Chromosomes and Cytogenetics of Trematodes

Table of contents

1. I. Introduction

iplozoid monogeneans are gill ectoparasites of freshwater, mainly cyprinid fish are represented by two dozens of species in Europe (Khotenovsky 1985). Systematics of the family remains problematic due to a relatively high interspecific similarity in morphological features and limited number of species included in molecular comparisons (Matejusova et al. 2001;2004;Gao et al. 2007;Civanova et al. 2013;Avenant-Oldewage et al. 2014). Therefore, supplementary approaches would help in the assessment of species delimitation and/or phylogeny. To date, only few studies have been focused on diplozoid cytotaxonomy and none from the Kashmir valley. Koroleva (1968a,b; showed chromosome morphology of six species from various fish hosts, and showed specified cytogenetic characteristics of four of them. Species of Paradiplozoon bliccae, Paradiplozoon sapae, Paradiplozoon nagibinae, Paradiplozoon pavlovskii and Paradiplozoon homoion has 14 acrocentric elements in their diploid set (2n=14), while Diplozoon paradoxum has 2n=8. Baer and Euzet (1961); Bovet (1967); Koroleva (1969) showed that three undetermined diplozoids showed either 14 or 10 chromosomes in diploid set and Koroleva (1968b) studied two other species Eudiplozoon nipponicum and Paradiplozoon megan, revealed n=7 on the basis of meiotic bivalents without any information on the chromosome morphology. The present study describes for the first time the chromosome structure and number of three Diplozoon spp. from Kashmir Valley. The three species of Diplozoon, parasitizing Schizothorax species, have been the objects of our cytogenetic study, aimed at a comparison of a structure of their chromosome sets and an analysis of hypothetic routes of karyotype evolution within the group.

The Clinostomidae Luhe, 1901 is a family of digeneans, the members of which live in the oral cavity, gills, gill covers, eye sockets, operculum, fins, and gill lamellae of fishes. Due to the high degree of morphological variability within the same species, Clinostomum has been subjected to several taxonomic revisions (Gustinelli et al., 2010). The application of a karyology in parallel to morphological study may be particularly important for the identification of Clinostomum species described in the past only on the basis of morphological features.

The purpose of this study is to find out the chromosome number of trematodes from different vertebrate hosts. Differentiate trematodes on the basis of the karyological characteristics and role of these studies in cytotaxonomy. Lastly to find out the general aspects such as trends of karyotypic evolution and sex mechanism of trematodes.

2. II. Materials and Methods

Whole living specimens were placed in physiological saline (0.65% NaCl) containing colchicine (0.05%) for 3-4 hours at room temperature then transferred into distilled water for about one hour for hypotony and fixed in ethanol-glacial acetic acid (3:1), with two changes, 15 minutes each. Spread preparation of mitotic and meiotic chromosomes was made as described by Petkeviciute and Leshko, 1991. Small posterior mature portions of fixed worms were transferred into drop of 60 % acetic acid on a slide and torn into fine pieces with the help of tungsten needles.

The slides were then placed on a heating plate at 45 0 C and the drop of cell suspension was slowly drawn along the slide until it evaporated. Slides were dehydrated in an ethanol series (30%, 50%, 70%, 90% and 100%, 5 minutes each) and stored at -20 0 C until use. Slides were stained with 4% Giesma solution (pH. 6.8) in phosphate buffer for 30 minutes, rinsed in tap water and allowed to dry. The best chromosome plates were photographed and used for morphological studies.

For karyotyping, chromosomes were cut out of the photomicrographs and paired on the basis of size and centromere position. Relative lengths of chromosomes were calculated by the division of the individual chromosome length by the total haploid length and centromeric indices (ci) were determined by division of the length, i.e;

3. Ci =

Length of short arm x 100

4. Total length of chromosome

Measurements are based on all chromosomes from 10 best metaphase spreads of parasites. The terminology relating to centromere position follows that of Levan et al., 1964. A chromosome is metacentric (m) if the ci falls in the range of 37.5-50.0, submetacentric (sm) if 25.0-37.5, subtelocentric (st) if 12.5-25.0 and acrocentric (a) if < 12.5. When the centromere position was on the borderline between two categories, both are listed.

5. III. Results and Discussion

6. a) Chromosomes of Trematodes

A number of workers on trematode cytology, especially Jones and his co-workers, have pointed out the possible taxonomic value of the study of the numbers, volume, and/or size and shape of chromosomes, and much of our information along these lines is based upon their investigations. Among the Monogenea only the Polystomidae have been investigated for the purpose of determining the chromosome numbers.

