

1 Efficacy of Antirabies IgG and IgY on Protection of Mice Against
2 Experimental Viral Infection as a Model for Emergency
3 Intervention

4 Ahmed Mohamed Albehwar¹

5 ¹ Veterinary Serum and Vaccine Research Institute

6 *Received: 8 December 2015 Accepted: 2 January 2016 Published: 15 January 2016*

7 **Abstract**

8 Preparation of anti-rabies IgY in chicken egg yolk in addition to preparation of antirabies IgG
9 in rabbits and evaluate their efficacy in protection against rabies infection in emergency cases
10 simulated in mice. Materials and Methods: Fifteen, 35 week-old, Rhode Island Red (RIR) hens
11 were used for preparation of anti-rabies IgY from egg yolk. It was found that the obtained IgY
12 had a concentration of 2.32 g/dl. In addition, ten Bosket rabbits of about 3kg bodyweight
13 were used for preparation of anti-rabies IgG which was found to have a concentration of
14 3.42g/dl. Both of chicken egg yolk IgY and rabbit IgG were found to be safe when they are
15 inoculated intraperitoneally in mice. Results: Serum neutralization test revealed that IgY and
16 IgG had rabies antibody titers of 64 and 128 respectively. The tow preparations were tested
17 for determination of their potency in experimentally infected mice with rabies virus on daily
18 intervals post infection.

20 *Index terms*— rabies, vaccine, antirabies IgY, antirabies IgG, emergency.

21 **1 Efficacy of Antirabies IgG and IgY on Protection of Mice
2 Against Experimental Viral Infection as a Model for Emer-
3 gency Intervention**

24 Ahmed Mohamed Albehwar ? , Abeer Atia Tammam ? & Amr Ismail Hassan ? Abstract-Aim: Preparation of
25 anti-rabies IgY in chicken egg yolk in addition to preparation of anti-rabies IgG in rabbits and evaluate their
26 efficacy in protection against rabies infection in emergency cases simulated in mice.

27 Materials and Methods: Fifteen, 35 week-old, Rhode Island Red (RIR) hens were used for preparation of anti-
28 rabies IgY from egg yolk. It was found that the obtained IgY had a concentration of 2.32 g/dl. In addition, ten
29 Bosket rabbits of about 3kg bodyweight were used for preparation of anti-rabies IgG which was found to have
30 a concentration of 3.42g/dl. Both of chicken egg yolk IgY and rabbit IgG were found to be safe when they are
31 inoculated intraperitoneally in mice.

32 Results: Serum neutralization test revealed that IgY and IgG had rabies antibody titers of 64 and 128
33 respectively. The tow preparations were tested for determination of their potency in experimentally infected
34 mice with rabies virus on daily intervals post infection. It was found that intraperitoneal injection of infected
35 mice with 0.5ml containing 116 mg of IgY and 171 mg of IgG were effective to prevent and overcome the progress
36 of rabies signs when administrated on the 0; 1 st ; 2 nd and 3 rd day post exposure to the virus infection and not
37 after that where treated mice on the 4 th to 7 th day post infection were unable to withstand the virus infection.
38 The use of IgY and IgG with inactivated rabies vaccine showed the same results using IgY and IgG alone while
39 the use of rabies vaccine alone did not provide efficient protection for the treated mice.

8 II. CHALLENGE VIRUS STRAIN (CVS)

41 2 Conclusion:

42 The use of anti-rabies IgY and IgG could be recommended as post exposure intervention providing a suitable
43 period of protection until stimulation of the active immunity induced by rabies vaccine. In addition, the
44 preparation of chicken IgY in a non-specific host provides safe, high potent product of lower cost than that
45 prepared in rabbits or other mammals.

46 3 I. Introduction

47 Rabies is a zoonotic disease that affects the central nervous system (CNS), provokes acute and fatal encephalitis in
48 its mammal hosts. The disease etiologic agent is the rabies virus which is a neurotropic, RNA virus belonging to
49 the order Mononegavirales, family Rhabdoviridae, genus Lyssavirus (1). Transmission of rabies infection usually
50 occurs when infected saliva reaches a bite wound or skin scratches, or breaches mucous membranes. A rare route
51 of rabies infection transmission include aerosol infection as in bat caves, ingestion of an infected carrier and
52 transplacental infection. Transmission has occurred in man following transplants of corneas taken from infected
53 patients. Not all animals or human bitten contract the infection. The severity, location, and multiplicity of
54 bites inflicted on the victim, biotype of the virus and the susceptibility of the recipient influence the outcome of
55 potential exposure to infection. Bites on the head and neck are associated with the shortest incubation period
(2).

