

1 Computed Tomography Examination Reveals Brain Lesions in 2 Guangzhou AIDS Patients

3 Xuesong Yang¹ and Luo LP²

4 ¹ Medical College, Jinan University, Guangzhou

5 *Received: 11 December 2015 Accepted: 31 December 2015 Published: 15 January 2016*

6

7 **Abstract**

8 Cranial computed tomography (CT) plays an important role in the diagnosis of AIDS.
9 However, our understanding of the CT scan images on the diagnosis or evaluating treatment
10 results has not yet been completed. In this study, we conducted an investigation on the
11 usefulness of cranial CT examination in diagnosing HIV patients. Among them, 34 AIDS
12 patients tested positive for brain lesions indicated by cranial CT scan examination. Patients
13 who had AIDS with brain lesions were primarily diagnosed with tuberculous meningitis
14 (TBM), HIV encephalitis (HIVE), cerebral toxoplasmosis (CT) and cryptococcal meningitis
15 (CM). Furthermore, we thoroughly compared the characteristics of various brain lesions in CT
16 images so that it could be helpful for future diagnoses and treatment evaluations of AIDS with
17 brain lesions. Additionally, we demonstrated that a count of less than 50 CD4+ T
18 lymphocytes primarily occurred in the TBM and HIVE groups, thus resulting in higher
19 mortality.

20

21 **Index terms**— AIDS brain lesions, CT scan, tuberculous meningitis, HIV encephalitis, cerebral toxoplasmosis
22 and cryptococcal meningitis.

23 **1 Computed Tomography Examination Reveals**

24 Brain Lesions in Guangzhou AIDS Patients Abstract-Cranial computed tomography (CT) plays an important
25 role in the diagnosis of AIDS. However, our understanding of the CT scan images on the diagnosis or evaluating
26 treatment results has not yet been completed. In this study, we conducted an investigation on the usefulness of
27 cranial CT examination in diagnosing HIV patients. Among them, 34 AIDS patients tested positive for brain
28 lesions indicated by cranial CT scan examination. Patients who had AIDS with brain lesions were primarily
29 diagnosed with tuberculous meningitis (TBM), HIV encephalitis (HIVE), cerebral toxoplasmosis (CT) and
30 cryptococcal meningitis (CM). Furthermore, we thoroughly compared the characteristics of various brain lesions
31 in CT images so that it could be helpful for future diagnoses and treatment evaluations of AIDS with brain
32 lesions. Additionally, we demonstrated that a count of less than 50 CD4 + T lymphocytes primarily occurred in
33 the TBM and HIVE groups, thus resulting in higher mortality.

34 **Keywords:** AIDS brain lesions, CT scan, tuberculous meningitis, HIV encephalitis, cerebral toxoplasmosis
35 and cryptococcal meningitis. tuberculous meningitis often relies on image features supplied by CT and MR
36 (magnetic resonance) scans; however, it is desirable if a histological examination is available. An operation is
37 required if there is hydrocephalus associated with TBM 7,8 . HIV encephalitis (HIVE) refers to a complex
38 of neuropathological alterations induced by the infiltration of HIV-infected macrophages in the early stages of
39 HIV infection9, 10. It should be noted that antiretroviral therapy (HAART) has quickly altered HIV related
40 neuropathology and neurological manifestations, which could lead to confusion in the treatment of AIDS 9
41 . Cryptococcal meningitis (CM) presents in brain lesions of AIDS patients because cryptococcus neoformans
42 tend to be present in cerebrospinal fluid. The manifestations of cryptococcal meningitis are characterized by
43 nonspecific symptoms, such as headache, fever, nausea, or altered mental state/behaviour. To confirm the CM

3 IV. DISCUSSION

44 diagnosis, a lumbar puncture appears to be vital 11 . Cerebral toxoplasmosis (CT) is one of the most frequent
45 pathogens that causes brain lesion complication in AIDS patients, especially in developing countries. CT is
46 fatal if not treated properly, although there is possibility for complete recovery as long as the patient is treated
47 legitimately 12,13 .

