

CrossRef DOI of original article:

1 Histological Grading of Breast Cancer Malignancy using 2 Automated Image Analysis and Subsequent Machine Learning

3 Dominik Lenz¹, Paulo César Ribeiro Boasquevisque², Robson Dettmann Jarske³, Célio
4 Siman Mafra Nunes⁴, Isabela Passos Pereira Quintaes,⁵ and Samuel Santana Sodré⁶

5 ¹ Universidade Vila Velha, Espírito Santo, Brazil

6 Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

7

8 **Abstract**

9 The objective of this study was to determine the histological degree of breast cancer
10 malignancy using the automated principle of machine learning with the free access computer
11 programs CellProfiler and Tanagra. Methods and results: Digital photographs of neoplastic
12 tissue histological slides were obtained from 224 women with breast cancer. The digitized
13 images were transferred to the CellProfiler software and treated according to a predetermined
14 algorithm, resulting in a database exported to the Tanagra software for further automated
15 classification of the histological degree of malignancy. The Kappa index of agreement between
16 the medical pathologist and the automated analysis performed in the Tanagra software was
17 0.91 for the tubular score, 0.55 for the nuclear score, and 0.49 for the mitotic index score.

18

19 **Index terms**— breast cancer; image analysis; machine learning; cellular diagnosis; histological malignancy
20 grade.

21 **1 Introduction**

22 Following non-melanoma skin cancer, breast cancer is the most common type of cancer among women and the
23 second worldwide, corresponding to 25.2% of all cancers in world statistics and 29.5% in Brazil. Breast cancer is
24 rare in men, representing less than 1% of cases (American cancer society (2019), Instituto Nacional de Cancer,
25 Brazil, 2017).

26 To successfully treat and control breast cancer in the female population, it is essential to identify risk factors
27 for the disease. Moreover, early diagnosis and immediate access to treatment are decisive conditions for the
28 disease prognosis (American Cancer Society (2019), Instituto Nacional de Cancer, Brazil, 2017).

29 The histological grade of malignancy proposed by Scarff, Bloom, and Richardson and further modified by
30 Elston and Ellis, known as the Nottingham Classification System, is considered one of the main factors for
31 determining the prognosis of breast cancer ??Beck et al., 2011, Chen et Machine learning is advantageous due to
32 its potential to gather a large volume of information, once the appropriate accuracy and precision are achieved,
33 on a specific disease in a single digital tool; suppressing the subjectivity of human evaluation with agility in the
34 analysis of the material to be studied, aiming at safe and quick diagnoses, which could even be used as a "second
35 specialized opinion" in cases of greater complexity (Wernick et al., 2010, Mulrane et al., 2008 ?? Jones et al.,
36 2009, Misselwitz et al., 2010).

37 The present study aimed to perform an automated and reproducible classification of the parameters used by
38 pathologists to diagnose breast cancer: nuclear score, tubular score, and mitotic index. The software used for
39 image analysis and classification (CellProfiler and Tanagra) used for the present study are free. The results
40 obtained by the automated analysis were compared with a pathologist diagnosis ??Jones et al., 2009, Carpenter
41 et al., 2006, Lamprecht et al., 2007, Lenz et al., 2017).

42 2 II.

43 3 Materials e Methods

44 4 a) The samples-Inclusion and exclusion criteria

45 The study targeted women with breast cancer and presenting the most frequent histological types: infiltrating
46 ductal carcinoma, invasive lobular carcinoma, and the mixed infiltrating lobular ductal form; who underwent
47 surgical treatment for this disease in 2015 and that, until the time of surgery, had not undergone adjuvant
48 chemotherapy or radiotherapy treatments. Complete epidemiological diagnosis and treatment data could be
49 obtained, and histological slides were stained by the Hematoxylin & Eosin method with preserved staining,
50 which enabled digital photographs of adequate quality.

51 The Santa Rita de Cássia Hospital, located in the city of Vitória, is considered the main reference hospital for
52 cancer treatment in the Espírito Santo state, providing medical care for 625 women with breast cancer in 2015.

