

1 Studying the Presence of Adultery, Fraudulent Imitation and
2 Food Pathogens within Processed Meat Products (Such as
3 Salami, Sausage, Braised Meat) using DNA Typing and PCR
4 Procedures*

5 Harun Cerit¹

6 ¹ Istanbul University

7 *Received: 8 December 2014 Accepted: 31 December 2014 Published: 15 January 2015*

8 **Abstract**

9 Adulteration of meat with cheaper ambiguous meats of different origin during preparation of
10 meat products is a common practice in many countries. Because meat adulteration and
11 mislabeling are illegal and raise many health, religious, cultural and economic issues. In this
12 study, 500 ready to eat raw meat samples (minced meat, lahmacun ingredients, kebab, stew
13 and meatball samples / 100 samples for each type) were collected from different types of
14 plants that were located in Istanbul. The samples were explored if they had different animal
15 originated DNA residues (pork, chicken, cattle, sheep, horse, donkey, cat, dog, mouse,
16 cockroach and house fly) by PCR procedures. According to the results, total of 52 samples
17 were determined as adulterated and different originated animal DNA samples were found
18 (chicken, horse and sheep DNA residues). It was concluded that to apply total quality
19 management and food security systems are very important to decrease the risk factors for
20 both products and the public health.

22 *Index terms*— PCR, species identification, ready to eat meat products.

23 Özeti-Et ve ürünlerinde taklit ve ta??i? uygulamalar? gerek kar amac?n? yükseltmek amac? ile illegal bir
24 biçimde yap?lmakta, gerekse birden fazla et ürünü i?leyen i?letmelerde kaza / yetersiz hijyen ve san istasyon
25 uygulamalar? sonucu meydana gelebilmektedir. Et ve ürünlerinde taklit ve ta??i?ler ekonomik, dini inançlar,
26 sa?l?k, kültürel, tüketiciyi aldatma yönünden önemli sorunlara yol açabilmektedir. Bu çal??mada 500 adet
27 tüketime haz?r halde sat??a sunulmu? olan çi? et örne?i (k?yma, lahmacun iç malzemesi, kebab, köfte ve sulu
28 yemeklerde kullan?lmak üzere haz?rlanm?? etler olmak üzere) ?stanbul'da bulunan farkl? sat?? noktalar?ndan
29 toplan?lm?? ve söz konusu örneklerde 9 adet farkl? hayvana ait (domuz, tavuk, s??r, koyun, at, e?ek, kedi, köpek,
30 fare, hamamböce?i ve ev sine?i olmak üzere) DNA örnekleri PCR prosedürleri kullan?larak ara?t?r?lm??t?r.
31 Elde edilen sonuçlara göre 52 adet örnekte farkl? hayvan türlerine ait (tavuk ,at ve koyun olmak üzere) DNA
32 kal?nt?lar? saptanm??t?r. Sonuç olarak özellikle et ve ürünlerini üreten i?letmelerde toplam kalite yönetimi
33 ve optimal hijyen uygulamalar?n?n kontrollü bir biçimde uygulanmas?n?n taklit ve ta??i? uygulamalar?n?n
34 minimize edilebilece?i sonucuna var?lm??t?r.

35 *Author* ? ?: This article is an excerpt of the study supported by the Istanbul University Scientific Researches
36 Project Unit with Issue Number of 33896/2013. e-mail: hcerit@istanbul.edu.tr Anahtar sözcükler: PCR, tür tayini,
37 tüketime haz?r et ürünler.

39 **1 I. Introduction**

40 The composition of food is a major concern of consumers today. In the case of adulterated meat product
41 consumption, several factors including economic, food safety (allergy) and moral reasons (religious belief), trigger

7 III. RESULTS

42 such apprehensions. Among these concerns, consumers are most sensitive because of religious factors and do not
43 tolerate even trace amounts of adulteration of meat products with forbidden meats like pork. Hygiene and right
44 labeling notified on the label of any food stuff are very important criteria especially for public health.

