

Effect of Gravitational Stress and Exercises on Bone Demineralization & Renal Complication in Paraplegics & Quadriplegics

Chhaya Verma¹ and Khadkikar A²

1

Received: 16 December 2015 Accepted: 2 January 2016 Published: 15 January 2016

8 **Abstract**
9 Background: Spinal cord injury (SCI) is a multisystem injury with life-threatening
10 complications. Bone demineralization renal complications have serious consequences for the
11 affected person. It is hypothesized that verticalisation along with early mobilization reduces
12 skeletal renal complications. Methodology: 48 subjects (36 patients+12 controls) participated
13 in this study. The patients were divided into groups A, B C and the controls were in Group
14 D. Basal parameters (BP, PR, RR) were recorded and Urine samples were sent for analysis.
15 Group A was treated with only limb exercises Group B was given limb exercises tilt table
16 standing. Group C had chronic patients to visualize the longterm effect of physical
17 rehabilitation body?s attempt at bone mineral homeostasis on urinary parameters. Results:
18 Significant changes were noted in the values of urine calcium, inorganic phosphate,
19 hydroxyproline serum enzyme alkaline phosphatase among groups A, B C when compare
20 with D

Index terms— spinal cord injury, gravitational stress, renal complication, bone demineralization, active/pассивные exercises, verticalisation.

trunk, legs, bladder, bowels and sexual organs. Any SCI occurring at the level of the 2nd thoracic vertebrae (T-2) or distally can result in paraplegia, with accompanying impairments of the trunk, legs and pelvic organs, with a decreasing severity of deficiencies the more distal incursion of the SCI 1 . Persons with SCI have a reduced health status, decreased quality of life and increased rates of mortality compared to able-bodied population. The most common medical complications observed in SCI are muscular atrophy, bone metabolism disorders, cardiovascular disease & autonomic dysregulation due to removal of neural drive to the impaired muscles resulting in subsequent reduced metabolic demand accompanied by rapid & chronic deconditioning 2 . Osteoporosis: a well-known complication of SCI, is characterized by low bone mass & deterioration of the skeletal microarchitecture 3 . The mechanism of bone loss in SCI is not completely understood; however, a significant amount of bone loss occurs during the first 4-6 months after injury and stabilizes between months 12 and 16. Bone demineralization reaches almost 50% by the end of the first year following SCI. However, bone mineral loss continues to a lesser degree in the pelvis and lower extremities over the next 10 years 4,5 .

The pathophysiology of SCI-induced osteoporosis is complex and differs from that observed after prolonged bed rest in patients without SCI and in those with other neurologic deficits 6 .SCI can cause immediate and, in some regions, permanent gravitational unloading, leading to disuse structural change. It triggers significant increase in osteoclastic activity peaking at 10 weeks following SCI at values 10 times the upper limit of normal 7 .Hypercalciuria is 2-4 times that of persons without SCI who undergo bed rest and reaches a peak 1-6 months post injury; this marked increase in urinary calcium is the direct result of an imbalance between bone formation and resorption 8,9 .A reduction of bone mineral content during the first year after the injury of 4% per month

5 VOLUME

43 in regions rich in cancellous bone, and 2% per month on sites containing mainly cortical bone is reported 10 .
44 SCI-mediated hormonal changes also lead to osteoporosis by 5

45 1 -

46 2 I. Introduction

47 spinal cord injury (SCI) is a multi-system damage with life-threatening complications. It can result in autonomic,
48 neuromuscular and physiologic impairment of the legs, arms or trunk with the severity of the symptoms dependent
49 upon the level and magnitude of the injury to the spinal column. A SCI to the cervical segments of the spinal
50 column (C1-C8) down to the most proximal thoracic segment (T-1) often causes quadriplegia and results in
51 impairment of the arms, A 11,12 . In the absence of adequate treatment, calculi can lead to sepsis & renal failure.
52 The major risk factors found are 13 -? Hypercalciuria ? Increased susceptibility to Urinary tract infection. ?
53 Immobilization ? Stasis of urine ? Altered urine ph

54 The chemical composition of SCI-related urinary stones is predominantly nonoxalate calcium (carbonate
55 apatite) during the early years and consists of a higher proportion of magnesium (struvite) in the later years 14 .