Polystoma integerrimum [Frolich, 1791] has the haploid number of 4 chromosomes and Gyrodactylus elegans has 6. This could point to a dalyelliid ancestry (n = 2 in all species studied) although more primitive ancestors of the dalyelliids may have had a larger basic number of chromosomes (Table 1). Among the Digenea, the paramphistomatids have been regarded as the most primitive group, but from a cytological standpoint the basic chromosome number is quite variable and is therefore of little guidance in determining possible relationships. For example, Gigantocotyle shows a basic number of 6, Gastrothylax and Zygocotyle have 7, Cotylophoron and Diplodiscus have 8, while Heronimus (chelydrae) has 10. No one family of the rhabdocoel group could be regarded as being directly ancestral based on such divergent records. As much as the exact phylogenetic relationships of the remaining families of the Digenea are not as yet fully determined, even on morphological grounds, and the various authorities disagree as to their proper taxonomic positions, no attempt will be made to discuss our knowledge of chromosome numbers in any significant succession. The diploid chromosome numbers vary among studied digenean taxa, from 12 to 28 (Bariene, 1993); chromosome sets with 20 or 22 elements predominate. But 56 chromosomes were found in diploid sets of Clonorchis sinensis [Cobbold, 1875] (Park et al., 2000). Allocreadiid species possess comparatively large chromosomes, up to 13-14 mm, but low haploid numbers of six, seven or eight were recorded in most species (for a review see Petkeviciute & Staneviciute, 2008). The chromosome complement of Cercariaeum crassum [Wesenberg-Lund, 1934] is unusual among digeneans due to the low number, 2n=10. The karyotype is composed of large and exclusively biarmed chromosomes. Such a karyotype presumably results from a decrease in chromosome number through centromere-centromere Robertsonian fusions that have affected mono-armed chromosomes leading to the formation of large metacentric elements. Comparative analysis of chromosomes of related trematode species indicated that the reduction of chromosome numbers resulted from centromeric fusion rather than elimination of chromosomes (Grossman et al., 1981). Acrocentric mono-armed chromosomes prevail in the karyotypes of larval B. luciopercae, 2n = 14, and larval A. isoporum sensu Wisniewski, 1959, 2n = 14 (Petkeviciute & Staneviciute, 2008). It is notable that the mean total length of haploid complements (TCL) of these two species does not exceed the TCL of C. crassum, despite different chromosome numbers.

It may be noted, however, that all of the heterophyids (Cryptocotyle and Acetodextra), bucephalids (Bucephalus and Rhipidocotyle), fasciolids (Fasciola), and zoogonids (Zoogonus) examined (7 species), as well as 1 species of a gorgoderid (Probolitrema) and 1 of a paramphistomatid (Gigantocotyle) have a basic number of 6 [perhaps thus indicating some relationship to the more primitive paramphistomatids (n = 7)]. The notocotylids (Notocotylus) have 7 chromosomes, but too few examples have been studied to determine the value of such counts. One species of an allocreadid (Bunodera), 1 gorgoderid (Gorgoderina), and 1 schistosomatid (Schistosomatium) have 7 chromosomes, in addition to the 2 amphistomids (Zygocotyle and Gastrothylax). All of the Schistosoma species studied show n = 8, as do 2 species of gorgoderids (Gorgodera and Phyllodistomum), 1 troglotrematid (Paragonimus), 3 species of allocreadids (Bunodera, Crepidostomum and Allocreadium), 1 species of a rhopaliid (Rhopalias), and 2 species of the reniferids (Staphylodora and Telorchis), in addition to the 2 species of paramphistomatids (Cotylophoron and Diplodiscus). Two species of the azygiids (Azygia and Proterometra), 2 species of the plagiorchids (Eustomas and Glypthelmins), 1 species of a spirorchid (Spirorchis), 1 pronocephalid (Macrovestibulum), 1 lecithodendriid (Brandesia), 1 monorchid (Asymphylodora), 1 hemiurid (Halepegus), and 1 reniferid (Auridistomum), in addition to 1 race of the paramphistomatid Diplodiscus (temperatus) have 9 chromosomes. Those having a basic number of 10 chromosomes are 1 species of a cyclocoelid (Cyclocoelum), 2 species of dicrocoelids (Brachycoelium and Dicrocoelium), 1 clinostomatid (Clinostomum), and 1 hemiurid (Isoparorchis). Only Heronimus of the paramphistomatids falls in this category. Four species of plagiorchiids (3 Pneumonoeces and 1 Plagitura), 1 echinostomid (Parorchis), 2 lecithodendriids (Acanthatrium and Loxogenes), and 15 species of reniferids (1 Dasymetra, 1 Lechriorchis, 1 Natriodora, 6 Neorenifer, 2 Pneumatophilus, 1 Renifer, and 3 Telorchis) have 11 chromosomes. In these cases again no direct relationship to the paramphistomatids can be noted in terms of chromosome number, although in terms of the presence of an increased number of chromosomes as indicating a possible primitive condition, these forms might be regarded as less specialized than others of the Digenea. It should be pointed out, however, that in many cases it is not only in the matter of actual number of chromosomes that similarities (relationships) may be indicated: total volume of chromatic material, shapes and sizes of the chromosomes, point of spindle attachment to individual chromosomes, and behavior during division may afford evidence of equal importance. It is also definite that sufficient differentiation occurs to facilitate identification of species. One species of Cephalogonimus has 14 chromosomes which may be a case of doubling of the usual number of 7 in this genus. If one follows the belief of Ciordia (1949), who doubts the existence of polyploidy among the Trematodes, this would be an example of extreme aneuploidy-duplication of individual chromosomes and not of the set as a unit. The matter of the presence or absence of the so-called heterochromosome ("sex chromosome") has not been determined in most of the trematode species examined, but in a few cases the recognition of two types of sex cells differing from each other in terms of the number, size, shape, volume or behavior of the chromosomal elements would seem to indicate that such sexual differentiation does occur. As examples we may mention the studies on Schistosoma and Schistosomatium. The earlier observations on Schistosoma haematobium, S. mansoni, and S. japonicum [Katsurada, 1904]; seemed to indicate that two types of sperm could be identified and that adult males possessed 15 and adult females possessed 16 somatic chromosomes. This would seem to mean that an X-O condition obtained in these forms. Other studies reported the numbers as 14 and 16, respectively, and were interpreted as showing the presence of a 2X + 12 and a 4X + 12 chromosome complex. Niyamasena (1940) in his studies on S. mansoni found the somatic number of chromosomes to be 16 in each sex, and could not find any evidence of the presence of recognizable sex chromosomes although the possibility of an X-Y condition could not be ruled out. Most recent studies support the finding of 16 chromosomes as the diploid number in all adults of all three of the above Schistosoma species and the inability to recognize sex chromosomes as being present [16 chromosomes are also present in each sex of S. mansoni carcariae [Bilharz, 1852]. Recent studies on Schistosomatium douthitti [Bilharz, 1852]; have presented 2 different interpretations of what is undoubtedly an example of the presence of distinguishable sex chromosomes. One study (Woodhead, 1957) indicates the presence of a single "X" chromosome in the male, while the other (Short, 1957) presents evidence of the heterogametic condition as prevailing in the female. Studies in this laboratory seem to substantiate this second interpretation. The somatic (diploid) number of chromosomes in each sex is 14, with the male showing a pair of large V-shaped chromosomes that are not matched in the female. In the latter case there is a single large V-shaped chromosome apparently paired with a single rod-shaped body. This rod-shaped chromosome does not appear in any of the male cells. It is interpreted as indicative of a ZZAA condition in the male and a ZWAA condition in the female. Short & Menzel (1957) During the present study three monogeneans and one digenean trematodes were investigated for cytological investigation.

