

1 Evaluation of Neurobehavioural and Cognitive Changes Induced 2 by Carbamazepine and/or Phenytoin in Wistar Rats

3 H. Aliyu¹, J. O. Ayo², S. F. Ambali³, A. U. Zezi⁴ and P. I. Kobo⁵

4 ¹ Ahmadu Bello University, Zaria

5 *Received: 13 December 2015 Accepted: 3 January 2016 Published: 15 January 2016*

6

7 **Abstract**

8 The study was to evaluate the neurobehavioural and cognitive changes in Wistar rats
9 administered carbamazepine (CBZ), phenytoin (PHE) and their combination. Forty,
10 apparently, healthy adult male Wistar rats weighing about 300 g were divided into four groups
11 of 10 animals each. Group I rats were administered distilled water at 10 ml/kg. CBZ, 20
12 mg/kg, PHE 100 mg/kg and CBZ+PHE, 20 mg/kg and 100 mg/kg respectively were
13 administered to groups II, III and IV, per os. The regimens were given once daily for eight
14 weeks, the rats were monitored for neurobehavioural and cognitive changes. The results
15 showed that administration of CBZ, CBZ+PHE and PHE decreased ($P < 0.05$) locomotion of
16 the treated rats. Rearing decreased ($P < 0.05$) in rats treated with PHE. Cognition was not
17 significantly affected by the treatments. In conclusion, chronic administration of CBZ, PHE
18 and CBZ+PHE decreased locomotion, while PHE alone decreased rearing in Wistar rats.

19

20 **Index terms**— cognitive function, carbamazepine, phenytoin, locomotion, short-term memory, rearing.

21 **1 I. Introduction**

22 epilepsy is a disorder of the brain, characterized by an enduring predisposition to generate at least one seizure
23 (Fisher et al., 2005). The term 'epilepsy' is usually restricted to those cases with a tendency for recurrent seizures
24 (Nair, 2003). It has been reported that patients with epilepsy are at substantial risk of memory impairment,
25 and results obtained from animal studies have demonstrated impaired hippocampal function as measured by
26 spatial memory in rodents subjected to seizures (Zhou et al., 2007). Therefore, memory impairment is one of the
27 neurobehavioural complications associated with epilepsy (Ali et al., 2003).

28 It was reported that rather than being overtly manifest, subtle changes in cognitive and psychomotor functions
29 do occur commonly with long-term antiepileptic drug therapy, especially PHE sodium (Meador et al., 1991).
30 However, recent findings indicate that rats with focal onset of spontaneous seizures respond to treatment following
31 antiepileptic drug administration; but like humans, the responses to antiepileptic drugs can vary substantially
32 between animals (Nissinen and Pitkänen, 2007). Polytherapy in epilepsy is a preferred treatment regimen in
33 patients with intractable seizures (Macdonald and Meldrum, 1995). Rational polypharmacy of antiepileptic drugs
34 is one of the treatment strategies for refractory epilepsy (Sun et al., 2002). Antiepileptic drugs, particularly those
35 used in polytherapy, are the main causes of cognitive impairment in epileptic patients (Bernardi and ??arros,
36 2004). However, the effects of some of the drug combinations on neurobehavioural and cognitive changes have
37 not been elucidated. Carbamazepine (CBZ) is an anticonvulsant used to treat epilepsy and mood disorders
38 (Almgrem et al., 2008). It is administered alone or in combination with other medications to treat certain
39 types of seizures in patients with epilepsy (Porter and Meldrum, 2007). Its main function is reduction of
40 sustained repetitive firing in neurones by blocking voltage-gated sodium channels (Mathew et al., 2011). It also
41 potentiates gammaaminobutyric acid (GABA) receptors (Granger et al., 1995). Thus, CBZ exerts therapeutic
42 effects via inhibition of brain neuronal activities. The drug is widely used in Nigeria for the treatment of seizure

9 F) ASSESSMENT OF SHORT-TERM MEMORY

43 disorders and trigeminal and other neuralgias (Shannon and Love, 2004). Phenytoin sodium (PHE), a hydantoin
44 anticonvulsant, is one of the classical antiepileptic drugs (K?erk et al., 1998) and its systemic administration
45 induces anticonvulsant effects in humans and experimental animals (Rykaczewska-Czerwi?ska, 2007). It is used
46 widely in the treatment of generalized or partial seizures, except absence seizures (Vijay et al., 2009). It acts by
47 blocking sodium channels and inhibits persistent sodium currents in neurones, thus inhibiting neuronal firing in
48 the brain (Bryan and Waxman, 2005). It has also been shown to protect against axonal degeneration of spinal
49 cord axons, and it improves neurological outcome of experimental allergic encephalomyelitis in mice (Luszki,
50 2004). Unfortunately, none of the new antiepileptic drugs is superior in efficacy to the older drugs in terms of
51 seizure remission (Shannon and Love, 2005).