56 Rabies is a serious public health problem in developing countries, especially in Asia. Approximately 35000 to
57 50000 human deaths occur due to rabies each year (3). Administration of rabies vaccine along with antirabies
58 immunoglobulin is known to prevent development of rabies; however, prompt and precise diagnosis is essential
59 for rabies diagnosis, direct immunofluorescence detection of rabies virus antigens has been used worldwide as a
60 rapid and reliable method.

61 Most rabies-specific antibodies used for diagnosis are made from sera of immunized mammals such as mice,
62 rabbits and goats. However, producing a large amount of specific antibodies from these animals is time-consuming
63 and labor intensive. There is a concern that handling live and large amounts of rabies virus to produce antigen
64 may pose a potential risk of infection to laboratory personnel (4).

65 Recent advances in molecular biology together with newly invented methods of producing antigenspecific
66 antibodies in egg yolk (IgY) have created new opportunities to develop a safe, convenient and inexpensive way
67 of manufacturing various immunodiagnostics ??5.6).

68 The IgY project which developed uncomplicated techniques for immunization of hens, isolation of egg yolk
69 antibodies, and their applicability in various test systems creates continuous considerations in regard of changing
70 from mammalian derived antibodies to egg yolk antibodies for both, (The National Laboratory for Immunology
71 and diagnostics and the Internationally Orientated Service Laboratory).

72 Regarding commercially available polyclonal antibodies being produced worldwide it was found that 297 from
73 almost 16,000 which is less than 2% of polyclonal antibodies deriving from chicken, and only three from these
74 have been prepared from egg yolk, the rest apparently from chicken sera, it may be concluded that in general,
75 chicken are potent antibody producers. Obviously, the IgY-technology needs further propagation (7).

76 The present work aims to prepare anti-rabies IgY in chicken egg yolk in addition to preparation of antirabies
77 IgG in rabbits and evaluate their efficacy in protection against rabies infection in emergency cases simulated in
78 mice.

80 4 II. Materials and Methods

81 Ethics approval: The experiments were carried out according to the protocol of Institutional Animal Ethics
82 Committee and the authors had a permission of the animal owners at the private farms.

83 5 a) Baby hamster kidney cell culture (BHK21)

84 BHK21 was supplied by DPAVR, VSVRI and used in application of SNT to estimate rabies neutralizing antibody
85 titers in the obtained anti-rabies IgY and IgG preparations.

86 6 b) Viruses

87 7 i. Cell culture adapted rabies virus

88 Evelyn Rokitnicki Abelseth (ERA) strain of rabies virus adapted to BHK-21 cell line with a titer of 7 log 10
89 TCID 50 /ml was supplied by Department of Pet Animal Vaccine Research (DPAVR), Veterinary Serum and
90 Vaccine Research Institute (VSVRI), Abbasia, Cairo, Egypt. It was used in serum neutralization test to estimate
91 the induced antibody titer in immunized chicken.

92 8 ii. Challenge virus strain (CVS)

93 Mice brain adapted rabies virus with a titer of 6.5 log 10 MLD 50 /ml was obtained from the DPAVR-VSVRI
94 and used for experimental infection of mice.

95 **9 c) Experimental Hosts i. Chickens ii. Rabbits**

96 Ten Bosket rabbits of about 3kg body weight were used for preparation of anti-rabies IgG after their immunization
97 with the local rabies vaccine in a dose of 0.5 /rabbit inoculated subcutaneously on a week intervals for 5 successive
98 weeks according to (8).

99 Weekly blood samples were collected from chicken and rabbits for 6 weeks for monitoring the levels of induced
100 rabies antibodies in their sera.

101 iii. Mice Two hundreds and five weaned Swiss Albino mice (3-4 weeks old) were experimentally infected with
102 0.03 ml of CVS /mouse intramuscularly while five mice are kept without infection.