7. b) Monogeneans

8. i. Diplozoon kashmirensis Kaw, 1950

Analysis of mitotic metaphase spreads from ten specimens of Diplozoon kashmirensis showed that the karyotype of D. kashmirensis comprised 14 acrocentric chromosomes (2n=14; Fig. 1a). The karyotype formula can be summarized as 2n=14a (Fig. 1b). The longest pair is 14.13 ?m and the shortest pair is 6.21 ?m long (Table 2), the fundamental arm number (NF) = 7 and total chromosome length (TCL) is 72.57 ?m. Arm ratio of the complement ranges between 7.67-14.15 and the centromeric index ranges 6.60 to 12.28. Chromosome pair no. 2, 3 and 4 are nearly similar in their size and are very difficult to identify on the basis of chromosome morphology (Students T-test; P-value = 0.002; P<0.05), precise identification of second, third and fourth chromosome pairs is rather difficult because of the low degree of significance of length differences, but there is significant difference between chromosome pairs of 5 due to length difference between them. So, on the basis of absolute length and centromeric position, the chromosomes have been arranged in order of decreasing length in an ideogram (Fig. 2a,b) Karyotype Formula: (K) 2n=14= 14a

9. ii. Diplozoon aegyptensis Fischthal et Kuntz, 1963

The somatic complement of Diplozoon aegyptensis species revealed a diploid number of 2n = 14 (Fig. 3a) comprising first three pairs of chromosomes as metacentric and last four pairs of chromosomes as acrocentric in which a fundamental arm number (FN) equals 10 (Fig. 3b). The chromosomes range in length between 7.11 µm to 8.08 µm. The total length of the haploid complement equals 55.78 µm. Arm ratio of the complement ranges between 1.09-17.23 and the centromeric index ranges between 5.49-47.90 (Table . 3). On the basis of total length of chromosomes and relative length there is less significant difference between first three pairs of metacentric chromosomes (P=0.002 ; P<0.05 ; Students T-test) and significant difference between last four pairs of acrocentric chromosome pairs (P=0.001 ; P<0.001 ; Students Ttest). The absolute length and centromeric position of the chromosomes have been arranged in order of decreasing length in an ideogram (Fig. 4a,b ). Karyotype Formula : (K) 2n=14= 6m+8a iii. Diplozoon guptai Fayaz and Chishti, 1999 Diploid chromosome number of D. guptai is 2n=14 as revealed after examination of mitotic metaphase spreads from 13 specimens (Fig. 5a). Karyotype (Fig. 5b) included two metacentric (nos. 1 and 2); one submetacentric (no. 3); one subtelocentric (no. 4) and three acrocentric (no.s 5, 6 and 7) chromosome pair; the karyotype formula may be summarized as 2n=4m+2sm+2st+6a. The chromosomes are comparatively large; the smallest and the largest chromosomes measured 5.39 ?m and 8.02 ?m, respectively (for chromosome measurements, see Table 4). The number of chromosome arms (NF) is 20 and total chromosome length (TCL) is 47.25 ?m. Arm ratio of the complement ranges between 1.04-34.53 and the centromeric index ranges between 2.81-49.00 (Table . 3). Length difference between first three pairs are much less and there is less significant difference between them (P=0.002; P<0. G pairs, but there are significant length difference between four pairs of chromosomes (P=0.001 ; P<0.001 ; Students T-test). On the basis of absolute length and centromeric position, the chromosomes have been arranged in order of decreasing length in an ideogram (Fig. 6a,b). Karyotype Formula : (K) 2n=14=4m+2sm+2st+6a Karyological characterization of Monogenea species is a neglected subject. However, the study of karyotype of Diplozoon spp. was the first study in Kashmir Valley. Regarding diplozoids, 17 species have been studied cytogenetically to date (13 identified and 4 unclassified taxa, Table 4); karyotypes of only 9 additional monogeneans have been published (Benazzi and Benazzi Lentati 1976;Harris 1985;Rohde 1994;Cable and Harris 2002). As summarized in Table 4, all diplozoid species have chromosome sets comprising 14 acrocentric elements except two species which comprising 3 metacentric and 1 acrocentric elements. Taking into account a hypothesis that less advanced species of a group often have non-symmetric karyotypes (White 1973), this karyotype seems to represent an ancestral type (Koroleva 1969). Thus, Koroleva (1969) suggested that species with chromosome numbers lower than 14 might originate via Robertsonian centric-fusion translocations during evolution.