56 It is hypothesized that verticalization, early mobilization & exercising of paralysed muscles may lower blood &
57 urine concentration of catabolic products from collagen & bone and thus reduce the skeletal & renal complications
58 15 . Donaldson et al found that quiet standing for 2 hrs a day appears to reverse the changes in mineral metabolism
59 induced by immobilization, whereas vigorous supine exercises for as long as 4 hrs daily is ineffective 16 .

60 Therefore, this study was undertaken to compare the effects of tilt-table standing & limb exercises against
61 limb exercises alone in paraplegics & quadriplegics with a treatment regimen of 15 days. Also a comparison was
62 made to assess the levels of urinary parameters between chronic patients& normal ambulatory control group.

63 3 II. Methodology

64 Post an institutional ethics committee approval, an informed consent was obtained from all the subjects prior to
65 commencement of the study.

66 A total of 36 patients with a spinal cord injury, level of lesion ranging from C3-4 to T12 vertebrae were included
67 in this study. Their age groups ranged between 18-55 yrs. The cause of lesion varied from trauma, myelopathy,
68 transverse myelitis, and extra medullary tumor to Koch's spine. Participants were recruited from the outpatient
69 & inpatient department of a tertiary care public hospital & a renowned paraplegic foundation for the study
70 conducted for a period of 15 days. The inclusion criteria were as follows- Inference: Levels of phosphate showed
71 significant difference in group B while it was non-significant in group A.

72 4 IV. Discussion

73 The recent progress in the management of SCI has prolonged the survival of patients. The incidence of secondary
74 bone & joint disorders has also increased considerably 17 . Bearing in mind the evaluation and particularities of
75 the osteoporosis occurring in SCI patients, one should pay special attention to the time of injury. Intervention
76 must ideally be introduced early as a large portion of bone loss occurs within 6 months, stabilizing at 12 to 24
77 months after SCI at values 60% to 70% of normal in the femoral neck and 40% to 50% in the proximal tibia 10,18
78 . The physiological changes in various systems occur as a result of 19 20 . A study demonstrated that standing
79 might reduce the loss of trabecular bone after SCI. In this prospective study of 19 acute SC? patients, the patients
80 involved in early loading intervention exercise lost almost no bone mineral, whereas the immobilization patients
81 lost 6.9 to 9.4% of trabecular bone 21 .

82 5 Volume

83 A study done by Schoutens et al. has shown that exercises without weight bearing cannot counteract the loss of
84 bone mass provoked by bed rest. Also, Kaplan et al, observed reduction in hypercalcemia in quadriplegics after
85 weight bearing & strengthening exercises. Our findings, depicted in tables 1, 2, 3 & 4 correlate well the above
86 studies. Mild significant fall in urine calcium is observed in group A too due to the fact that muscle loading &
87 contraction in the form of active & active assisted exercises, promote maturation of newly formed collagen &
88 calcification of bone matrix 8,21 .

89 Hydroxy proline also, returned to baseline as found in our study, supported by conclusion by Bergmann et al
90 & Chantraine A 22,23 .

91 The abnormality in bone mineral metabolism is directly proportional to the amount of bone tissue immobilized.
92 Thus, SCI patients develop hypercalciuria & mild hypercalcemia. With time, the bones become severely
93 osteoporotic, mobilization of calcium reduces & eventually normalizes 15 . This was confirmed by our study
94 in table 5. Since the patients in group C had a mean duration of paralysis of 16 yrs, the urinary levels had come
95 back to their normal limits. This could be because of the body's adaptive strategy to control bone mineral loss
96 over a prolonged period. During this period changes in hormonal factors such as growth hormone or a decrease
97 in IGF-1 may result in a reduced bone turn over 24 . Also, the independent & active lifestyle that the patients
98 were leading played a crucial role.