53 Out of 276 cases selected for meeting the inclusion and exclusion criteria, 52 patients were also excluded by
54 the pathologist at the Hospital Santa Rita de Cássia due to "in situ" suffering from breast cancers. Since these
55 issues could compromise machine learning and, consequently, the automated analysis of these images, this study
56 included 224 cases at the end.

57 The year 2015 was selected because the Tumor Record Sheets for that year represents, at the beginning of the
58 study, the most recent and complete data released by the Health Information System -Hospital Cancer Registry
59 of the Ministry of Health of the Federal Government of Brazil.

60 The

61 5 b) Digitization of histological slides

62 All histological slides from the 224 selected cases were randomly reviewed by a pathologist without access to
63 patient data at the Hospital Santa Rita de Cássia, aiming to select the samples with the bestpreserved color
64 aspect. Twenty images of breast tissue of each selected patient were obtained using a digital camera (Moticam
65 1000 1.3 MPixel MTC 1000) attached to a light microscope.

66 6 c) Loading images to CellProfiler

67 Out of 4,480 digitalized photographs in the 40fold magnification, after their upload to the CellProfiler program,
68 only the artifact-free images were maintained and recognized as adequate by this image analysis program.,
69 Therefore, 1937 images were transferred to the CellProfiler software and submitted to its algorithm, These
70 attributes are aspects and characteristics, identified by the CellProfiler software that express the averages of
71 the quantitative parameters of the study's objects (the images) and enabled the automated identification and
72 classification of each object.

73 7 d) CellProfiler algorithm

74 Following an algorithm developed for treating digitized images for the CellProfiler computational environment,
75 all 1997 images were treated in the following sequence of the 9-step algorithm, as shown in Chart 1.

76 Chart 1: CellProfiler algorithm.

77 The 1937 digitized photographs treated according to this algorithm resulted in a data set exported to Tanagra
78 cellular image data analysis software. Then, this dataset was distributed in an Excel spreadsheet (Microsoft R),
79 and the automated classifications of the tubular, nuclear and mitotic indexes, as well as the histological degree
80 of malignancy, were acquired.

81 8 e) CellProfiler Algorithm i. Phase 1 -Load Images

82 All the digitized images observed from histological slides at 40-fold magnification were transferred to the
83 CellProfiler software (Figure 1a).

84 9 ii. Phase 2 -Color to Gray

85 The original scanned images were converted to the white/gray/black spectrum (Figure 1b).

86 10 iii. Phase 3 -ImageMath

87 Since the CellProfiler software analyzes the study's objects according to the light intensity and the cell nuclei,
88 it was necessary to reverse the nuclei coloration initially stained in black to white and invert the other elements
89 coloring to black (Figure ??c). generated for each digitized image with 47 quantitative parameters, called
90 attributes.

91 11 iv. Phase 4 -Apply Threshold

92 In this stage, a binary image (i.e., an image with only two-pixel intensities, 0 and 1), was created.

93 **12 v. Phase 5 -Identify Primary Objects**

94 Cell nuclei were defined and identified as primary objects of the study in this step of the algorithm (Figure ??d).

95 **13 vi. Phase 6 -Measure Objects Size and Shape**

96 Primary objects were measured in this step, and the parameters (attributes), identified by the CellProfiler software
97 for each study object, were acquired by the average of these measurements.

98 **14 vii. Phase 7 -Filter Objects**

99 An image filtering was used to suppress changes that could interfere in the primary object analysis, eliminating
100 the artifacts and preserving only the cell nuclei (Figure ??e). After applying the image filter and eliminating
101 artifactual changes, a new measurement of the primary objects (cell nuclei) attributes was performed.

102 **15 ix. Phase 9 -Export to Database**

103 After the CellProfiler algorithm steps, 47 quantitative data (attributes) for each primary object studied were
104 identified using qualitative data from the digitized images and defined as parameters, enabling both individual
105 identification and analysis of each primary object.

106 This list of attributes constituted the database exported to the Tanagra image data analysis software.

107 **16 f) Classification after machine learning**

108 Tanagra is open-source software for database analysis and statistical analysis developed under the design of
109 machine learning.