Four analyzed karyotypes of D. paradoxum, P. bliccae, P. nagibinae, and P. sapae were previously studied by Koroleva (1968aKoroleva ( , b, 1969)), and the data on number and classification of chromosomes fit well with the present results. However, our study has revealed new information on chromosome measurements of Diplozoon species of the Kashmir Valley. Koroleva (1968aKoroleva ( , 1969) ) showed no interspecific differences among species with 2n=14. She reported maximum chromosome length from 3 to 5 ?m in P. bliccae (syn. Diplozoon gussevi) and from 4 to 13 ?m in D. paradoxum (Koroleva 1968a). Our analysis revealed lower chromosome length, but such differences are likely related to different methodology used; it is known that air-dry and spreading techniques produce longer chromosomes than formerly used squashes (Reblanova et al. 2010). The most related congeners P. bliccae, P. nagibinae, and P. sapae (Matejusova et al. 2001(Matejusova et al. , 2004;;Gao et al. 2007) have equal number of 14 chromosomes of very similar morphology, all being acrocentric. However, our study showed that all the three species of Diplozoon examined contain 14 chromosomes with varying length of short and long arm and having different chromosome morphology. D. kashmirensis contains 14 chromosomes of which all are acrocentric (2n=14=14a) and have chromosome length ranging between 6.21-14.13 µm where as D. aegyptensis also contains 14 chromosomes but with different chromosome morphology in which the first three pairs are metacentric and rest of four pairs are acrocentric (2n=14=6m+8a) and have smallest and largest chromosome length between 6.84 and 9.78 µm. The third species D. guptai differs markedly in chromosome morphology (2n=14=4m+2sm+2st+6a) but it has nearly the same chromosome length as of D. aegyptensis i.e., having a short and long arm between 5.39 and 8.02 µm. These data correspond well with the above-mentioned hypothesis of Koroleva regarding an evolution of the D. paradoxum karyotype from an ancestral type with seven one-armed pairs. Regarding interspecific differences of different species of Diplozoon spp. they show variation of their relative lengths (Table 5). Thus, when comparing the relative length of Diplozoon kashmirensis with those of Diplozoon aegyptensis, the differences are not significant (T-value =-0.00, P-value = 0.999 and Pearson correlation =0.190; P-value = 0.683; P>0.05). Those of Diplozoon kashmirensis with Diplozoon guptai (T-Value =0.00, P-Value = 1.000 and Pearson correlation= -0.202, P-value = 0.664; P>0.05) again the differences are not significant and in Diplozoon aegyptensis compared to Diplozoon guptai (T-value =0.00, P-Value = 0.999 and Pearson correlation= -0.127 P-Value =0.787; P>0.05, here we again see that differences are not significant statically. Therefore, the noted differences in the relative chromosome lengths between the individual Diplozoon species cannot be used as a reliable criterion for establishing identification of the Diplozoon species. So, on the basis of centromeric index Diplozoon species can be used for the identification of different species. Thus, pericentromeric heterochromatin, occurring in acrocentric chromosomes of any of studied species with 2n=14, might be lost in the process of centric fusions. It is evident that further detailed cytogenetic study of subsequent diplozoid monogeneans will better reveal general routs of chromosome evolution within the relatively narrow group of interesting fish parasites.

10. a) Digenean Trematode

i. Clinostomum schizothoraxi Kaw, 1950 Colchicine treatment allowed us to examine enough number of metaphase plates with wellcontracted mitotic chromosomes. In this way, the number and morphology was determined with high accuracy. A diploid complement of 2n=20 was found in 43 dividing cells of Clinostomum schizothoraxi (Fig. 7 &8) collected from Schizothorax and Carassius spp. The chromosomes are large; the smallest measured 5.88 ?m and the largest 9.15?m (Table 5 & 6). Karyotype (Pmg. 4.37) included one metacentric (no. 1); two submetacentric (no.s 2 and 3); three subtelocentric (no.s 4; 5 and 6) and four acrocentric (no.s 7, 8; 9 and 10) chromosome pair; the karyotype formula may be summarized as 2n=20=1m+2sm+3t+4a. Number of chromosome arms (NF) was 26; total haploid complement length (TCL) was 77.12 ?m. Arm ratio of the complement ranges between 1.51-18.31 and the centromeric index ranges from 5.18-39.88 (Table 4 G absolute length and centromeric position the chromosomes have been arranged in order of decreasing length in an ideogram and the karyotype formula is; Karyotype Formula : (K) 2n=20=1m+ 2sm+3t+4a.

11. V. Discussion

Digenean Trematodes are karyotypically conservative, and their karyotypes tend to have the same number and closely related gross chromosome morphology of the genus and family (or even higher) taxonomic level. Most of the karyologically studied members of Digenean families are Troglotrematidae, Plagiorchiidae, Telorchiidae, Prosthogonimidae, and Lecithodendriidae. Information on the cytogenetics of G family Allocreadiidae, where some pairs measures up to 8 µm in length and smallest in the families Clinostomidae and Plagiorchiidae, in case of the present study the chromosomes are medium sized; the smallest measured 5.88 ?m and the largest 9.15 ?m. His work was mainly concerned with collecting cytological evidences to find an evolutionary mechanism in Platyhelminthes. However, Short and Menzel (1960) concluded that morphological changes accompanying separation of the genera seem to have been the results of translocations, inversions, deletions, and changes in the number of smaller chromosomes of Digeneans. The present results on karyotype of Clinostomum schizothoraxi, 2n=20, are in agreement with Britt (1947) who described 20 chromosomes of Clinostomum marginatum. Despite limitations of the method used, Britt (1947) established that small chromosomes are characteristic of Clinostomidae species and our data confirm these findings. Mitotic chromosomes of Clinostomum schizothoraxi are medium sized, up to 9.15 ?m. Notable workers like Cable (1931Cable ( , 1974)); Anderson (1935); Chen (1937); Rees (1937); Pennypacker (1936Pennypacker ( , 1940)); Markell (1943); Ciordia (1949;; Willmott (1950); Willey and Godman (1950); John (1956); Dhingra (1954a-c,1955a-c); Guildford (1955,1961); Short, (1955Short, ( , 1957) and Short and Menzel (1957, 1959; Sanderson (1959); Barton (1960); Greson (1958Greson ( , 1964)); Sharma et al. (1968a-b); Saksena (1969); Subramanyam (1973, 1975); Sharma et al (1974) and Jha (1975) have observed interesting cytological variations regarding the chromosome number and morphology in the order Digeneans.