48 To diagnose the neurological complications of AIDS, the imaging data supplied by computed tomography (CT)
49 and magnetic resonance (MR) are indispensable. The CT scan is more useful in the diagnosis and evaluation of
50 focal brain lesions, particularly when a MRI facility is not available in underequipped hospitals. For example, a CT
51 scan is able to specifically diagnose cerebral toxoplasmosis in approximately 80% of cases 14 . The accumulating
52 evidence indicates that by mastering the characteristics of the neurological complications of AIDS in CT scans,
53 we can further diagnose these complications and evaluate treatment results. In this study, we performed an
54 investigation of 35 CT scan images of AIDS patients with neurological complications at the 8th Guangzhou
55 People's Hospital.

56 2 II. Materials and Methods

57 a) Patients General: From 2004 to 2009, 65 AIDS patients were diagnosed using clinical and laboratory
58 examinations at the 8 th Guangzhou People's Hospital. Among the 65 I. Introduction cquired immune deficiency
59 syndrome (AIDS) is caused by an infection of the human immunodeficiency virus (HIV); hence, it is also known
60 as HIV disease/infection 1,2 . Since being discovered, AIDS has caused the deaths of millions of people's deaths
61 all over the world. Unfortunately, AIDS is far from stable in the world 3,4 . In fact, AIDS itself does not cause
62 death; it interferes dramatically with the human immune system because of the progression of the infection, and
63 it causes HIV-infected people to be considerably more susceptible to common infections, thus enhancing mortality
64 in such conditions 5 .

65 The human immunodeficiency virus and acquired immunodeficiency syndrome can result in several types of
66 complications in the central or peripheral nervous system, which comprise nearly 15 to 40 percent of all AIDS
67 or HIV complications 6 . Tuberculous meningitis (TBM) is one of two brain tuberculosis manifestations. The
68 diagnoses of A Ming-ya Zhang 1 # , Meng Liu 2 # , Hui Zhao The 65 patients suffering from AIDS, proven
69 by their clinical and laboratory examination results, were examined using computed tomography (CT) scan at
70 the 8th Guangzhou People's Hospital from 2004 to 2009. Among the 65 AIDS patients, 45 patients are male
71 (69.2%) and 20 patients are female (31.8%). The patients range in age from 11 to 65 years old, and the average
72 age is 39.3 years old (Table ??). and the incidence of these complications were 35.4% (n=23/65) in TBM,
73 29.2% (n=19/65) in HIVE, 16.9% (n=11/65) in CT and 18.5% (n=12/65) in CM (Figure 1A). Among the same
74 65 patients who had been diagnosed with AIDS, numerous brain lesions could be seen in the CT scans of 34
75 patients. They will be denoted as brain lesion positive in the remainder of this report. These brain lesions
76 included low density foci, local mess effect, ventricle extension, hydrocephaly and encephalopathy, as illustrated
77 in Figure 2A-D. We determined that the CT scan revealed that 53.3% (n=34/65) of the AIDS patients had brain
78 lesions whereas 47.7% (n=31/65) of the patients did not (Figure 1B). In the CT-indicated positive brain lesion
79 cases, there were 50.0% (n=17/34) HIV+TBM, 23.5% (n=8/34) HIVE, 14.7% (n=5/34) HIV+CT and 11.8%
80 (n=4/34) HIV+CM (Figure 1C). Additionally, low density foci was the most predominant syndrome observed in
81 CT scans for patients with AIDS combined with tuberculous meningitis (TBM) (Figure 1A1). Encephalopathy
82 was the most apparent syndrome observed in CT scans for patients with AIDS combined with encephalitis (HIVE)
83 (Figure 1B1). Furthermore, encephalopathy was observed relatively more often in CT scans compared to other
84 syndromes in AIDS combined with cryptococcal meningitis (CM) (Figure 1C1). Low density foci and local mess
85 effect were more common syndromes compared to others in AIDS combined with cerebral toxoplasmosis (CT)
86 (Figure 1D1).

87 Furthermore, we conducted a questionnaire survey on the personal lifestyle of the 34 AIDS patients with
88 CT-indicated brain lesions. Among these patients, 12 visited prostitutes (35.5%), 10 abused drugs (29.4%), 3
89 possessed multiple sexual partners (8.8%), 4 patients' spouses suffered from AIDS (11.8%), 2 visited prostitutes
90 and abused drugs (5.9%), 2 visited prostitutes and had blood transfusions (5.9%), and 1 abused drugs and had
91 blood transfusions (2.9%) (Table 2).

