20220115. doi: https://doi.org/10.1007/s13139-021-00730-6. 
License granted.

A recent case report on hypoxia in COVID-19 
infection was delivered by Serbanescu-Kele et al., in 
2022 (247). The publication presented the decreasing 
course of oxygen saturation during hospital treatment. 
Quite unfortunately the authors utilized the term “happy 
hypoxaemia” ignoring the fatal outcome for the patient. 
Figure 1B of this publication showed the macroscopic 
appearance of a dark arterial blood sample which to our 
clinical understanding did not look happy at all (247).

The term happy hypoxia in relation to COVID-19 
disease was used by Jennifer Couzin-Frankel in 2020 
referring to the clinical experiences of Reuben Jesse 
Strayer, an emergency physician working at the 
Maimonides Medical Center, New York (248). It is quite 

important to know that the Jennifer Couzin-Frankel has a 
major in history of science, but no medical education 
and works as a staff writer for Science. Her article was 
not peer-reviewed and contained no scientific 
references. The original publication by Strayer on 
hypoxia and COVID-19 patients (249) was not cited. The 
original authors acknowledged that by 2020 little was 
known about the pathophysiology of COVID-19 disease. 
It is our personal feeling that this misleading and 
erroneous term should be banned from the literature.

A recent study of the UK Biobank, published 19 
January 2023, found that cardiovascular disease and 
mortality were associated with long term COVID-19 
disease. The authors could not identify conclusively any 
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mechanism involved and simply provided a rather 
general and disappointing recommendation for ongoing 
clinical monitoring (250). Affected patients need indeed 
monitoring, however treatment implementation should 
be added since it has a higher ethical priority.

In 2022 Hansen et al., published an industry-
backed study (Pharma Nord) that evaluated a high dose 
therapy with CoQ10 in patients presenting a post COVID 
condition. A sound and scientific rationale for choosing 
the dose of 500mg CoQ10 was not given (251). Initial 
and final CoQ10 levels in the patients were not evaluated. 
The duration of CoQ10 administration was quite short (6 
weeks). In our experience, the combined 
supplementation with magnesium, selenium, and CoQ10

starts to show recovery results after 9-12 months. Full 
recovery of the thyroid requires two to three years. Our 
recommended dose for CoQ10 supplementation is 
0.9mg/kg, i.e., app. 60mg/d.

l) Heat stress and cardiac disease – a pathogenesis 
proposal

Recently two publications have looked at the 
relationship between cardiac disease and heat stress. 
Ranek et al., described changes of heat shock proteins 
in heart failure, pointing towards the increased 
expression of hsp70, hsp90 and BAG-3 (252). In 2012 
Iguchi et al., looked at cardiovascular and hormonal 
changes following heat stress produced by sitting in a 
heat stress chamber for 30 minutes at 73°C (253). They 
demonstrated that this stimulus had an elevation of 
hsp72 and prolactin. The increase in prolactin levels 
seemed related to the endurance capacity in response 
to exercise under heat conditions (254). Heat exposure 
and muscular activity can also affect blood magnesium 
levels inducing a severe decrease to sub-optimal levels 
(255).

Given these concepts, we can state that Ritossa 
observed the effects of an external heat source which 
led to the heat shock and the unfolded protein reactions. 
A modern view of heat shock response includes more 
toxic elements besides heat exposure. Trautinger 
provided the following description: “All organisms 
respond to sudden environmental changes with the 
increased transcription of genes belonging to the family 
of heat shock proteins (hsps). Hsp-inducing stress 
factors include elevated temperatures, alcohol, heavy 
metals, oxidants, and agents leading to protein 
denaturation. The induction of heat shock proteins is 
followed by a transient state of increased resistance to 
further stress, and the heat shock response is generally 
thought to represent an evolutionary conserved adaptive 
mechanism to cope with hostile environmental 
conditions” (256). Current knowledge of the complex 
processes involved in the hsp response describes 
essential interactions with ATP in the case of ATP-
dependent hsp chaperones (257, 258). Alteration in 

protein structure will also involve the repair mechanisms 
of the unfolded protein response (259).