Changes in chromosome form in digeneans trematodes were believed most commonly from centric fusion, pericentric inversions, changes in the amount of heterochromatin and euchromatin, and through other chromosomal rearrangements (Grossman & Cain, 1981). Often a likely route for the evolution of chromosomes within a family or genus can be visualised; key indicators include: karyotypic variation between related species whose diploid complements differ (Barsiene & Grabda-Kazubska, 1988a); atypically large chromosomes (Grossman & Cain, 1981); the relative lengths of chromosomes comprising the haploid genome (White, 1973); and the chromosome arm number (Mutafova, 1994). One of the most commonly observed evolutionary pathways occurring in the digenean genome results from a Robertsonian translocation.

12. VI. Conclusion

Studies of trematode material have been relatively numerous, and the results point definitely toward the desirability of continued efforts in this field of research. The discovery of the presence of heterochromosomes, particularly of the fact that some forms show the female as the heterogamic sex, is of especial interest and importance. Some definite taxonomic relationships are recognizable, but since in some cases they substantiate other types of evidence used in establishing phylogenetic position and in other cases the results seem to be contradictory, further observations are in order. Perhaps some of the apparent contradictions may be eliminated as our knowledge increases. Such definitely has been the case among the Turbellaria, as mentioned in the body of this paper. In the digenetic trematodes studied till to date, most variations in the chromosome numbers within a genus are seldom greater than + 1 or 2 bivalents. Thus the mechanism for an addition or deletion of the chromosome must operate at a low level or inefficient level in this group. This suggest that the differences in the have come about by a doubling of the whole sets of chromosome but by a gradual addition or losses. Each change which represents aneuploid condition becomes stabilized. When variation in the chromosome number exceeds 1 or 2 bivalents, it probably represents successive aneuploid conditions, each change followed by a period of stability in the new chromosome number.

13. VII. Acknowledgement

Volume XVI Issue I Version I

Figure 1. G
, 6 and 7 (P-Value = 0.000; P<0.001; Students T-test). Whereas statistical processing of the established relative lengths of chromosome pairs of 1 & Volume XVI Issue I Version I © 2016 Global Journals Inc. (US) Chromosomes and Cytogenetics of Trematodes 2 (P>0.05) and 4, 5, 6 and 7 (P<0.005) are significant
Figure 2. Figure 1 :Figure 2 :
12Figure 1 : (a)Chromosome preparation of Diplozoon kashmirensis (b) Ideogram constructed from mitotic cells of Diplozoon kashmirensis stained with Giemsa(a= acrocentric)
Figure 3. Figure 3 :Figure 4 :
34Figure 3 : (a) Chromosome preparation of Diplozoon aegyptensis (b) Karyotype constructed from mitotic cells of Diplozoon aegyptensis stained with Giemsa (m= metacentric; a= acrocentric;)
Figure 4.
05; Students T-test), and these are classified metacentric and submetacentric Volume XVI Issue I Version I
Figure 5. Figure 5 :Figure 6 :
56Figure 5 : (a) Chromosome preparation of Diplozoon guptai (b) Karyotype constructed from mitotic cells of Diplozoon guptai stained with Giemsa (m= metacentric; sm= Submetacentric; st= Subtelocentric; a= acrocentric;)
Figure 6. Figure 8 :
8Figure 8 : (a) Haploid idiogram, (b) Error bars with standard error of Clinostomum schizothoraxi Kaw, 1950 Ta ble 6 : Comparative Relative Lengths (%)of Trematodes