45 Although food safety practices is one of the top priority policies of European Union, the information on the
46 labels of meat and meat products does not provide food safety guarantee for the period "from the stable to table"
47 (1,2).

48 According to the latest "Meat and Meat Products Manifest announced in our country in February 2013 (3),
49 production of meat products containing meat from different animal species has been banned.

50 Meat and meat products are species-wise safe if they are acquired from healthy animals and processed under
51 hygienic conditions. However, in the frauds and adulterations which are used in order to cut down the costs
52 and increase the profits, meat from inappropriate animals (horse, donkey, and hog) might be mixed in the
53 aforementioned meat and meat products. Besides, in facilities which process several animal products (like
54 facilities processing both cattle and poultry), foreign animal meat might be indeliberately adulterated in the
55 meat products. Besides, due to poor hygienic standards, there may be a possibility of meat and meat products
56 to be adulterated by the wastes and/or tissues of mice and / or insects.

57 Before the introduction of DNA (Deoxyribonucleic Acid) typing method, methods such as Ouchterlony method,
58 SDS-PAGE, ELISA, isoelectric to specify the animal type in meat and meat products. Some of these are based on
59 protein analysis and immunological tests (4, ??). However, in case of cooked and processed meat products, heat
60 and continuity of temperature causes the denaturation of type-specific proteins and this decreases the reliability
61 of these methods. PCR (Polymerize Chain Reaction) procedures based on DNA isolation are relatively more
62 stable and are considered to be the most reliable method to specify the animal species of meat and meat products,
63 especially for the short primary strands consisting of specific locus in heat treated products (6). This study aimed
64 to examine various meat and meat products (kebaps, lahmacun ingredients, minced meat, stews, various meat
65 balls etc.) which are presented in various sales points (restaurants, butcher shops, groceries etc.) in Istanbul
66 region, to determine their ingredients through DNA typing method and to specify the different animal tissues /
67 residuals in these products.

68 2 II. Materials and Methods

69 3 a) Specimen Handling

70 Random sampling method has been used in this study. From 500 different sales points in the Istanbul region (250
71 sales points from Asian side and 250 sales points from European side), 500 meat and meat product samples have
72 been collected. As required by the asepsis and antisepsis norms, samples have been placed in sterile containers
73 and transferred to the laboratory in these containers which have +4°C internal heat. b) DNA Extraction DNA of
74 all the isolates are extracted using commercial DNA extraction kits and in accordance with kit protocol. Extracts
75 have been kept at -20°C, to be used as target DNA in PCR process.

76 4 c) PCR

77 50-100 mg tissue from the meat samples have been put into a microcentrifuge tube as small pieces. 400 ?L
78 solutions SH has been added and blended with vortex. 8 ?L Proteinase K and 40 ?L solution SLS have been
79 added to the mixture. After blending properly, the mixture has been kept waiting for two hours at 60°?, in
80 order for the cells to stretch. After the incubation at 60°?, 300 ?L Solution SP has been added and blended with
81 vortex for 30 seconds. The mixture has been centrifuged at 12.000 rpm for 30 minutes. The supernatant has
82 been transferred to a clean tube and 500 ?L isopropanol has been added.

83 5 Table 2 :

84 Type-specific primer sets used in PCR procedure (15,16,17,18,19).

85 Tablo 2 : PCR prosedüründe kullan?lan türe spesifik primer setleri (15,16,17,18,19)

86 6 Type

87 Primer Direction Sequence After blending with vortex, the mixture has been incubated for an hour at -20 °?.
88 Then, it has been centrifuged at 12.000 rpm for 20 minutes. Supernatant has been removed. The remaining
89 pellet has been gently vortexed by 1 ml 70% ethanol and has been distributed, then centrifuged at 13.000 rpm
90 for 5 minutes. Ethanol has been removed and the subsided DNA has been left to dry. After ethanol completely
91 vaporized, 150 ?L Solution SE has been added to the pellet and kept waiting for one night at room temperature,
92 in order for the DNA to dissolve. The dissolved DNA has been measured with UV Spectrometers and diluted
93 to the point of 50 ng/?L concentration. After that, heat treatment protocol has been applied for 10 seconds at
94 95°C and 15 seconds at 60°C. The second and third steps are repeated for 5 times as 3 cycles (7,8,9,10,11).