110 In the present study, Tanagra software was used to perform the automated classification of the malignancy
111 degree of breast cancers for the tubular, nuclear and mitotic index scores, as well as for the histological grade.
112 Moreover, 3 parameters used in the definition of the histological grade in breast cancer were analyzed: the tubular
113 aspect, the nuclear morphology, and the cell count in mitosis; from the analysis of the database containing 47
114 quantitative parameters for each analyzed object of the study.

115 **17 III.**

116 **18 Statistical Analysis**

117 The tubular, nuclear, and mitotic index scores, which together define the histological degree of malignancy in
118 breast cancer, were determined. The statistical parameters of Predictive Values, Accuracy, Error, and the Kappa
119 Index of agreement between the pathologist and the medical program analyzer, were also used in this phase. The
120 programs Tanagra and Med Calc were used for statistical processing. The statistical parameters gathered were
121 used to determine the histological degree of malignancy.

122 IV.

123 **19 Results**

124 The present study aimed to perform an automated and reproducible classification of the pathological parameters
125 used to diagnose breast cancer: nuclear score, tubular score, and mitotic index.

126 The automated classification results are depicted in Table ??, while the outcomes comparing the pathological
127 and the automated diagnoses are shown in Table ???. A scatter plot of the automated classification resulted from
128 machine learning is exhibited in Figure ??.

129 **20 Discussion**

130 Artificial Intelligence, particularly linked to machine learning, has been increasingly used as a safe and effective
131 tool in disease diagnosis and prognosis, especially on studies assessing breast cancer, a disease of high impact on
132 several women's lives.

133 This study stands out as a pioneering publication using free access software to diagnose the histological degree
134 of malignancy in breast cancer. Thus, the automated analysis to obtain safe diagnoses of histopathological
135 parameters is a feasible tool since a dataset with sufficient information for adequate machine learning can provide
136 an efficient analysis that ensures remarkable accuracy.

137 In conclusion, digitalized images of breast cancer histological slides enabled the automated analysis of
138 histopathological parameters, converting them into quantitative parameters for the diagnosis, and defining the
139 histological degree of malignancy. A database expansion is necessary to optimize the analysis and provide the
140 machine sufficient information and data, postulating solid concepts and knowledge to support all requested
141 aspects of the analysis.

142 In this sense, further multidisciplinary studies covering machine learning and breast cancer in women may lead
143 to significant novel contributions.

Phase	Cellprofiler pipeline
1	Loadimages
2	ColorToGray
3	ImageMath
4	ApplyThreshold
5	IdentifyPrimaryObjects
6	MeasureObjectSizeShape
7	FilterObjects
8	MeasureObjectSizeShape
9	ExportToDatabase
1a	

Figure 1: Figure 1a :

Figure 2: Figure 1b :

Tubular score	n	%
1 (a)	1	0.5
2 (b)	45	22.5
3 (c)	154	77
Total	200	100
Nuclear score	n	%
1 (a)	3	1.5
2 (b)	108	54
3 (c)	89	44.5
Total	190	100
Mitotic index score	n	%
1 (a)	71	35.5
2 (b)	101	50.5
3 (c)	28	14
122a Total	200	100

Figure 3: Table 1 :Table 2 :Figure 2a :

Statistical indicators	tubular score	nuclear score	mitotic index	histological grade
Positive Predictive Value c	0.99	0.91	0.95	0.97
Positive Predictive Value b	0.88	0.62	0.23	0.53
Accuracy	0.97	0.78	0.72	0.81
Incorrect classification (error)	0.03	0.21	0.28	0.19
Kappa index of agreement (K)	0.91	0.55	0.49	0.55

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

144 .1 Conflicts of interest: None declared.

145 Author contributions: PCR: Taking images, writing, cooperation with the pathology. RDJ: pathological
146 diagnosis. CSMN: Image analysis, writing. IPPQ: Image analysis, writing. SSS: Image analysis, writing. DL:
147 Supervision, statistical processing, machine learning.

148 [Proc Natl Acad Sci (2009) 10] , U Proc Natl Acad Sci , SA . 2009 10. 106 p. .

149 [Romo-Bucheli et al. (2017)] 'A Deep Learning Based Strategy for Identifying and Associating Mitotic Activity
150 with Gene Expression Derived Risk Categories in Estrogen Receptor Positive Breast Cancers'. D Romo-Bucheli
151 , A Janowczyk , H Gilmore , E Romero , A Madabhushi . *Cytometry A* 2017 Jun. 91 (6) p. .