Figure 7.
Clinostomidae trematodes is limited largely to the description of the chromosome numbers. Clinostomum schizothoraxi possess 10 haploid chromosomes in which first pair is metacentric; pairs 2 & 3 are submetacentric while pairs 4; 5 & 6 are subtelocentric and pairs 7; 8; 9 and 10 are acrocentric which were observed during the present investigation.Britt (1947) also reported 10 haploid chromosomes in various species of the family Clinostomidae. According toBritt (1947), the largest chromosome were observed in the Volume XVI Issue I Version I
Figure 8.
Figure 9. Table 1 :
1
report a similar condition
Note: Atkinson (1980); Short & Grossman et al. (1981a) Schistosomatium douthitti 2n=16 (ZW No. 2); m/st; 4m + 2sm-m + 2m-sm + 2 s m-st+ 2st + 2t-st Atkinson (1980); Grossman et al. (1981); Grossman (1981) 2n=14 (ZW No. 1); m/st; 4m + 2sm-m + 2m-sm + 2 s m-st+ 2st + 2t-st Short & Menzel (1960); Short & Grossman (1981); Puente & Short (1985); Short (1957); Short & Menzel (1959) Trichobilharzia physellae, 2n=16 Short & Menzel (1960); Short (1983) G Chromosomes and Cytogenetics of Trematodes flukes. © 2016 Global Journals Inc. (US) © 2016 Global Journals Inc. (US) (1980); Moriyama et al. (1979); Rhee et al. (1987); Yin & Ye (1990)
Figure 10. Table 2 :
2
Chromos Length of Length of Total Arm Ratio Relativ Centro Classification
ome pair short arm long arm Length/Abs (L/S) e meric
number (µm) 'S' (µm) 'L' olute Length Index
Length (%) (ci)
(µm) L+S
1 1.63 12.5 14.13 7.67 19.47 11.54 Acrocentric T-Value = -25.39
2 3 1.47 1.22 10.5 9.80 11.97 11.02 7.14 8.03 16.49 15.19 12.28 11.07 Acrocentric Acrocentric P-Value = 0.002 P<0.05
4 1.12 9.00 10.92 8.03 15.05 10.26 Acrocentric
5 0.89 8.80 9.69 9.89 13.35 9.19 Acrocentric T-Value = -10.88
6 0.63 8.00 8.63 12.60 11.89 7.30 Acrocentric P-Value = 0.000
7 0.41 5.80 6.21 14.15 8.56 6.60 Acrocentric P<0.001
Figure 11. Table 3 :
3
Chromos Length of Length Total Arm Relative Centromeric Classification
ome pair short arm of long Length/Absol Ratio Length Index (ci)
number (µm) 'S' arm ute Length (L/S) (%)
(µm) 'L' (µm) L+S
1 3.87 4.21 8.08 1.09 14.49 47.90 Metacentric T-Value =
2 3 3.31 3.03 4.07 3.81 7.38 6.84 1.23 1.26 13.23 12.26 44.85 44.30 Metacentric Metacentric -20.56 P-Value = 0.002
P<0.05
4 0.93 8.85 9.78 9.52 17.53 9.51 Acrocentric T-Value =
5 0.77 7.89 8.66 10.25 15.53 8.89 Acrocentric -14.82 P-
6 0.51 7.42 7.93 14.55 14.22 6.43 Acrocentric Value =
7 0.39 6.72 7.11 17.23 12.75 5.49 Acrocentric 0.001
P<0.001
Figure 12.
Year 2016
Volume XVI Issue I Version I
D D D D )
(
There is less chromosome length differece between 2 &
3; 4 & 5, 6, 7 & 8 and 9 &10 which are statistically less
significant (P<0.05 ; Students T-test). On the basis of
Figure 13. Table 5 :
5
Chromo Length Length Total Arm Relativ Centromer Classification
some of short of long Length/Abs Ratio e ic
pair arm arm olute (L/S) Lengt Index (ci)
number (µm) 'S' (µm) 'L' Length h (%)
(µm) L+S
1 3.21 4.84 8.05 1.51 10.44 39.88 Metacentric
2 2.13 4.11 6.24 1.93 8.09 34.13 Submetacentric P-Value = 0.020 P<0.05
3 2.00 3.88 5.88 1.94 7.62 34.01 Submetacentric
4 1.54 6.63 8.17 4.31 10.59 18.85 Subtelocentric P-Value = 0.012;
5 1.33 6.52 7.85 4.90 10.18 16.94 Subtelocentric P<0.05
6 1.00 5.43 6.43 5.43 8.34 15.55 Subtelocentric P-Value = 0.011
7 0.84 8.31 9.15 9.89 11.86 9.18 Acrocentric P<0.05
8 0.71 8.13 8.84 11.45 11.46 8.03 Acrocentric
9 0.56 7.84 8.40 14.00 10.89 6.67 Acrocentric P-Value = 0.010
10 0.42 7.69 8.11 18.31 10.52 5.18 Acrocentric P<0.001
1
2