52 2 II. Objective

53 The objective of the present study was to evaluate the effects of long-term administration of a combination of
54 CBZ and PHE on neurobehavioural and cognitive changes in Wistar rats.

55 3 III. Materials and Methods

56 4 a) Animals

57 For the present study, 40 adult male Albino rats weighing between 144 and 300 g were used for the experiment.
58 The animals were obtained from the animal house of the Department of Veterinary Pharmacology and Toxicology,
59 Ahmadu Bello University, Zaria and were housed in rat cages. The animals were given access to feed pellets made
60 from growers' mash (Grand Cereals, Jos, Nigeria), maize bran and groundnut cake in the ratio 4:2:1, with wheat
61 flour serving as binder, and water was provided ad libitum. The animals were allowed to acclimatize for a period
62 of two weeks before the commencement of the experiment. The animals were divided at random into four groups
63 of 10 animals each. Rats in groups II, III and IV were given CBZ (20 mg/kg), PHE (100 mg/kg) and CBZ+PHE
64 (20 and 100 mg/kg separately), respectively. Rats in group I were given distilled water at 10 ml/kg and served as
65 the untreated control. All treatments were administered orally by gavage once daily for a period of eight weeks.
66 During this period, the rats were monitored for clinical and neurobehavioural signs.

67 5 b) Anticonvulsant drugs

68 The anticonvulsant drugs used in this study were CBZ tablets (Hovid Bhd, Malaysia) at 20 mg/kg (Rajesh et
69 al., 1991) and PHE capsules (Biomedicine, Belgium) at 100 mg/kg (Vijay et al., 2009)

70 6 c) Evaluation of locomotor activity

71 The effect of the regimens on locomotor activity was evaluated weekly till the end of the experiment using the
72 open-field apparatus (Zhu et al., 2001). The open-field apparatus was constructed using cardboard box (50 ×
73 50 × 46 cm high) with clear Plexiglas on the floor. The floor of the box was divided into 25 equal squares.
74 The locomotor activity was assessed by placing a rat in the box and allowing it to roam freely for 3 minutes
75 to familiarize itself with the environment. The number of squares crossed with all the paws during the next
76 2 minutes was recorded. The arena was cleaned first with soapy water, followed by 90% alcohol solution to
77 eliminate odours from the preceding animal.

78 7 d) Evaluation of rearing activity

79 Rearing activity was evaluated weekly till the end of the experiment, using the open-field apparatus (Zhu et al.,
80 2001). Rearing was assessed by placing a rat in the box and allowing it to roam freely for 3 minutes to familiarize
81 itself with environment. The number of times an animal stood on its hind limb trying to peep out of the box in
82 the next 2 minutes was recorded. Soapy water followed by 90% alcohol solution was used to clean the arena.

83 8 e) Assessment of learning

84 This experiment was performed 48 hours prior to the termination of the study. It was done using the step-down
85 inhibitory avoidance task as (Zhu et al., 2001). The apparatus used was made of 40 × 25 × 25cm
86 acrylic chamber, consisting of a floor made of parallel 2 mm calibre stainless steel bars spaced 1 cm apart. An
87 electric shock was administered through the floor bars. A 25cm high, 8cm by 25cm wooden platform was placed
88 at the extreme end of the chamber. Each animal was placed gently on the platform; upon stepping down, the rat
89 received a single 80 volts footshock. If the animal did not return to the platform, the foot-shock was repeated
90 every 5 seconds. A rat was considered to have learned the avoidance task if it remained on the platform for more
91 than 2 minutes. The number of foot-shocks applied before the animal learned the avoidance task was recorded
92 as an index of learning acquisition.