152 [Dordea et al. ()] 'An open-source computational tool to automatically quantify immunolabeled retinal ganglion
153 cells'. A C Dordea , M A Bray , Allen K Logan , D J Fei , F Malhotra , R Gregory , M S Carpenter , A E
154 Buys , ES . *Exp Eye Res* 2016. 147 p. .

155 [Hennig et al. ()] 'An open-source solution for advanced imaging flow cytometry data analysis using machine
156 learning'. H Hennig , P Rees , T Blasi , L Kamentsky , J Hung , D Dao , A E Carpenter , A Filby . *Methods*
157 2017. 112 p. .

158 [Pesapane et al. ()] 'Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the
159 forefront of innovation in medicine'. F Pesapane , M Codari , F Sardanelli . *Eur Radiol Exp* 2018. 2 (1) p. 35.

160 [Mulrane et al. (2008)] *Automated image analysis in histopathology: a valuable tool in medical diagnostics*. Expert
161 Ver Mol Diagn , L Mulrane , E Rexhepaj , S Penney , J J Callanan , W M Gallagher . 2008 Nov. 8 p. .

162 [Loukas et al. ()] 'Breast cancer characterization based on image classification of tissue sections visualized under
163 low magnification'. C Loukas , S Kostopoulos , A Tanoglidi , D Glotsos , C Sfikas , D Cavouras . *Comput
164 Math Methods Med* 2013. p. 829461.

165 [Breast Cancer Facts Figures Atlanta ()] 'Breast Cancer Facts & Figures'. Atlanta 2019-2020. 2019. American
166 Cancer Society INC.

167 [Han et al. (2017 23)] 'Breast Cancer Multi-classification from Histopathological Images with Structured Deep
168 Learning Model'. Z Han , B Wei , Y Zheng , Y Yin , K Li , S Li . *Sci Rep* 2017 23. 7 (1) p. 4172.

169 [Lamprecht et al. ()] 'CellProfiler: free, versatile software for automated biological image analysis'. M R
170 Lamprecht , D M Sabatini , A E Carpenter . *Biotechniques* 2007. 42 (1) p. .

171 [Carpenter et al. (2006)] 'CellProfiler: image analysis software for identifying and quantifying cell phenotypes'.
172 A E Carpenter , T R Jones , M R Lamprecht , C Clarke , I H Kang , O Friman , D A Guertin , J H Chang ,
173 R A Lindquist , J Moffat , P Golland , D M Sabatini . *Genome Biol* 2006. 2006 Oct 31. 7 (10) .

174 [Araújo et al. ()] 'Classification of breast cancer histology images using Convolutional Neural Networks'. T Araújo
175 , G Aresta , E Castro , J Rouco , P Aguiar , C Eloy , A Polónia , A Campilho . *PLoS One* 2017. 12 (6) p.
176 177544.

177 [Chen et al. ()] 'Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images:
178 A review'. J M Chen , Y Li , J Xu , L Gong , L W Wang , W L Liu , J Liu . *Tumour Biol* 2017. p.
179 1010428317694550.

180 [Misselwitz et al. ()] 'Enhanced CellClassifier: a multi-class classification tool for microscopy images'. B Missel-
181 witz , G Strittmatter , B Periaswamy , M C Schlumberger , S Rout , P Horvath , K Kozak , W D Hardt .
182 *BMC Bioinformatics* 2010. 11 p. 30.

183 [Incidência do Câncer no Brasil ()] *Incidência do Câncer no Brasil*, 2018. 2017. INCA, Brasil; Rio de Janeiro:
184 INCA.

185 [Singh et al. (2014)] 'Increasing the Content of High-Content Screening An Overview'. S Singh , A E Carpenter
186 , A Genovesio . *J Biomol Screen* 2014 Jun. 19 (5) p. .

187 [Lenz et al. ()] D Lenz , L S Gasparini , N D Macedo , E F Pimentel , M Fronza , V L Junior , W S Borges ,
188 E R Cole , T U Andrade , Endringerdc . *vitro cell viability by CellProfiler ® software as equivalent to MTT
189 assay*, 2017. 13 p. 365.