Appendix A

Appendix A.1

The authors are highly thankful to the Department of Zoology for providing the Laboratory and Library facility, the first author is also thankful to Prof. Fayaz Ahmad for compiling the paper.

Appendix B

  1. , Acta Parasitol. Polonica 36 p. .
  2. , Biol. Zbl 109 p. .
  3. , J. Parasitol. and Parasitic Dis 3 (1) p. .
  4. , Dokl Akad Nauk USSR 179 p. . (Zoologia)
  5. , Parasitology 12 p. .
  6. , Jap. J. Parasitol 31 (2) p. .
  7. , Parasitol. Res 89 p. .
  8. , 10.1007/s00436-011-2339-y. Parasitol. Res
  9. , Syst. Parasitol 9 p. .
  10. Preliminary studies on chromosomes of 9 species and subspecies of lung fluke in China. .; Zhong Helian-Yin , Xu Hui-Lan.; Gao Pei-Zhi.; Lli Haohong , Zhi-Biao . Chinese Medical J 1982. 95 (6) p. .
  11. Gametogenesis in the primary generation of a digenetic trematode, Proterometra macrostoma Horsfall. ? G Anderson . Trans. Amer. Micr. Soc 1935. 1933. 54 p. .
  12. Gametogenesis, fertilization and cleavage in the trematoda Zygocotyle lunata (Paramphistomidae). ? H Willey , G C Godman . J. Parasitol 1951. 37 (3) p. .
  13. The morphology of chromosomes of Diplostomum pseudospathaceum Niewiadomska, 1984 (Digenea, Diplostomatidae) karyotype. ? Mutafova , K Niewiadomska . Acta Parasitol 1988.
  14. Paradiplozoon ichthyoxanthon n. sp. (Monogenea: Diplozoidae) from Labeobarbus aeneus (Cyprinidae) in the Vaal River. A Avenant-Oldewage , L E Le Roux , S N Mashego , B Jansen Van Vuuren . South Africa. Journal of Helminthology 2014. 88 p. .
  15. The germ cell cycle in the trematode family. A E Woodhead . Bucephalidae. Trans. Amer. micr. Soc 1931. 50 p. .
  16. Germ-cell development in the first and second generations of Schistosomatium douthitti (Cort, 1914) Price, 1931. A E Woodhead . Trans. Am. Micr. Soc 1957. 76 p. .
  17. Cytogenetics, evolution and systematics of Digenea (Trematoda: Platyhelminthes). A G Iha . Egypt. J. Genet. Cytol 1975. 4 p. .
  18. First description of the adult stage of Clinostomum cutaneum Paperna, 1964 (Digenea: Clinostomidae) from grey herons Ardea cinerea L. and a redescription of the metacercaria from the Nile tilapia Oreochromis niloticus niloticus (L.) in Kenya. A Gustinelli , M Caffara , D Florio , E O Otachi , E U Wathuta , M L Fioravanti . Syst. Parasitol 2010. 76 p. .
  19. Sex chromatin in Schistosoma mansoni. A I Grossman , R Mckenzie , G D Cain . Journal of Parasitology 1980. 66 p. .
  20. Karyotypes and chromosome morphologies of Megalodiscus temperatus and Philophthalmus gralli. A I Grossman , G D Cain . Journal of Helminthology 1981. 55 p. .
  21. Karyotype evolution and sex chromosome differentiation in Schistosomes (Trematoda, Schistosomatidae). A I Grossman , R B Short , G D Cain . Chromosoma 1981a. 84 p. .
  22. Somatic chromosomes of Schistosoma rodhaini, Schistosoma matthei and Schistosoma intercalatum. A I Grossman , R B Short , R E Kuntz . J. Parasitol 1981b. 67 p. .
  23. Oogenesis and the chromosomes of Paramphistomum explanatum (Digenea: Trematoda). A K Sharma , S S Lal . C I S 1984. 36 p. .
  24. Nomenclature for centromere position on chromosomes. A Levan , K Fredga , A Sandberg . Hereditas 1964. 52 p. .
  25. Maturation and fertilization in two digenetic trematodes, Haplometra cylindracea (Zeder, 1800) and Fasciola hepatica (L.). A R Sanderson . Proc. Roy. Soc. Edinburg 1959. 67 p. .
  26. Karyological studies on three strigeid digeneans: Ichthyocotylurus erraticus (Rudolphi, 1809), I. variegatus (Creplin, 1825) and Apatemon gracilis (Rudolphi, 1819). A S Bell , C Sommerville , D I Gibson . Systematic Parasitology 1998. 41 p. .
  27. Oogenese, Eireifung und Befruchtung von Fasciola hepatica L. A Schellenberg . Arch. f. Zellf 1911. 6 p. .
  28. , A Schreiner . JVidenskabs. Selskabets Schrifter. I. Math-Naturw 1908. 8 p. .
  29. Germ cell cycle of Megalodiscus temperatus (Stafford, 1905) Harwood, 1932. (Paramphistomidae: Trematoda). A Vander Woude . Amer. Midland. Naturalist 1954. 51 p. .
  30. Macravestibulum kepneri n. sp.; a morphological and cytological study of a pronocephalid trematode. A W Jones , B W Mounts , G ? W?1??tt . J. Morphol 1945. 77 p. .
  31. The chromosomes of Spirorchis magnitestis Byrd, 1939 (Trematoda, Digenea). A W Jones , ? C Mayer . J. Tenn. Acad. Sci 1953. 28 p. .
  32. The chromosomes of a species of Halipegus Looss, 1899 (Digenea: Hemiuridae). A W Jones . J. Tenn. Acad. Sci 1956. 31 p. .
  33. The chromosome number of Philophthalmus hegeneri Penner, Fried, 1963 (Trematoda). B Fried . Proc. Helminthol. Soc. Wasch 1975. 42 (2) p. 197.
  34. , Caryologia . 41 p. .
  35. Chromosomes and Chromosome Breakage in the Lung Fluke, Paragonimus heterotremus. C Komalamisra . J. Trop. Med. Parasitol 2005. 28 p. .
  36. Genomes of Paragonimus westermani and related species: current state of knowledge. D Blair . International Journal for Parasitology 2000. 30 p. .
  37. and Neoacanthoparyphium echinatoides (Filippi, 1854) Odening, 1962 (Trematoda: Echinostomatidae). Dietz . Acta Parasitol. Polonica 1909. 35 p. .
  38. The chromosome number of Leucochloridiomorpha constantiae (Trematoda). E J Fi1ipp?ne , B Fried . J. Parasitol 1974. 60 p. 929.
  39. Gametogenesis and egg-shell formation in Probolitrema californiense Stunkard, 1935 (Trematoda: Gorgoderidae). E K Markell . Trans. Am. Microsc. Soc 1943. 62 p. .
  40. Comparative karyological analysis of four diplozoid species (Monogenea, Diplozoidae), gill parasites of cyprinid fishes. E Koskova , M Spakulova , B Koubkova , M Reblanova , M Orosova . Parasitol. Res 2011. 108 p. .