103 **10 d) Rabies vaccine**

104 Inactivated cell culture rabies vaccine (ERA strain) was obtained from DPAVR-VSVRI and used for inoculation
105 of chicken and rabbits to prepare anti-rabies IgY from chicken egg yolk and IgG from rabbit sera.

106 **11 e) Isolation and separation of chicken egg yolk IgY**

107 IgY was separated from egg yolk with PEG-6000 as described by (9). and its protein content was measured as
108 described by (10). Where it was 2.32 g /dl.

109 **12 Separation of rabies IgG from rabbit serum**

110 Rabies IgG was precipitated from rabbit serum using ammonium sulphate according to (11). And its protein
111 content was estimated according to (10), and it was 3.42 g /dl.

112 **13 g) Quality control testing of the prepared anti-rabies IgY 113 and IgG**

114 Quality control testing of the obtained preparations were carried out following the directions of (3). Including
115 sterility, safety and potency tests.

116 **14 h) Serum neutralization test (SNT)**

117 SNT was carried out to estimate rabies neutralizing antibodies in test chickens and rabbits as described by
118 (12), and the antibody titer was determined as the reciprocal of the final serum or immunoglobulin preparations
119 dilution which neutralized and inhibited the appearance of the cytopathic effect (CPE) of 100 TCID 50 of rabies
120 virus.

121 **15 i) Experimental design**

122 The previously mentioned infected mice were divided into seven groups where each of the first 5 groups included
123 40 mice, where the 1 st and 2 nd groups received anti-rabies IgY and IgG using a dose of 0.5 ml/mouse inoculated
124 intraperitoneally containing 116 mg of IgY and 171 mg of IgG respectively on daily intervals started from the
125 day of experimental infection up to 7 days post infection. The 3 rd and 4 th groups were treated with IgY with
126 rabies vaccine and IgG with rabies vaccine respectively using the same mentioned doses (As in groups 1and 2)
127 where rabies vaccine was inoculated once in a dose of 0.5ml /mouse inoculated intraperitoneally on the same day
128 of infection. The 5 th group was treated with the rabies vaccine alone with the same dose.

129 The 6 th group of 5mice was kept infected without any treatment (Control +ve). In addition the Fifteen, 35
130 week-old Rhode Island Red (RIR) hens, were used for egg yolk IgY preparation after their immunization with
131 local rabies vaccine in a dose of 0.5 ml/hen inoculated subcutaneously on a week intervals for 5 successive weeks
132 according to (8). Eggs were collected weekly for 6 weeks from these hens where the anti-rabies IgY were separated
133 and titrated. f) 7 th group of 5 mice was kept without infection as (Control -ve).

134 The present results showed that the prepared anti-rabies IgY and IgG were free from foreign contaminants
135 (aerobic and anaerobic bacteria, fungi and mycoplasma) and safe, inducing no abnormal signs in inoculated mice
136 either generally or at the site of inoculation as shown in Table (1). These findings come in agreement with the
137 recommendations of (13). In addition, estimation of the protein contents in the prepared anti-rabies chicken egg
138 yolk IgY and rabbit IgG revealed that they had levels of 2.32g/dl and 3.42g/dl respectively Table (1). Such high
139 levels of protein contents could be attributed to the formation of antibodies which mainly consisted of globulins
140 as stated by (??4), (??5), (??6) and (17).

141 Table (2) demonstrated that rabies serum neutralizing antibody titers began to appear in the sera of chickens
142 and rabbits by the 1 st week post immunization recorded their highest levels (64 and 128 respectively) by the 5
143 th week. These findings showed that rabbits have higher antibody titers than that of chickens, the thing which
144 could be attributed to the host susceptibility as rabies is a mammal host specific virus (4). It was found that the
145 levels of rabies antibodies in chicken and rabbit sera were increased gradually started from the 1 st week post
146 immunization recording their peak by the 5 th week. In this respect similar findings were obtained by (??8),
147 (19), (20) and (21). who considered such sera as hyper-immune preparations depending on their high antibody
148 titers where the protective rabies antibody titer is 0.5 IU (about titer of 32). Treatment of experimentally