92 The CD4 + T lymphocyte numbers were counted in the four AIDS complications (TBM, HIVE, CM and
93 CT) (Table 3), in which a CD4 + T lymphocyte count of less suggesting that CD4 + T lymphocyte numbers
94 dramatically reduced after the AIDS infection was combined with these complications. e complications might
95 increase the death rate of the AIDS patients. Here, we demonstrate that the highest mortality of AIDS patients
96 with those complications occurred in the TBM group (Table 4).

97 3 IV. Discussion

98 Neurological complications account for approximately 40-80% of patients with the human immunodeficiency virus
99 (HIV) infection, especially at a higher frequency in the late stages of severe acquired immune deficiency syndrome
100 (AIDS) 16,17 . To diagnose AIDS-related brain complications, physicians typically use brain imaging information,
101 including internal bleeding, white matter irregularities, and other brain abnormalities based on the patients'
102 medical history and laboratory examination. Furthermore, the diagnosis can be made by combining the general
103 neurological exam to assess various nervous system functions with the brain imaging data, which are primarily

104 supplied by CT and MRI scans. Furthermore, the majority of brain image information is obtained through CT
105 examination due to the expensive costs of MRI examinations in most counties. Thus, precise and thorough CT
106 scans for AIDS-related brain complications are absolutely indispensable. In this study, we conducted cranial
107 CT scans for 65 AIDS patients who visited doctors from 2004 to 2009 at the 8th Guangzhou People's Hospital.
108 A cardinal CT scan revealed that 34 AIDS patients had various brain complications among the 65 patients.
109 Although there were a few differences in the patients' gender and age, we did not determine any significant
110 impact of gender and age difference on the CT scan. The combination of AIDS with these images of AIDS-related
111 brain complications (Table-1). However, the positive CT scan AIDS complications in epidemiological statistics
112 indicated that 35% of patients had a history of visiting prostitutes, and 29% of patients had a history of drug
113 abuse among the positive CT scan cases, suggesting that visiting prostitutes or abusing drugs certainly enhanced
114 the risk of having AIDS brain complications (Table -2). Clearly, we could also see other factors, such as multiple
115 sexual partners and spouses with AIDS, contribute to AIDS related brain complications.

116 Out of 65 AIDS patients, the percentages of tuberculous meningitis (TBM), cryptococcal meningitis, cerebral
117 toxoplasmosis (CT) and HIV encephalitis were 35.4%, 18.5%, 16.9% and 29.5%, respectively. Furthermore, the
118 percentages of the percentages of tuberculous meningitis (TBM), cryptococcal meningitis, cerebral toxoplasmosis
119 (CT) and HIV encephalitis became 50.0%, 11.8%, 14.7% and 23.5%, respectively in the 53% of CT scan-indicated
120 AIDS-related brain complications, thus demonstrating that AIDS with tuberculous meningitis (HIV+TBM)
121 accounted for half of the brain complications (Fig. 1). This observation is similar to reports by other authors¹⁸.
122 It should be noted that AIDS with brain lesions could present as various clinical manifestations or multiple
123 nervous system manifestations simultaneously, or one clinical manifestation could be derived from different
124 pathogenesis. The primary cause for AIDS patients in later stages to see doctors in this study was because
125 of neurological symptoms induced by AIDS-related brain lesions. There are different image characteristics for
126 various AIDS-related brain lesions in CT scans. Additionally, these image features in the CT scan could be useful
127 for diagnosing different AIDS-related brain lesions. For example, low density foci in a tuberculous meningitis
128 (TBM) CT scan indicates an enlarged brain ventricle, hydrocephaly and encephalopathy. The CT scan images of
129 HIV encephalitis (HIVE) indicate the presence of broadening subarachnoid space and bilateral ventriculomegaly.
130 The CT scan images of cryptococcal meningitis (CM) present a significant enhancement of bilateral cerebral
131 hemisphere meninx intensity. Furthermore, more low density foci with adjacent oedema and local mess effect
132 appear in CT scan images of cerebral toxoplasmosis (CT).

133 Additionally, we determined that the CD4+ T lymphocyte count, one indicator for evaluating HIV infection
134 and treatment effect, dramatically dropped (<50) in the TBM and HIVE groups (Table-3). Similarly, a higher
135 mortality of patients who had AIDS with brain lesions could be found in the TBM and HIVE groups, suggesting
136 that it is noteworthy that our physicians should pay more attention to the progress of AIDS with various brain
137 lesions because they could result in a risk to human life. Clearly, a more precise combination of clinical syndromes
138 and CT scan imaging is required in the future to explore the correlation of the types of AIDS brain diseases and
139 their progress.