Heat stress has been investigated under clinical 
conditions. Bouchama, from Saudia Arabia, has 
published a series of studies dealing with heatstroke in 
humans. In 1995 a historical review on heatstroke 
included a discussion on the potential role of endotoxins 
in the disease (260). Recently the effects of acute, 
supra-physiological temperature stress have been 
examined at the transcriptome level. The test subjects 
were exposed to a mean temperature of 75°C in a 
sauna. The analysis of blood mononuclear gene 
expression revealed several patterns of change (Figure 
2 in (261)). One key finding referred to altered 
mitochondrial function involving several complexes of 
the OXPHOS chain, including Complex I. Both electron 
transfer, as well as ATP production, were repressed. 
Bouchama et al., also identified an alteration of 
cytochrome C oxidase, corresponding to Complex IV 
(262). Both Complex I and Complex IV depend on iron-
sulfur clusters for their function. Situations of physical 
exertion in hot environments with temperatures up to 
41.5°C can be found in sports activities (263). Elevated 
temperature as a source of stress is not only limited to 
sports. It can also affect everyday activities (264). 
Furthermore, these changes are like those seen in heart 
failure, where the function of the OXPHOS chain is 
altered due to changes in Complex I and V (265). As a 
whole, ATP production can be disturbed (266). It must 
be kept in mind that the heat stress response requires 
sufficient ATP since some hsp are ATP-dependent 
(258). Experimental repeated exposure to heat stress 
can negatively affect the heat shock response of the 
heart (267). The increase of hsp70 levels after heat 
stress appears to decline with time, thus increasing the 
susceptibility of the heart to damage (268). This 
propensity to a myocardial injury can be corrected by 
CoQ10, resulting in higher hsp70 levels (128). In a similar 
study, the use of the selenium analog ebselen, resulted 
in improved expression of hsp70, which was associated 
with reduced myocardial infarct size (269).

Experimental work by Liedtke and Hughes in 
1976 showed the detrimental effect of hyperthermia on 
cardiac specimens producing functional impairment 
together with increased glycolysis and lower ATP levels. 
The authors described the results as an additional 
energy drain to the heart (270). In 1989 Huang and 
Liedkte described the metabolic situation in re-perfused 
myocardium as being unable to synthesize ATP due to 
an inefficient electron transport and OXPHOS (271).

In a recent epidemiological analysis, Wang et al. 
described an association between previous heat stress 
situations and heart and kidney disease (272). 
Mechanisms leading to these changes were not 
discussed; however, these observations imply that heat 
exposure had left an altered biochemical system behind. 
Nzvere et al., have reached similar conclusions in 
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evaluating the long-term consequences of heatstroke on 
cardiac disease (273).

Heat stress is also a serious condition in human 
medicine (274). Heat stress per-se stimulates the 
production of mitochondrial superoxide (275). The 
administration of dietary CoQ10 can attenuate oxidative 
changes produced by heat shock in chickens (276). A 
similar protection can be observed through 
administration of 300mg CoQ10 prior to heat exposure in 
elite swimmers (277). The production of mitochondrial 
small heat-shock protein (lmw Hsp) protects electron 
transport from CI to CIV (278). The authors declared that 
ubiquinone is the most thermo-labile protein in Complex 
I.

We have included this description keeping in 
mind the condition of postpartum cardiomyopathy (279) 
as studied by Cénac 30 years ago where the central 
deficiency was low selenium (280). Due to birth customs 
in Nigeria these women are exposed to extreme heat 
stress in the postpartum period. Experimental data on 
heat stress effects on the chicken heart has shown that 
these deleterious effects can be modulated by CoQ10

(281). An indirect hint on prolonged cardiac dysfunction 
following heatstroke was published by Zahger, Moses 
and Weiss in 1989 (282). A description of the 
characteristics of heat stroke and cardiac dysfunction 
published by Marchand and Gin were centered on 
thermoregulation and heat dissipation (Figure 1 in 
(283)). Other authors have found a relation between 
biomarkers and mortality after exertional heat stress 
where fatal cases had higher levels of NT-proBNP (284).
A current view on heatstroke which does not consider 
the role of CoQ10 was published by Bouchama (285).

II. Discussion and Outlook

Our clinically oriented literature review has 
disclosed that benign thyroid disease and several other 
entities including notable heart disease and COVID-19 
share common features such as the symptom fatigue, 
and the events of hypoxia and glycolysis, elevated IL-6 
levels, and the low T3 syndrome. We propose that 
CoQ10 deficiency plays a fundamental role in these 
diseases affecting the functionality of Complex I of the 
mitochondrial respiratory chain. The following Table 
contains an approximation to this process.