93 9 f) Assessment of short-term memory

94 Memory was also assessed using the stepdown inhibitory avoidance task (Zhu et al., 2001). The apparatus used
95 was the same as that described for learning. Briefly, individual rats were again placed gently on the platform

96 24 hours after performing the learning task. The time during which the animal remained on the platform was
97 recorded as an index of memory retention. Staying of the rat on the platform for 2 minutes was counted as
98 maximum memory retention (ceiling response).

99 The research was carried out according to the Ahmadu Bello University Animal Research Committee and in
100 accordance with the National Institutes of Health Guide for Care and Use of Laboratory Animals (Publication
101 number 85-23), revised 1985, also according to the Guidelines for the use of animals in Neuroscience Research,
102 1992.

103 **10 g) Statistical analysis**

104 Values obtained were calculated as mean \pm SEM and analysed using one-way analysis of variance (ANOVA). The
105 differences between the variant means were separated using Tukey's post-hoc test. GraphPad prism version
106 4.0 for windows from GraphPad Software, San Diego, California, USA (www.graphpad.com) was used for the
107 analysis. Values of $P < 0.05$ were considered significant.

108 **11 IV. Results**

109 **12 a) Effect of treatments on locomotion in Wistar rat**

110 There were significant ($P < 0.05$) decreases in the number of squares crossed by rats in the CBZ and

111 **13 b) Effect of treatments on rearing activity in Wistar rats**

112 There was a significant ($P < 0.05$) decrease in rearing in the PHE group when compared to the control group.
113 There was no significant ($P > 0.05$) change in the CBZ and CBZ+PHE groups when compared to control.
114 Likewise rearing did not change when the treatment groups were compared. (Figure ??). CBZ+PHE groups.
115 The number of squares crossed by rats in the PHE group decreased significantly ($P < 0.01$), when compared to
116 that of the control group, and no significant ($P > 0.05$) change in the number of squares crossed by rats was
117 obtained when the treatment groups were compared (Figure ??).

118 **14 c) Effect of treatments on learning ability in Wistar rats**

119 There was no significant ($P > 0.05$) change in the number of foot-shocks when the drug-treated groups were
120 compared to the control group. Similarly, there was no significant ($P > 0.05$) change in the number of foot-
121 shocks applied in between the treatment groups (Figure 3).

122 **15 d) Effect of treatments on short-term memory in Wistar rats**

123 There was no significant ($P > 0.05$) change in the duration of stay on the platform when the treatment groups
124 were respectively compared to the control group. The changes observed were insignificant ($P > 0.05$) between
125 the treatment groups (Figure 4).

126 **16 V. Discussion**

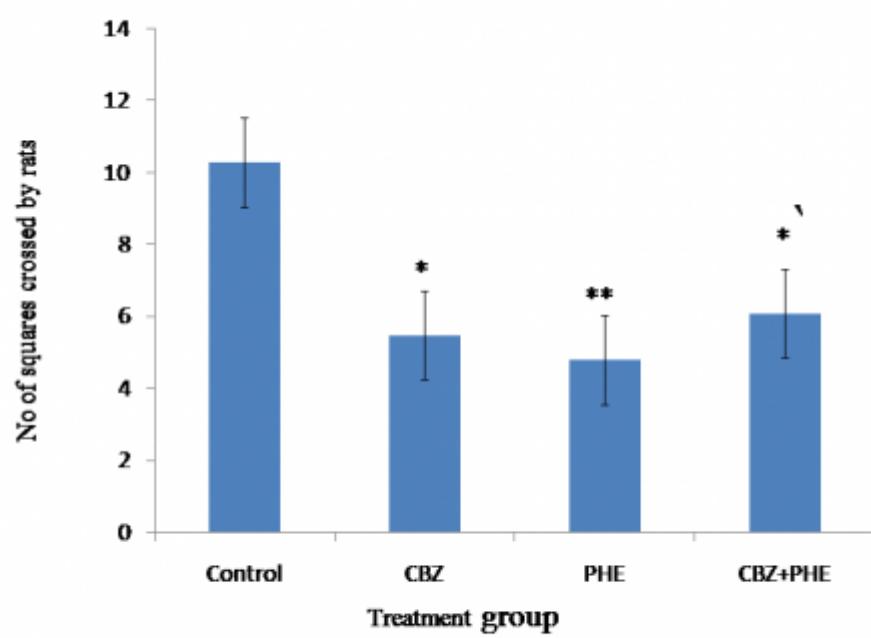
127 The decrease in locomotion recorded in the CBZ group agreed with the findings of (Luszczki, 2004), who reported
128 a decrease in ambulatory activity and total distance covered in mice administered with CBZ. Nowakowska et
129 al. (2011) also attributed the decrease in locomotor activity in the CBZ monotherapy in rats to the sedative
130 effects of the drug, and suggested that this may be related to the induction of microsomal enzymes of the P 450
131 cytochrome.