99 6 a) Limitations

100 ? Male to female ratio could not be maintained equally ? The level of lesion varied amongst patients recruited ?
101 Cause of the lesion was different in amid patients ? Duration of paralysis was also different between patients ?
102 The study had to be restricted to 15 days because of early discharge of patients.

103 7 V. Conclusion

Thus in our study we conclude that- ^{1 2}

Figure 1:

3

URINE HYDROXY PROLINE

3		GROUP A	GROUP B
DAYS			
1		2.93 + 0.43	2.98 + 0.78
7		2.83 + 0.29	2.64 + 0.48
15		2.78 + 0.29	2.29 + 0.48
t value		2.45	4.54
p value		< 0.05	< 0.001

Inference: Levels of hydroxy proline showed significant difference in group B

Figure 2: Table 3 :

104

¹© 2016 Global Journals Inc. (US)

²Effect of Gravitational Stress and Exercises on Bone Demineralization & Renal Complication in Paraplegics & Quadriplegics

7 V. CONCLUSION

4

of serum enzyme alkaline phosphatase between group A & B	
SERUM ENZYME ALKALINE PHOSPHATASE	
GROUP A	GROUP B
12.39 + 2.09	14.13 + 2.98
11.60 + 1.17	11.25 + 1.74
11.14 + 1.23	10.01 + 2.41
2.91	7.1
< 0.05	< 0.001

Inference: Serum enzyme alkaline phosphatase was significantly reduced in group B after 15 days of treatment

Figure 3: Table 4 :

5

of urine parameters between group C & D	
URINARY PARAMETERS	
PARAMETER	GROUP C
CALCIUM	6.79 + 1.39
PHOSPHATASE	65.65 + 6.61 64.02 + 5.84
HYDROXY PROLINE	2.55 + 0.48
SR. A. P	12.03 + 2.89 11.60 + 1.09

Inference: Urine parameters & serum enzyme alkaline phosphatase were near normal between groups C & D

Figure 4: Table 5 :

- ? Change from partially upright-partially horizontal body position to a completely horizontal one
- ? Reduction in energy expenditure due to relative confinement in bed
- ? Almost complete reduction of stress on muscles & bones

Muscular loading of bones has been thought to play a role in the maintenance of bone density. Exercise increases site-specific osteogenesis in able-bodied individuals

Figure 5:

Year 2016
Volume XVI Issue 1 Version I
D D D D) K
(

VI. Acknowledgements

Figure 6: ?

105 The authors would like to thank all the patients for participating in this study. We also like to express our
106 gratitude to Dr. (Mrs.) Kavita Dipnaik, department of biochemistry & dean of LTMMC & LTMGH Dr. Shirhatti
107 without whose invaluable support this study would not have been possible.

108 [Figoni (ed.) ()] *ACSM's Exercise management for persons with chronic diseases & disabilities*, S F Figoni . J.
109 L.Durstine, GE Moore, PL Painter & SD Roberts (ed.) 2009. Champaign, IL: Human Kinetics. 3 p. . (Spinal
110 cord disabilities: paraplegia & tetraplegia)

111 [Otom and Al-Ahmar ()] 'Bone loss following spinal cord injury'. A H Otom , M R Al-Ahmar . *Journal of
112 neurorestoratology* 2014. 2 p. .

113 [Walker and Spencre ()] *Bone metabolism in quadriplegia. Arch phy med rehabil*, C Walker , Spencre . 1975. 56
114 p. .

115 [Szollar et al. ()] 'Bone mineral density & indexes of bone metabolism in spinal cord injury'. S M Szollar , E M
116 Martin , D J Sartoris . *Am J Phys Med Rehab* 1998. 77 p. .

117 [Frey-Rindova et al. ()] 'Bone mineral density in upper & lower extremities during 12 months after spinal cord
118 injury measured by peripheral quantitative computed tomography'. P Frey-Rindova , E D De Bruin , E Stussi
119 , M A Dambacher , V Dietz . *Spinal cord* 2000. 38 p. .

120 [Chantraine ()] 'Clinical investigation of bone metabolism in spinal cord lesions'. A Chantraine . *Paraplegia* 1971.
121 8 p. .