95 7 III. Results

96 18 (3.6%) of the samples showed chicken DNA, 33 (6.6%) of them showed sheep DNA and 1 (0.2%) of them
97 showed horse DNA. None of them showed pork, donkey, cat, dog, mice, cockroach and fly DNA. The detailed

98 refraction of the results can be seen in Table 3. The positive results have been determined through Realtime
99 PCR procedures. The nutritious choices are determined by life styles, religious beliefs, cultures, diets and health
100 conditions. Pursuant to community health, customs, traditions and beliefs, to determine the source of animals
101 of the consumed meat and meat products has been one of the main research subjects for food scientists (12). In
102 many countries, food fraud and adulteration in food products, especially in meat and meat products are done
103 either deliberately in order to increase the profit margin or involuntarily as a result of not following the food
104 safety standards, especially in facilities which process more than one animal species.

105 A study conducted in USA (United States of America) has analyzed raw minced meat and determined 15.9%
106 of the samples to be containing extraneous animal DNAs . Hsieh et al. (??3) has conducted another study
107 in USA in 1996 and reported that 90% of the minced meat samples has been adulterated with poultry, either
108 deliberately or unintentionally. Turky?lmaz et al. (14), studied 121 meat and meat product samples using the
109 AGID method and determined horse meat in 3 (2.5%) of them and pork meat in 2 (1.7%). Turk et al. (15),
110 studied 223 samples and determined pork meat in 16 (7.1%), horse meat in 12 (5.3%) and mixture of pork and
111 horse meat in 6 (2.6%). The results of our study in general examination are lower than the results of Hsieh et
112 al. (16), similar to those of Turky?lmaz et al. (??4) and Turk et al. (15) The different results which have been
113 reported in world and Turkey literature may originate from many reasons, such as the physical conditions of
114 the sales points, whether the food safety products have been applied or not, the differences in the supervision
115 processes, the deficiencies of the facilities which process more than one animal species and/or usage of the same
116 equipment, the deliberateness of adulterations and the staff's lack of information about the procedures.

117 In this study, the highest extraneous DNA in the bovine meat samples was sheep DNA (6.2%). 96% (30 of
118 the 31 mutton positive samples) of these positive samples have been collected from kebab shops. Since mutton
119 meat is used commonly in kebab shops, mixture of bovine and mutton meat can be a microbiological threat to
120 consumers.

121 Out of the 500 samples collected, 68 (13.6%) were determined to be risky for human consumption according
122 to the plate count parameter. 39 (57.4%) of these "risky" samples contain meat from different animal species.
123 On the other hand, 29 (42.6%) of these samples contained only one type of meat. Plate count is an indicator
124 of not only food hygiene but also of the tools used in production, food contact surfaces and hands of the staff
125 who contact food. If the plate count is high, it may mean that food, contact surfaces, tools and hands may be
126 carrying potential pathogens and saprophytes.