190 [Sommer and Gerlich (2013)] 'Machine learning in cell biology -teaching computers to recognize phenotypes'. C
191 Sommer , D W Gerlich . *J Cell Sci* 2013 Dec 15. 126 p. . (Pt 24)

192 [Wernickmn et al. (2010)] 'Machine Learning in Medical Imaging'. ; Wernickmn , Y; Yang , J G Brankov , G;
193 Yourganov , Strother , Sc . *IEEE Signal Processing Magazine* 2010 Jul. 27 (4) p. .

194 [Lu et al. ()] 'Nuclear shape and orientation features from H&E images predict survival in early-stage estrogen
195 receptor-positive breast cancers'. C Lu , Romo-Buchelid , X Wang , A Janowczyk , S Ganesan , Gilmoreh ,
196 D Rimm , A Madabhushi . *Lab Invest* 2018. 98 (11) p. .

197 [Ching et al.] 'Opportunities and obstacles for deep learning in biology and medicine'. T Ching , D S Himmelstein
198 , B K Beaulieu-Jones , A A Kalinin , B T Do , G P Way , E Ferrero , P M Agapow , M Zietz , M M Hoffman
199 , W Xie , G L Rosen , B J Lengerich , J Israeli , J Lanchantin , S Woloszynek , A E Carpenter , A Shrikumar

20 DISCUSSION

200 , J Xu , E M Cofer , Lavenderca , S C Turaga , A M Alexandari , Z Lu , D J Harris , D Decaprio , Qiy , A
201 Kundaje , Y Peng , L K Wiley , Mhs Segler , S Bocasm , S J Swamidass , A Huang , A Gitter , C S Greene
202 . *J R Soc Interface* 15 (141) p. 20170387.

203 [Yu et al. (2016)] ‘Predicting non-small cell lung cancer prognosis by fully automated microscopic pathologyim-
204 age features’ K H Yu , C Zhang , G J Berry , R B Altman , C Ré , D L Rubin , M Snyder . *Nat Commun*
205 2016 Aug 16. 7 p. 12474.

206 [Whitney et al. (2018)] ‘Quantitative nuclear histomorphometry predicts oncotype DX risk categories for early
207 stage ER+ breast cancer’ J Whitney , G Corredor , A Janowczyk , S Ganesan , Doyles , J Tomaszewski , M
208 Feldman , H Gilmore , Anant Madabhushi . *BMC Cancer* 2018 May 30. 18 (1) p. 610.

209 [Eulenberg et al. ()] ‘Reconstructing cell cycle and disease progression using deep learning’ P Eulenberg , N
210 Köhler , T Blasi , A Filby , A E Carpenter , Paul Rees , F J Theis , F A Wolf . *Nat Commun* 2017. 8 p. 463.

211 [Buzin et al. ()] ‘Replacement of specific markers for apoptosis and necrosis by nuclear morphology for affordable
212 cytometry’ R Buzin , F E Pinto , K Nieschke , A Mittag , De Andrade , T U Endringer , D C Tarnok , A
213 Lenz , D . *Journal of Immunological Methods* 2015. 1 p. .

214 [Jones et al.] *Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine*
215 *learning*, T R Jones , A E Carpenter , M R Lamprecht , J Moffat , S J Silver , J K Grenier , A B Castoreno
216 , U S Eggert , D E Root , P Golland , D M Sabatini .

217 [Xu et al. (2016)] ‘Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology
218 Images’ J Xu , X Q Lei , H Gilmore , J Wu , J Tang , A Madabhushi . *IEEE Trans Med Imaging* 2016 Jan.
219 35 (1) p. .

220 [Beck et al.] ‘Systematic analysis of breast cancer morphology uncovers stromal features associated with survival’.
221 A H Beck , A R Sangoi , S Leung , R J Marinelli , T O Nielsen , M J Van De Vijver , R B West , M Van De
222 Rijn , D Koller . *SciTransl Med* 201 (108) p. .

223 [Hitchcock ()] ‘The future of telepathology for the developing world’ C L Hitchcock . *Arch Pathol Lab Med* 2011.
224 135 (2) p. .