149 rabies infected mice with the prepared anti-rabies IgY and IgG showed that the best time for administration
150 of anti-rabies treatment is from 0 time to 2 days post exposure to virus infection providing 100% protection.
151 This protection rate decreased to 40, 20 and 0% for treatment with IgY and 60, 30 and 0% for treatment with
152 IgG on the 3, 4 and 5 days later as shown in Table (4). Non-treated infected mice showed typical rabies signs
153 represented by paralysis of the hind limbs and tail by the 4 th day post infection ended with death while non-
154 infected non-treated mice remained healthy allover the experimental period. These findings come in complete
155 agreement with what reported by (21), (22). And (17). who concluded that post exposure treatment through
156 passive immunization of the victim should be carried out as soon as possible post exposure to viral infection
157 recommended the same present recorded times. Similar results were obtained in case of infected mice treated
158 with either of IgY or IgG with rabies vaccine while treatment with rabies vaccine alone was unable to protect
159 mice against rabies virus infection the thing Rabies vaccine alone These mice were unable to withstand the virus
160 infection where the active immunity required longer time to be effective (0%) 6

161 Infected ¬ treated mice showed typical rabies signs stared by the 4 th day post infection (control +ve)
162 (0%)

163 7

164 Non infected &non treated mice remained healthy allover the experimental period (control -ve)

165 ***DOT= day of treatment post infection**

166 Depending on the obtained results through the present work, it could be concluded that both of antirabies chicken
167 egg yolk IgY and rabbit serum IgG are able to withstand rabies infection when they are administrated on the
168 optimum time post exposure as simulated in mice and further studies are in need to evaluate such preparations
169 in farm animals. In addition, the preparation of chicken IgY in a non-specific host provides safe, high potent
170 product of lower cost than that prepared in rabbits or other mammals where a huge amount of IgY could be
171 obtained through the egg production life of hens with easily housing and simple management requirements.

172 **17 Author's contribution**

173 Ahmed Mohamed Albehwar immunized hens and rabbits with rabies vaccine and collected egg of hens and serum
174 of the rabbits and prepared the IgY and IgG solutions, applied SNT on the obtained preparations to determine
175 the antibody titers, evaluated the results and revised the data and write the research.

176 Abeer Atia Tammam estimated the IgY and IgG content in the obtained preparations and made the quality
177 control testing on both of them besides sharing in application of SNT and writing the research.

178 Amr Ismael Hassan made experimental Infection of mice then immunized them with the obtained preparations
179 to determine their protection rates and analyzed and tabulated the obtained data. All authors read and approved
the final manuscript. ¹

(

Tested preparation	Protein content	Sterility	Safety	Potency
Anti-rabies IgY	2.32g/dl	Sterile	Safe	Potent
Anti-rabies IgG	3.42g/dl			

Figure 1: Table (1

180

(

Tested serum

	Mean serum rabies neutralizing antibody titer*/WPI		
	1WPI	3WPI	5WPI
Chicken	8	16	32 32
Rabbit	8	16	32 64

*Antibody titer = the reciprocal of the final serum dilution which neutralized and inhibited the CPE of 100

WPI= week post immunization

On the other hand, rabies neutralizing antibody titers were found to be 64 and 128 in chicken egg yolk IgY and rabbit serum IgG respectively Table (3) in a

parallel manner confirming that such may be considered as hyperimmune products virus.

Figure 2: Table (2

(

Tested preparation

	Mean rabies neutralizing antibody titer*/WPI		
	1WPI	3WPI	5WPI
Chicken egg yolk IgY	0	16	32 64 64
Rabbit IgG	4	8	16 32 64

*Antibody titer = the reciprocal of the final immunoglobulin preparations dilution which neutralized and inhibited

100TCID 50 of rabies virus

WPI= week post immunization

Figure 3: Table (3

(

Group Received Treatment

Group	Received Treatment	0 DOT*	Number of survived mice/number of treated mice = protection%						
			1 DOT	2 DOT	3 DOT	4 DOT	5 DOT	6 DOT	7 DOT
1	IgY	100	100	100	40	20	0	0	0
2	IgG	100	100	100	60	30	0	0	0
3	IgY& rabies vaccine	100	100	100	40	20	0	0	0
4	IgG &rabies vaccine	100	100	100	60	30	0	0	0
5									