127 In a study conducted to determine the food intolerance reactions, 22% of the subjects showed food intolerance
128 and if the foods causing the intolerance are consumed again, the reactions repeated themselves in 15% of the
129 subjects (17,18). Food intolerance may cause chronic inflammatory diseases such as chronic headache, abnormal
130 weight gain, abnormal weight loss, dermatological problems, autoimmune diseases, fibromyalgia, migraine,
131 stomach diseases, bowel diseases such as inflammatory bowel disease (IBD), malabsorptions, rheumatic diseases,
132 shortness of breath, asthma, depression, anxiety, Type 2 diabetes, hypertension, metabolic syndrome, hypothy-
133 roidism, chronic rhinitis, eczema, acne, edematous eyelids, urinary diseases, Crohn's disease, cardiovascular
134 diseases (19,20). Literature shows intolerance against food of animal origin. The intolerance, which is determined
135 to be more common in males can cause the abovementioned clinical symptoms and some of them can be life
136 threatening. According to WHO (World Health Organization), half of the world population has food intolerance
137 and 1 billion people have been diagnosed with it. WHO predicts that by the year 2015, the count would reach
138 2.5 billion (21).

139 Whether done deliberately in order to increase the profit margin or accidentally by the facilities which process
140 meat from more than one animal species, adulteration is an illegal practice which deceives the consumer in the
141 sense of health, religion, culture and economy. Another point to be kept in mind is that adulterated meat and
142 meat products pose a greater microbiological risk for consumer health as well. DNA typing also used in our study
143 is a very efficient way of detecting foreign meat species in meat and meat products.

144 Whatever the reason of the adulteration maybe, it results in deficient hygiene conditions and this is a serious
145 threat for the facility, staff and product and consumer health. Besides, microorganisms which reproduce in meat
146 and meat products because of hygiene deficiency can quickly develop single or multi resistance to antibiotics
147 through complex genetic interactions. Our study shows that adulterated products pose a statistically meaningful
148 higher risk for consumer health than unadulterated products. Total quality management systems and food
149 safety practices should be applied together with the official inspection of the state authorities; programs to raise
150 consumer awareness and continuous training programs for the staff responsible for food production should also
151 be carried into effect. All these would be beneficial to reduce the incidence of the adulteration practices.

152 8 V. ACKNOWLEDGEMENT

153 Thanks to Seda Cingay for her help in translation -proof reading. ^{1 2}

¹© 2015 Global Journals Inc. (US) Global Journal of Medical Research () G Studying the Presence of Adultery, Fraudulent ?mitation and Food Pathogens within Processed Meat Products (Such as Salami, Sausage, Braised Meat) using DNA Typing and PCR Procedures*

²Studying the Presence of Adultery, Fraudulent ?mitation and Food Pathogens within Processed Meat Products (Such as Salami, Sausage, Braised Meat) using DNA Typing and PCR Procedures*

Figure 1: Pork Forward / Reverse 5 '