140 4 Conflicts of interest

141 The authors declare that there are no conflicts of interest.

142 Figure Legends

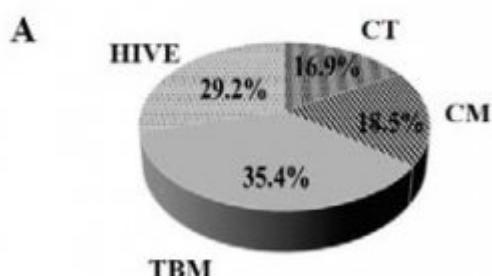
Figure 1:

Patients	Percentage(%)
Sex	
male	45(69.2%)
female	20(31.8%)
Age group	
(mean 39.3 yrs, range 11-65 yrs)	

History taking	Number	Percentage
visiting prostitutes	12	35.3%
drug abuse	10	29.4%
multiple sexual partner	3	8.8%
spouse with AIDS	4	11.8%
visiting prostitutes & drug abuse	2	5.9%
visiting prostitutes & blood transfusion	2	5.9%
drug abuse & blood transfusion	1	2.9%
total	34	100%

Figure 3:

CD4⁺ count	TBM	HIVE	CM	CT	Total(%)
<50	7	6	4	4	21(61.8%)
100-199	5	1	0	1	7(20.6%)
50-99	3	1	0	0	4 (11.8%)
≥200	2	0	0	0	2 (5.9%)


Figure 4:

	TBM	HIVE	CM	CT
number of deaths	4	3	2	1
total	17	8	4	5
mortality	11.8%	8.8%	5.9%	2.9%

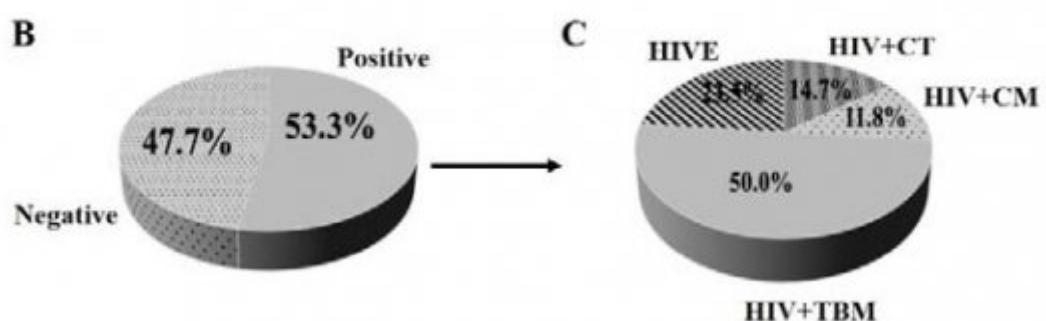

1

Figure 5: Fig. 1 :

The incidence of ADIS complications within total 65 patients

The incidence of ADIS complications within CT-indicated brain lesion positive

2

Figure 6: Fig. 2 :

b) Diagnosis

AIDS diagnosis: AIDS could be diagnosed if the patients had epidemiological history (Table 2), HIV positive results in laboratory examination, and any one of the following: fever for more than one month without specific reason, chronic diarrhoea (>3 times/day) for more than one month, over 10% weight loss within half a year, repeated

simplex/herpes zoster virus infection, pneumocystis pneumonia, repeated bacterial pneumonia, active tuberculosis/mycobacterium tuberculosis, deep fungal infection, occupancy lesions in the central nervous system, middle-age dementia, active cytomegalovirus infection, infection, repeated sepsis and Kaposi's sarcoma in the skin or viscera.

AIDS complication diagnosis: The diagnosis of tuberculous meningitis (TBM), HIV encephalitis (HIVE), cryptococcal toxoplasmosis (CT) was followed by the respective standards of the Chinese Medical Association Branch of Infection Diseases in 200415.

oral candidiasis, repeated her-

toxoplasma cerebropathy, per-

meningitis(CM)nd

cer

Figure 7:

2

[Note: than 50 occurred in 61.8% (n=21/34) of AIDS with complications, and they occurred more often in the TBM and HIVE groups; almost none of the complications had CD4 + T lymphocyte numbers higher than 200, thus]

Figure 8: Table 2 :

3

Figure 9: Table 3 :

4

Figure 10: Table 4 :

4 CONFLICTS OF INTEREST

143 [Van Spil et al.] , W E Van Spil , S Nooijen , P Y De Jong , R P Aliredjo , R G De Sevaux , J C Verhave .
144 (Cryptococcal meningitis)

145 [Ned Tijdschr Geneesk] , *Ned Tijdschr Geneesk* 159 p. A8478.