132 The decrease in locomotion (Fig. ??) observed with the polytherapy group agrees with the findings of Luszczki
133 (2004) who reported that combining two sodium-channel blockers may result in a considerable reduction in
134 locomotor activity of the animals tested; which, apparently, induced the potentiation rather than the summation
135 of hypolocomotor effects produced by the combination of the antiepileptic drugs.

136 **17 Rearing**

137 Rearing reflects adaptive strategy of animals to explore their environment and also responses to environmental
138 novelty and emotional states, such as stress levels in rodents (Ambali, 2009). Rearing responses observed upon
139 repeated exposure to the same environment are strongly influenced by interindividual differences in habituation
140 and this could be influenced by a variety of pharmacologic and toxicologic agents (Ambali, 2009).

141 The decrease in rearing activity (Fig. ?? finding may also be caused by the inhibition of calcium-induced
142 secretory processes, including hormones and neurotransmitters released as a result of decrease in calcium
143 permeability, with inhibition of calcium influx across the membrane (Porter and Meldrum, 2007). K?erk et al.
144 (1998) reported that PHE modulates the direct activation of the motor system by stimulating the sensorimotor
145 cortex in the adult, but not immature, rats.


146 18 VI. Conclusion

147 Chronic administration of CBZ and CBZ+PHE decreased locomotion but PHE alone decreased rearing in Wistar
148 rats. Patients taking these drugs should therefore be adequate monitoring while taking their medications and if
149 the aforementioned signs are noticed should be placed on alternative medications.