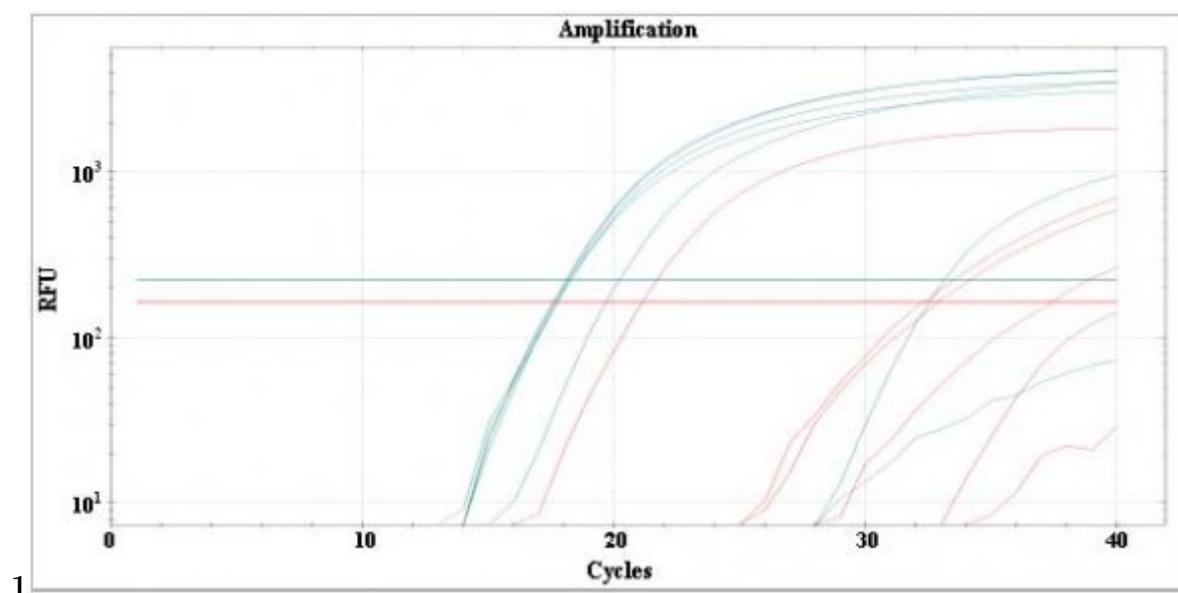


Figure 2: Figure 1 :