146 [Gallo ()] 'A reflection on HIV/AIDS research after 25 years'. R C Gallo . *Retrovirology* 2006. 3 p. 72.

147 [Sepkowitz ()] 'AIDS—the first 20 years'. K A Sepkowitz . *N Engl J Med* 2001. 344 p. .

148 [Blair et al. ()] 'Behavioral and clinical characteristics of persons receiving medical care for HIV infection -
149 Medical Monitoring Project'. J M Blair , J L Fagan , E L Frazier . *MMWR Surveill Summ* 2009. 2009.

150 [Eze and Eze] 'Brain computed tomography of patients with HIV/AIDS before the advent of subsidized
151 treatment program in Nigeria'. K C Eze , E U Eze . *Niger Med J* 53 p. .

152 [Clinical Guidelines for the Diagnosis and Treatment of HIV/AIDS in HIV-Infected Koreans Infect Chemother ()]
153 'Clinical Guidelines for the Diagnosis and Treatment of HIV/AIDS in HIV-Infected Koreans'. *Infect Chemother*
154 2015. 47 p. .

155 [Newton ()] 'Common neurologic complications of HIV-1 infection and AIDS'. H B Newton . *Am Fam Physician*
156 1995. 51 p. .

157 [Oliveira Rdo et al. ()] 'HIV/AIDS epidemic in the State of Amazonas: characteristics and trends from'. S
158 Oliveira Rdo , A S Benzaken , V Saraceni , M Sabido . *Rev Soc Bras Med Trop* 2001 to 2012. 48 p. .
159 (Suppl)

160 [Dedicoat and Livesley ()] 'Management of toxoplasmic encephalitis in HIV-infected adults—a review'. M Dedicoat , N Livesley . *S Afr Med J* 2008. 98 p. .

161 [Simpson et al. ()] 'Neurologic complications of AIDS: new concepts and treatments'. D M Simpson , M Tagliati
162 , S Ramcharitar . *Mt Sinai J Med* 1994. 61 p. .

163 [Simpson and Tagliati ()] 'Neurologic manifestations of HIV infection'. D M Simpson , M Tagliati . *Ann Intern
164 Med* 1994. 121 p. .

165 [Shankar et al. ()] 'Neuropathology of HIV/AIDS with an overview of the Indian scene'. S K Shankar , A
166 Mahadevan , P Satishchandra . *Indian J Med Res* 2005. 121 p. .

167 [Rajshekhar] 'Surgery for brain tuberculosis: a review'. V Rajshekhar . *Acta Neurochir (Wien)* 157 p. .

168 [Wang ()] *The guidance for ADIS/HIV treatment. Chinese journal of infectious diseases*, A Wang . 2006. 02 p. .

169 [Everall et al. ()] 'The shifting patterns of HIV encephalitis neuropathology'. I P Everall , L A Hansen , E Masliah
170 . *Neurotox Res* 2005. 8 p. .

171 [Dannemann et al. ()] 'Treatment of toxoplasmic encephalitis in patients with AIDS. A randomized trial
172 comparing pyrimethamine plus clindamycin to pyrimethamine plus sulfadiazine. The California Collaborative
173 Treatment Group'. B Dannemann , J A Mccutchan , D Israelski . *Ann Intern Med* 1992. 116 p. .

174 [Berenguer et al. ()] 'Tuberculous meningitis in patients infected with the human immunodeficiency virus'. J
175 Berenguer , S Moreno , F Laguna . *N Engl J Med* 1992. 326 p. .

176 [Shyam Babu et al.] 'Usefulness of stereotactic biopsy and neuroimaging in management of HIV-1 Clade C
177 associated focal brain lesions with special focus on cerebral toxoplasmosis'. C Shyam Babu , P Satishchandra
178 , A Mahadevan . *Clinical neurology and neurosurgery* 115 p. .

179 ,