Figure 4: Table (4

Efficacy of Antirabies IgG and IgY on Protection of Mice Against Experimental Viral Infection as a Model for Emergency Intervention		Year 2016	
Year 2016		Year 2016	
Volume XVI Issue		Volume XVI Issue	
I Version I		I Version I	
D D D D)		D D D D)	
((G	
????????? / ??????		2.32	
????????? ??????		????? ?????????????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ??????	
????????? ??????		IgG	
????IgY		?i»128?364?????????(? ?????? ?????? ?)?????????????	
?????		????? ??????	
?????		?i»?"??	
?????????T?"?		?????????T?"?	
?????????		?????????	
?????????		????????? ?i»?"??	
?????????????????		?????????????????	
?????		30? 60????? IgY	
????????? ?????? ?????? %		0	
????????? ????????		????????? ????????	
?????		?????	

Figure 5: G

181 This work was funded by Veterinary Serum and Vaccine Research Institute, Abbassia, Cario, Egypt.
182 Competing interests: The authors declare that they have no competing interests.

183 [????????? ?????????????????????? ??i»?"??i°?"? Igg et al.] , ??? ?????????? ?????????????????????? ??i»?"??i°?"? Igg
184 , ?????????? ?????????? ?????????? ??i»?"????? ?????? ???i»?"????? ??????i°?"? ????? ?????????? ??????
185 IgY , ? ????? , ?????i°?"? ?????? , ? ????????? , ??? ?????? .

186 [??] , ???????i°?"? ???????i°?"-? ???????i°?"-? ?????????? ?????? ?????? ?????? ?? . p. 131.

187 [Inoue et al. ()] , S Inoue , Y Sato , H Hasegawa , A Noguchi , A Yamada , T Kurata , T Iwasaki . 2003. Cross.

188 [Tong et al. ()] 'A simple method for isolating chicken egg yolk immunoglobulin using effective delipidation
189 solution and ammonium sulfate'. C Tong , F Geng , Z He , Z Cai , M Ma . *Poult. Sci* 2015. 94 (1) p.
190 .

191 [Iv and Conclusion] 'Acknowledgments antirabies virus nucleoprotein antiserum on paraffin sections of formalin-
192 fixed tissues'. Iv , Conclusion . *Pathol. Int* 53 p. .

193 [Hogan et al. ()] 'Comparison of rapid laboratory tests for failure of passive transfer in the bovine Ir'. I Hogan ,
194 M Doherty , J Fagan , E Kennedy , M Conneely , P Brady , C Ryan , I Lorenz . *Vet. J* 2015. 68 (1) p. 18.

195 [Motoi et al. ()] 'Detection of rabies-specific antigen by egg yolk antibody (IgY) to the recombinant rabies virus
196 proteins produced in Escherichia coli Jpn'. Yurie Motoi , S I Hajime , K M H; Kozue Sato , Y Kio . *J. Infect.*
197 *Dis* 2005. 58 p. .

198 [Hampson et al. ()] 'Estimating the global burden of endemic canine rabies'. K Hampson , L Coudeville , T
199 Lembo , M Sambo , A Kieffer , M Attlan , J Barrat , J D Blanton , D J Briggs , S Cleaveland , P Costa , C
200 M Freuling , E Hiby , L Knopf , F Leanes , F X Meslin , A Metlin , M E Miranda , T Müller , L H Nel , S
201 Recuenco , C E Rupprecht , C Schumacher , L Taylor , M A Vigilato , J Zinsstag . *Dushoff, J. and Global*
202 *Alliance for Rabies Control Partners for Rabies Preventio*, 2015. 16.

203 [Lewis et al. ()] 'Evaluation of a non-invasive, inhalational challenge method for rabies vaccine potency assay'. C
204 E Lewis , M M Reising , A M Fry , S K Conrad , D Siev , D M Gatewood , J R Hermann . *J. Virol. Methods*
205 2013. 190 (1-2) p. .

206 [Wilson et al. ()] 'Evaluation of a postexposure rabies prophylaxis protocol for domestic animals in Texas: 2000-
207 2009'. P Wilson , E H Oertli , P R Hunt , T J Sidwa . *J Am. Vet. Med. Assoc* 2010. 15 (12) p. .