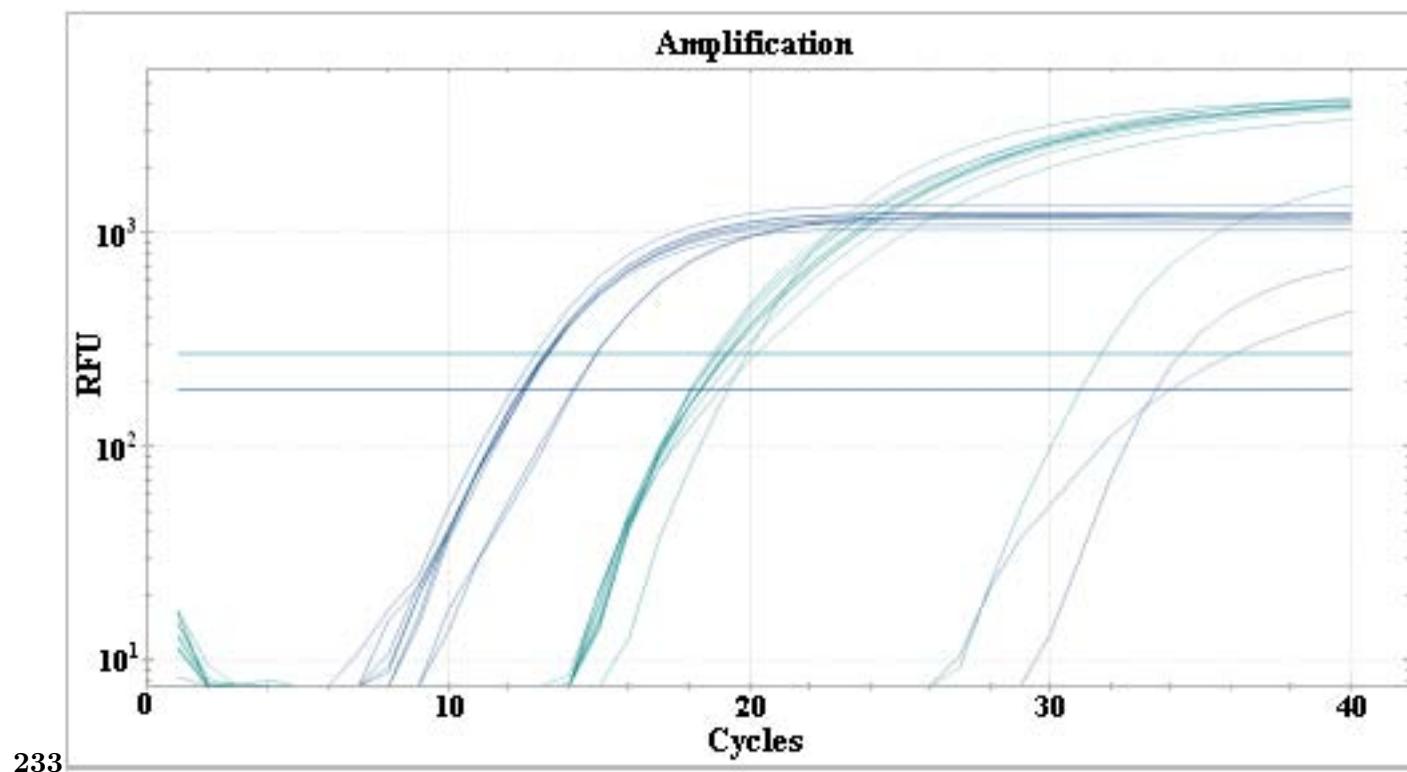


Figure 3: Figure 2 :Figure 3 : 3 :

1

Region	Sample name	Sales point	Total number of samples
?stanbul Europe	Lahmacun ingredients	Kebap shop/restaurant	50
?stanbul Europe	Minced Meat	Butcher shop	50
Istanbul Europe	Kebap	Kebap shop/pedlar wrap point	50
?stanbul Europe	Meat balls	Restaurant	50
?stanbul Europe	Stews	Restaurant	50
Istanbul Asia	Lahmacun ingredients	Kebap shop/restaurant	50
?stanbul Asia	Minced meat	Butcher shop	50
Istanbul Asia	Kebap	Kebap shop/pedlar wrap point	50
?stanbul Asia	Meat ball	Restaurant	50
?stanbul Asia	Stew	Restaurant	50
TOTAL			500

Figure 4: Table 1 :

3

Region	Sample (RAW)	Sales point	Extraneous DNA	DNA positive samples
Istanbul Europe - ?stanbul Asia	Lahmacun ingredients	Kebap shop	Chicken	11
?stanbul Europe - ?stanbul Asia	Minced meat	Butcher shop	Chicken	5
?stanbul Europe	Kebap	Kebap shop	Chicken	2
?stanbul Europe - ?stanbul Asia	Kebap	Kebap shop	Sheep	30
?stanbul Europe	Minced meat	Butcher shop	Sheep	3
Istanbul Asia	Minced meat	Butcher shop	Horse	1
TOTAL				52

Figure 5: Table 3 :

154 [Kongresi ()] , G?da Kongresi . April, Izmir, 19-21, 2005.

155 [Bellis et al. ()] 'A molecular genetic approach for forensic animal species identification'. C Bellis , K J Ashton ,
156 L Freney , B Blair , L R Griffiths . *Foren Sci Int* 2003. 134 p. .

157 [Tanebe et al. ()] 'A real time quantitative PCR detection method for pork, chicken beef, mutton and horseflesh
158 in foods'. S Tanebe , M Hase , T Yano , M Sato , T Fujimura , H Akiyama . *Biosci Biotechnol Biochem* 2007.
159 7112 p. .

160 [Sampson ()] 'Adverse reactions to food'. H Sampson . *Allergy: Principles and practise*, E Middleton, Jr, Ce,
161 Reed, Ef, Ellis, Washington, Mosby (ed.) 1994.

162 [Gislason et al. ()] 'Allergy and intolerance to food in an Icelandic urban population 20-44 years age'. D Gislason
163 , E Bjoernsson , T Gislason . *Laeknabladid* 2000. 86 p. .

164 [Bentz et al. ()] *Clinical relevance of IgG antibodies against food antigen in Chron's disease -a double blind cross-
165 over diet intervention study. Presented at the 15th annual United European Gastroenterology Week Paris*, S
166 Bentz , M Hausmann , S Paul , W Falk , F Obermeier , J Schölmerich , G Rolger . 2007.