1. Initiation of glycolysis resulting from stabilization of 
HIF-1α (4). Interactions with CoQ10 and iron.

2. Increased production of reactive oxygen species 
follows functional alteration of respiratory Complex I 
(286)

3. Altered OXPHOS lead to reduced ATP production 
(287)

4. In situations of lack of oxygen – hypoxia - Complex I 
can be modified to a deactive state (288)

5. Experimental function loss of Complex I goes along 
glycolysis and with 18F-FDG uptake (289)

We have briefly reviewed the role of diagnostic 
imaging keeping our eyes on glycolysis as 
demonstrated by 18F-FDG scans, and on fatty acid 
uptake based on the use of iodine-labeled methyl 
iodophenyl-pentadecanoic acid (BMIPP) (28). The 
clinical rationale for imaging these metabolic paths has 
been summarized by Yoshinaga et al. in 2007 (290). 
Contrasting with this structured description we must 
refer to a study by Dilsizian et al. where ideas about the 
interpretation of BMIPP scans were given. The 
conclusions offered by the authors had no profound 
biochemical foundation (291). What is useful in this 
publication is Figure 2 where a comparison between a 
heart perfusion and heart BMIPP study is shown. This 
image clearly shows that perfusion does not reveal 
metabolic changes (Figure 11).
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Metabolic imaging has been used to detect the footprint left by previous ischaemicepisodes evident 
due to delayed recovery of myocardial metabolism (persistent dominant glucose utilization with
suppression of fatty acid oxidation).

Figure 11: Taken from Dilsizian V, Bateman TM, Bergmann SR, Des Prez R, Magram MY, Goodbody AE, et al. 
Metabolic Imaging with Β-Methyl-P-[(123)I]-Iodophenyl-Pentadecanoic Acid Identifies Ischemic Memory after 
Demand Ischemia. Circulation (2005) 112(14): 2169-74. Epub 2005/09/28. doi: https://doi.org/10.1161/ 
circulationaha.104.530428. License granted.

An interesting observation on altered 
mitochondrial function can be taken from studies 
dealing with cardiac disease and the influence of 
cardiac surgery in restoring fatty acid metabolism. 
Morishima et al. found persistent alteration of fatty acid 
metabolism in patients with atherosclerotic changes 
even though the surgical intervention had resolved the 

ischemic condition (292). Our interpretation of persistent 
glucose utilization is that such patients present 
persistent, unrecognized, CoQ10 deficiency.

In 2014 Yoshinaga referring to the mystical-
magical term of ischemic “memory brought” stated the 
following (293):

The following graphical allegory describes the 
medical setting relating hypoxia and cardiac disease. 
Superficial research has not considered biochemical 
changes sufficiently. Adding the biochemical 
background one can see that there are many more 
components to be explored. It is evident that keeping an 
eye only on the flow or on the uptake of 18F-FDG will not 
open a perception for fatty acid uptake. The following 
graphical allegory about the swimmer and the diver 
illustrates this situation (Figure 12).
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A

Superficial view of the 
situation as seen by a skin 
diver, i.e., looking only at 
myocardial perfusion
studies.

B

Deep view of the
situation as seen by a 
scuba diver. A profund 
look will find hypoxia 
activation after CoQ10

deficiency and hypoxia-
related changes such 
as elevated IL-6, low T3  
syndrome.

Figure 12: A. Graphical allegory - Myocardial perfusion studies correspond to the left image of the superficial 
snorkeling diver who sees nothing but flow. B. The lower panel shows the option to go deeper into the process by 
using additional gear signalized by the self-contained underwater breathing apparatus (SCUBA). This second image 
represents biochemical elements as described throughout the text. The images were taken from WikiCommons.

Additional data on the information delivered by 
BMIPP as compared to FDG can be found in 
publications authored by Yoshinaga (294). Yamagishi et 
al., summarized the impact of BMIPP and FDG 
diagnostic imaging going well beyond perfusion (Table 
29 in (295)).

Looking beyond organ-related disease, the 
transmission of intergenerational trauma is a process 
that is also related to hypoxia and mitochondrial 
dysfunction (296).

Figure 13 illustrates our proposal on the 
essential biochemistry of resilience that maintains 
health.
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Figure 13: The 2022 WOMED concept of resilience and health based on essential biochemical parameters.
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Figure 14 illustrates our model of cardiac disease based on the information reviewed here. The model can 
be applied to other clinical conditions related to hypoxia.

Figure 14: The 2021 WOMED model of cardiac disease
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Supplemental information
A simplified clinical description of the symptoms 

of hypoxia has been published by the Cleveland Clinic.

Hypoxia: Causes, Symptoms, Tests, Diagnosis & 
Treatment (clevelandclinic.org)

An overview of causes and diseases related to 
hypoxia authored by Rhiannon Brett can be found in the 
Calgary Guide to Understanding Disease.

Hypoxemia: Pathogenesis and clinical findings | Calgary 
Guide (ucalgary.ca)
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