150 19 VII. Acknowledgement

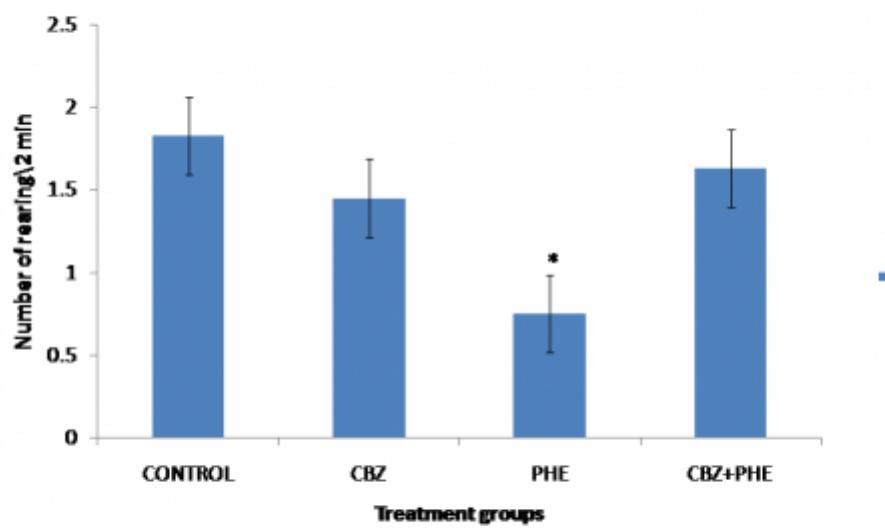


Figure 1: E

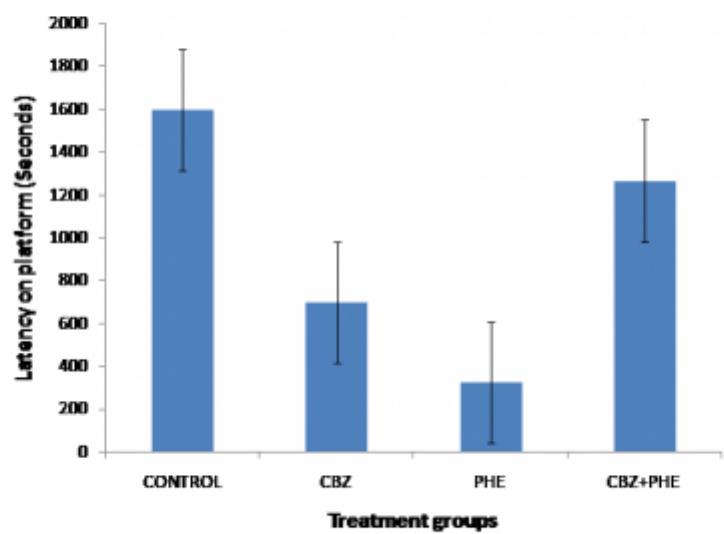

21

Figure 2: Figure 2 :Figure 1 :

3

Figure 3: Figure 3 :

4

Figure 4: Figure 4 :

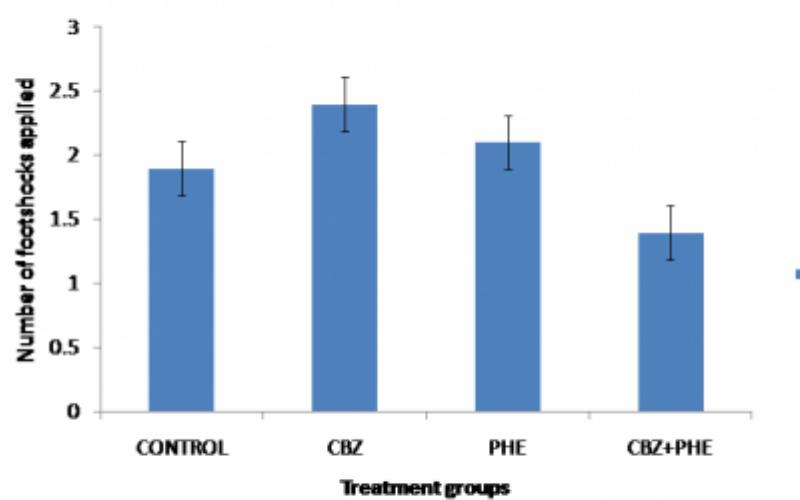


Figure 5:

152 [Nair (2003)] , D R Nair . <http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/neurology/epileptic-syndrome>. Access date 2003. February 28. 2008.

153

154 [K?erk et al. ()] 'Agedependent phenytoin effects on cortical stimulation in rats'. P K?erk , P Haugvicov? , P Mare? . *Physiology Research* 1998. 47 p. .

155

156 [Ambali ()] *Ameliorative effect of vitamins C /or E on neurotoxic, haematological and biochemical changes induced by chronic chlorpyrifos in Wistar rats. Doctor of Philosophy Dissertation*, S F Ambali . 2009. Zaria. p. 355. Ahmadu Bello University

157

158

159 [Rykaczewska-Czerwi?ska ()] 'Antinociceptive effect of phenytoin in rats'. M Rykaczewska-Czerwi?ska . *Pharmacology Reports* 2007. 59 (1) p. .

160

161 [Porter and Meldrum ()] 'Antiseizure drugs'. R J Porter , B S Meldrum . *Katzung, BG In: Basic and Clinical Pharmacology*, 10 th Ed, (New York, McGraw-Hill) 2007. p. .

162

163 [Bernardi ()] 'Barros HMT Carbamazepine enhances discriminative memory in a rat model of epilepsy'. R B Bernardi . *Epilepsia* 2004. 15 p. .

164

165 [Mathew et al. ()] 'Behavioural deficit and decreased GABA receptor functional regulation in the hippocampus of epileptic rats: effects of Bacopa monnieri'. J Mathew , G Gangadharan , K P Karuvilla , C S Paulose . *Neurochemical Research* 2011. 36 (1) p. .

166

167

168 [Almgrem et al. ()] 'Carbamazepine protects against neuronal hyperplasia and abnormal gene expression in the megencephaly mouse'. M Almgrem , J R Nyengaard , B Persson , C Lavebratt . *Neurobiology Diseases* 2008. 32 p. .

169

170

171 [Sun et al. ()] 'Combination of carbamazepine and valproate in different dose proportions in maximal electroshock seizure model in mice'. M Sun , C M Van Rijn , Y Liu , M Wang . *Epilepsy Research* 2002. p. .