208 [Expert Committee on Rabies WHO Tech Report Series ()] 'Expert Committee on Rabies WHO Tech'. *Report*
209 *Series* 1992a. 824 p. 84. (WHO)

210 [Fauquet et al. ()] E M Fauquet , M A Mayo , J Maniloff , U Desselberger , L A Ball . *Virus taxonomy: classification and nomenclature of viruses. Eighth report of the International Committee on the Taxonomy of viruses*. *Virus Taxonomy*, (8 th San Diego) 2005. Academic Press. p. .

211 [Narin and Marrack ()] *Fluorescent protein tracing 2 nd Ed*, R C Narin , J R Marrack . 1964. Livingston
212 Edinburgh and London

213 [Green and Rupprecht ()] C E Green , C E Rupprecht . *Rabies and other lyssavirus infections. Infec. Dis. Dog and Cat, 3 rd*, (Ed) 2006. p. .

214 [Hanlon et al. ()] C A Hanlon , I V Kuzmin , J D Blanton , W C Weldon , J S Manangan , C E Rupprecht .
215 *Efficacy of rabies biologics against new lyssaviruses from Eurasia*, 2005. 111 p. .

216 [Ihemelanadu et al. ()] 'Hyper-immune Serum in the control of pest des petit ruminants'. E C Ihemelanadu , O
217 Neduaka , E M Ojukwa . *Trop. Anim. Heal. Prod* 1985. 17 (2) p. .

218 [Vega et al. ()] 'IgY antibodies protect against human Rotavirus induced diarrhea in the neonatal gnotobiotic
219 piglet disease model'. C G Vega , M Bok , A N Vlasova , K S Chattha , F M Fernández , A Wigdorovitz , V
220 G Parreño , L J Saif . doi: 10.1371. *PLoS One* 2012. 7 (8) p. e42788.

221 [Tabll et al. ()] 'Monoclonal antibodies: Principles and applications of immunodiagnosis and immunotherapy
222 for hepatitis C virus'. A Tabll , A T Abbas , S El-Kafrawy , A Wahid . *World J. Hepatol* 2015. 8 (22) p. .

223 [Hanan et al. ()] 'Preparation and evaluation of antiduck and antiturkey sera conjugated with fluorescein
224 isothiocyanate for serological use'. M Hanan , M Ibrahim; Zeinab , A Soror; Elham , El-Ibiary , M H Khodeir
225 . *Vet. Med. J* 2003. 1 p. .

226 [Hala et al. ()] 'Preparation and evaluation of rabbit antigoat and antisheep serum conjugated with fluorescein
227 isothiocyanate. Beni-Suef Vet'. A Hala , M H Khodeir , A Z Hussein . *Med. J* 2003. 1 p. .

228 [Khodeir and Daoud ()] 'Preparation of anti-rabies hyperimmune serum for emergency immunization of farm
229 animals'. M H Khodeir , A M Daoud . *4 th Int. Sci. Conf. NRC* 2008. p. .

230 [Lamprea et al. ()] 'Production and evaluation of an antiserum for immunohistochemical detection of rabies virus
231 in aldehyde fixed brain tissues'. N P Lamprea , L M Ortega , G Santamaría , L Sarmiento , O Torres-Fernández
232 . *Biomedica* 2010. 30 (1) p. . (Article in Spanish)

17 AUTHOR'S CONTRIBUTION

236 [Edries et al. ()] 'Production and evaluation of rabies hyperimmune serum for serological tests' S M Edries , M
237 H Khodeir , Y Z Habashi . 5 th Sci. Cong. Egyp. Soc Cattle Dis 1999. p. .

238 [Kataria and Sharma ()] 'Serumelectrophoretic studies on sheep vaccinated with live sheep pox virus (Rumanian
239 strain) Ind'. A K Kataria , K N Sharma . Vet. J 1993. 50 p. .

240 [such time was found to be overcame by the passive immunity provided by IgY and IgG] *such time was found*
241 *to be overcame by the passive immunity provided by IgY and IgG,*

242 [Albehwar ()] 'The use of rabies immune globulin in rabies infection simulated in mice 29 th Arab Vet'. A M
243 Albehwar . Med. Cong 2011. p. .