167 [Miyazaki et al. ()] 'Cloning and sequencing of the para -type sodium channel gene from susceptible and kdr
168 -resistant German cockroaches (*Blattella germanica*) and house fly (*Musca domestica*)'. M Miyazaki , K
169 Ohyama , D Y Dunlap , F Matsumura . *Mol Gen Genet* 1996. 252 p. .

170 [Dooley et al. ()] 'Detection of meat species using TaqMan real-time PCR assays'. J J Dooley , K E Paine , S D
171 Garrett , H M Brown . *Meat Sci* 2004. 68 p. .

172 [Hsieh et al. ()] 'Detection of species adulteration in pork products using agar -gel immunodiffusion and enzyme
173 linked immunosorbent assay'. Yhp Hsieh , M A Johnson , C J Wetzstein , N R Gren . *J of Food Quality* 1996.
174 19 p. .

175 [Hsieh et al. ()] 'Detection of species substitutions in raw and cooked meats using immunoassays'. Yhp Hsieh ,
176 B B Woodward , Ho Sh . *J Food Prot* 1995. 58 p. .

177 [Opper and Burakoff ()] 'Food allergy and intolerance'. F H Opper , R Burakoff . *Gastroenterologist* 1993. 3 p. .

178 [Ilhak and Aslan ()] 'Identification of meat species by polymerase chain reaction (PCR) technique'. O Ilhak , A
179 Aslan . *Turk J Anim Vet Sci* 2007. 31 p. .

180 [Kesmen et al. ()] 'Identification of meat species used in sausage production by PCR assay'. Z Kesmen , H Yetim
181 , F I Sahin . *Gida* 2010. 352 p. .

182 [laying down the general principles and requirements of food law, establishing the European food safety authority and laying down
183 'laying down the general principles and requirements of food law, establishing the European food safety
184 authority and laying down the procedures in matters of food safety'. *References Références Referencias*
185 January 2002. 2002. 1.

186 [Kesmen et al. ()] 'PCR assay for the identification of animal species in cooked sausages'. Z Kesmen , F Sahin ,
187 H Yetim . *Meat Sci* 2007. 77 p. .

188 [Andrask and Rosen ()] 'Sensitive identification of hemoglobin in bloodstains from different species by high
189 performance liquid chromatography with combined UV and fluorescence detection'. J Andrask , B Rosen
190 . *J of Foren Sci* 1994. 379 p. .

191 [Gokalp et al. ()] 'Some Saprophytic and Pathogenic Bacteria Levels of Ground Beef Sold in Erzurum, Turkey'. H
192 Y Gokalp , H Yetim , H Karacam . *Proceeding of 2. World Congress of Foodborne Infections and Intoxication,
193 (eeding of 2. World Congress of Foodborne Infections and IntoxicationBerlin)* 1982. p. .

194 [Drisko et al. ()] 'Treating irritable bowel syndrome with a food elimination diet followed by food challenge and
195 prebiotics'. J Drisko , B Bischoff , M Hall , R Mccallum . *J Am Coll Nutr* 2006. 25 p. .

196 [Turk et al.] N Turk , B Kafa , Y Izan . *Et ve et ürünlerinde tür tayini*,

197 [Turky?lmaz et al. ()] O Turky?lmaz , B Kafa , Y Izan , S Sava . *Cig et ve et ürünlerinde AGID yöntemi ile
198 türlerin tespiti. Bornova Vet Kont Ara?t Enst Derg*, 2009. 31 p. .

199 [Arun and Ugur ()] 'Using the pseudoperoxidase staining method in the polyacrylamid gel isoelectric focusing
200 technique for determining the origin of meat in sausages'. O O Arun , M Ugur . *Turk J Vet Anim Sci* 1999.
201 23 p. .

202 [Zarakolu et al. ()] P Zarakolu , N Karab?cak , O Oncul , E Guvener . *Salmonella typhimurium izolatlar?n?n
203 çe?itli antimikrobiklere in vitro direnci. Mikrobiyoloji Bülteni*, 1996. 30 p. .