172

173

174 [Meador et al. ()] 'Comparative cognitive effects of carbamazepine and phenytoin in healthy adults'. K J Meador , D Loring , M E Allen , E Y Zamrini , E E Moore , O L Abney . *Neurology* 1991. 41 p. .

175

176 [Nowakowska et al. ()] 'Concomittant use of carbamazepine and olanzepine and the defect on some behavioural functions in rats'. E Nowakowska , K Kus , A Polanski , K Burda , A Nowakoska , C Sadowski . *Pharmacology and Reproduction* 2011. 63 p. .

177

178

179 [Nissinen and Pitkanen ()] 'Effect of antiepileptic drugs on spontaneous seizures in epileptic rats'. J Nissinen , A Pitkanen . *Epilepsy Research* 2007. 2 p. .

180

181 [Ali and Pillai ()] 'Effect of folic acid and lamotrigine therapy in some rodent models of epilepsy and behaviour'. A Ali , K K Pillai . *Journal Pharmacy and Pharmacology* 2003. 3 p. .

182

183 [Luszcki ()] 'Effect of lamotrigine alone or in combination with conventional antiepileptic drugs on locomotor activity in mice'. J J Luszcki . *Indian Journal of Pharmacology* 2004. 5 p. .

184

185 [Vijay and Bairy (2009)] *Effect of phenytoin sodium on biochemical parameters of reproductive function in male albino Wistar rats. Available at: www, P Vijay , Yeshwanth R Bairy , KL . .j-pbs.org/pdf/221/JPBS081001.pdf* 2009. 2/2010.

186

187

188 [Rajesh and Surendra ()] 'Effect of valproic acid and carbamazepine on learning and memory in rats'. K R Rajesh , R Surendra , ThangamJ . *Indian Journal of Pharmacology* 1991. 30 p. .

189

190 [Thakur et al. ()] 'Effect of vitamin C supplementation on phenytoin-induced behavioural abnormalities and regional lipid peroxidation in rats'. S Thakur , G R Saraswathy , E Maheswari . *International Journal of Pharmacology Technology* 2011. 2 p. .

191

192

193 [He and Love ()] *Effects of antiepileptic drugs on attention as assessed by five-choice serial reaction time task in rats. Epilepsy and Behaviour*, Shannon He , P L Love . 2005. 7 p. .

194

195 [He and Love ()] *Effects of antiepileptic drugs on working memoras assessed by spatial alteration performance in rats. Epilepsy and Behaviour*, Shannon He , P L Love . 2004. 5 p. .

196

197 [Zhu et al. ()] 'Effects of single or repeated dermal exposure to methyl parathion on behaviour and blood cholinesterase in rats'. H Zhu , W Robin , R W Rockhold , R C Baker , R E Kramer , I K Ho . *Journal of Biomedical Sciences* 2001. 8 p. .

198

199

200 [Fisher et al. ()] 'Epileptic seizure and epilepsy: definitions proposed by the International League against Epilepsy and the International Bureau for Epilepsy'. R S Fisher , Vanemde Boas , W Blume , W Elger , G Genlon , P , Lee P Engel , JJr . *Epilepsia* 2005. 4 p. .

201

202

203 [Zhou et al. ()] 'Impaired single cell firing and long-term potentiation parallels memory impairment following recurrent seizures'. J L Zhou , T N Shatskikh , Y Liu , M Wang . *European Journal of Neuroscience* 2007. 12 p. .

204

205

206 [Granger and Biton ()] 'Modulation of GABA type A receptors by the antiepileptic drugs carbamazepine and phenytoin'. P Granger , B Biton , FaureC . *Molecular Pharmacology* 1995. 47 p. .

207

19 VII. ACKNOWLEDGEMENT

208 [Bryan and Waxman ()] 'Neuroprotection by sodium channel blockade with phenytoin in an experimental model
209 of glaucoma'. C H Bryan , S G Waxman . *Investigative Ophthalmology and Visual Science* 2005. 46 (11) p. .

210 [Macdonald et al. ()] *Principles of antiepileptic drug action*, R L Macdonald , Meldrum Bs ; Mattson , Meldrum
211 , Bs In . 1995. New York: Raven Press. p. . (Antiepileptic Drugs. 4th Ed)