122 [Donaldson ()] 'Effect of prolonged bed rest on bone minerals'. C Donaldson . *Metabolism: Clinical & experimental*
123 1970. 19 p. .

124 [Kunkel et al. ()] 'Effect of standing on spasticity, contracture, and osteoporosis in paralysed males'. C F Kunkel
125 , A M Scrimin , B Eisenberg , J F Garcia , S Roberts , S Martinez . *Arch phys med rehabil* 1993. 74 p. .

126 [Greenleaf ()] 'Fluid & electrolyte shift during bed rest with isometric and isotonic exercises'. Greenleaf . *Journal
127 of applied physiology* 1977. 42 p. .

128 [De Bruin et al. ()] 'Long term changes in the tibia & radius bone mineral density following spinal cord injury'.
129 E D De Bruin , B Vanwanseele , M A Dambacher , V Dietz , E Stussi . *Spinal cord* 2005. 43 p. .

130 [Wilmet et al. ()] 'Longitudinal of bone mineral content & of soft tissue composition after spinal cord injury'. E
131 Wilmet , A A Ismail , A Heilporn , D Welraeds , P Bergmann . *Paraplegia* 1995. 33 p. .

132 [Bergmann et al. ()] 'longitudinal study of calcium & bone metabolism in paraplegic patients'. P Bergmann , A
133 Heilporn , A Schoutens . *Paraplegia* 1977. 15 p. 159.

134 [Jiang et al. ()] 'Mechanisms of osteoporosis in spinal cord injury'. S D Jiang , L S Jiang , L Y Dai . *Clinical
135 endocrinology* 2006. 65 p. .

136 [Al-Taweel and Seyam ()] 'Neurogenic bladder in spinal cord injury patients'. W Al-Taweel , R Seyam . *Research
137 & reports in urology* 2015. 7 p. .

138 [Weiss et al. (2014)] *Osteoporosis & spinal cord injury*, D Weiss , R Yada , F Talaver , P Foye . <http://emedicine.medscape.com/article/322204-overview>.Accessed April 21. 2014.

140 [Gerland et al. ()] 'Osteoporosis after spinal cord injury'. D E Gerland , C A Stewart , R H Adkins . *J Orthop
141 Res* 1992. 10 p. .

142 [Demirel et al. ()] 'Osteoporosis after spinal cord injury'. G Demirel , H Yilmaz , N Parker , S Onel . *Spinal cord*
143 1998. 36 p. .

144 [Jiang et al. ()] 'Osteoporosis after spinal cord injury'. S-D Jiang , L-Y Dai , L-S Jiang . *Osteoporos Int* 2006. 17
145 p. .

146 [Kaplan et al. ()] 'Reduction of hypercaluria in tetraplegia after weight-bearing & strengthening exercises'. P E
147 Kaplan , W Roden , E Gilbert , L Richards , J Goldschmidt . *Paraplegia* 1981. 19 p. .

148 [Welk et al. ()] 'Renal stone disease in spinal cord-injured patients'. B Welk , A Fuller , H Razvi , J Denstedt .
149 *Journal of endourology* 2012. 26 (8) p. .

150 [Yilmaz et al. ()] 'The relationship between basal metabolic rate & femur bone mineral density in men with
151 traumatic spinal cord injury'. B Yilmaz , E Yasar , A S Goktepe . *Arch phys med rehabil* 2007. 88 p. .

152 [Pedrera et al. ()] 'Ultrasound bone mass in paraplegic patients'. J D Pedrera , P Manas , M A Gomez . *Spinal
153 cord* 2002. 40 p. .

154 [Burr ()] 'Urinary calculi composition in patients with spinal cord lesions'. R G Burr . *Arch phys med rehabil*
155 1978. 59 p. .

156 [Chen et al. ()] 'Urinary stone formation after spinal cord injury: risk & risk factors'. Y Chen , M J Devivo , K
157 L Llyod . *Top Spinal cord inj rehabil* 2003. 8 (3) p. .

158 [US) Guidelines Handbook Global Journals Inc ()] 'US) Guidelines Handbook'. www.GlobalJournals.org
159 *Global Journals Inc* 2016.