  41. Comparative karyological analysis of four diplozoid species (Monogenea, Diplozoidae), gill parasites of cyprinid fishes. E Koskova , M Spakulova , B Koubkova , M Reblanova , M Orosova . Parasitol. Res 2011. 108 p. .
  42. Ein Beitrag zur Embryologie der Susswasserdendrocoelen. E Matthieson . Z wiss Zool 1904. 77 p. .
  43. Gaolongsheng . YouShaoyang.; ChenShanlong.; YuHaisin.; XiaoJianhua and WuMengjin. 1985. Studies on the karyotype of Schistosoma japonicum,
  44. Genome size estimation of liver fluke Opisthorchis viverrini by real-time polymerase chain reaction based method. Parasitology International 61 (1) p. .
  45. Germinal development in Philophthalmus megalurus (Cort, 1914) (Trematoda: Digenea). G M Kahlil , R M Cable . Z. Parasitenkd 1968. 31 p. .
  46. Karyotype analysis of Neodiplostomum seoulense. G M Park , S U Lee , H Y Park , S Huh . Korean J. Parasitol 1998. 36 p. .
  47. Chromosomes of the liver fluke, Clonorchis sinensis. G M Park , K Im , S Huh , T S Yong . Korean J. Parasitol 2000. 38 p. .
  48. A study on the chromosomes of Fasciola hepatica. G O Li , J S Jin , P Y Wang . Chinese J. Veter. Sci. Technol 1988. 6 p. .
  49. Studies on the chromosomes of three species of the Indian digenetic trematodes of three species of the Indian digenetic trematodes. G P Scharma , V Nakahasi . Proc. 3rd Intern, (3rd Intern) 1974. August 25-31. 1 p. 378.
  50. Chromosome studies in the family Paramphistomidae (Digenea-Trematoda). G P Sharma , O P Mittal , P Nadhubala . Proc, (null) 1968.
  51. Studies on the chromosomes of three species of the Indian Digenetic trematodes. G P Sharma , V N?khasi . Congr. Parasitol. Miunchen 1974. August 25-31. p. 376. (3rd Intern)
  52. Studies on the germ cell cycle of the digenetic trematode Parorchis acanthus Nicoll. G Rees . Proc. Zool. Soc 1937. p. .
  53. Studies on the germ cell cycle of the digenetic trematode Parorchis acanthus Nicoll. Part. 1. Anatomy of the genitalia and gametogenesis in the adult. G Reese . Parasitol 1939. 31 p. .
  54. Cytological study of Rhopalias macracanthus Chandler, 1932, a trematode from the opossum, Didelphys virginiana. H Ciordia . J. Parasitol 1949. 35 p. .
  55. The chromosomes of Notocotylus filamentis Barker, 1915, a monostome from the muskrat (Fiber zibethicus). H Ciordia . Trans. Amer. micr. Soc 1950. 69 p. .
  56. Cytological studies on the germ cell cycle of the trematode family Bucephalidae. H Ciordia . Trans. Amer. Micr. soc 1956. 75 p. .
  57. Chromosomes of digenetic Trematodes. H G Britt . Amer. Nat 1947. 81 p. .
  58. Gametogenesis in Heronimus chelydrae. H G Guilford . Trans. Amer. mic. Soc 1955. 74 p. .
  59. Gametogenesis, egg-capsule formation, and early miracidial development in the digenetic trematode Halipegus eccentricus Thomas. H G Guilford . J. Parasitol 1961. 47 (5) p. .
  60. C banding analysis of six species of lung flukes, Paragonimus spp. H Hirai , Y Sakakuchi , S Habe , H T Imai . Trematoda: Platyhelminthes), from Japan and Korea, 1985. 71 p. .
  61. Chromosomes of two species in Cercaria parasitized on the clam, Ruditapes philippinarum. H Ieyma , F ?z?ki . Chromosome Inform. Service 1987. 43 p. .
  62. Germ cell cycle of Echinostoma revolutum (Froelich, 1802). H M Churchill . J. Parasitol 1950. 36 p. .
  63. Redescription of chromosomes of Schbtomatium douthitti (Trematoda: Schistosomatidae). H S Puente , R B Short . Journal of Parasitology 1985. 71 p. .
  64. Karyotypic findings of the lung fluke, Paragonimus westermani (Kerbert, 1878), in the Uda Area of Nara Prefecture. H Sugiyama , M Okuda , M Matsumoto , T Kikuchi , Y Odagiri , T Tomimura . Japan. Jap. J. Vet. Sci 1985. 47 p. .
  65. Studies on the karyotypes of Fasciola spp. H Yin , B Y Ye . J. Parasitol. Parasitic. Diseases (Shanghai) 1990. 8 p. .
  66. Fauna of the USSR. Monogenea. Nauka, I A Khotenovsky . 1985. Leningrad.
  67. Chromosome study of Fsoparorchis hypselobagri Billet, 1898 (Digenea: Hemiuridae). I Chattopadhyay , B Manna . Journal of Helminthology 1987. 61 p. .
  68. Molecular markers for gyrodactylids (Gyrodactylidae: Monogenea) from five fish families (Teleostei). I Matejusova , M Gelnar , A J A Mcbeath , C M Collins , C O Cunningham . Int. J. Parasitol 2001. 31 p. .
  69. Identification of European diplozoids (Monogenea, Diplozoinae) by restriction digestion of ribosomal RNA internal transcribed spacer. I Matejusova , B Koubkova , C O Cunningham . J. Parasitol 2004. 90 p. .
  70. Two types of the lung fluke which has been called Paragonimus westermani (Kerbert, 1878). I Miyazaki . Medical Bull of Fukuoka Univ 1978. 5 p. .
  71. Ind , Sci . Cong., Part II, Abstracts, p. .
  72. Preliminary data on the chromosomes of Echinostoma caproni Richard, I Richard , A V?llz . 1987. 1964. (Trematoda: Echinostomatidae)
  73. A comparative study on chromosomes in plagiorchiid trematodes. I. Karyotypes of Opisthioglyphe ranae (Frolich, 1791), Haplometra cylindracea (Zeder, 1800) and Leptophallus nigrovenosus (Belingham, 1844). J Barsiene , B Grabda-Kazubska . Acta Parasitol. Polonica 1988a. 33 (4) p. .
  74. A comparative study on chromosomes in plagiorchiid trematodes. II. Karyotypes of Plagriorchis sp. J Barsiene , B Grabda-Kazubska . Haematoloechus similis Looss, 1899, and Haematoloechus asper Looss, 1988b. 33 p. .
  75. Chromosome sets of trematodes Parafasciolopsis fasciolaemorpha (Ejsmont, 1932) and Cathemasia hians (Rudolphi, 1809) Looss. J Barsiene . Helminthologia 1990. 27 (3) p. .
  76. Karyological studies of trematodes within the families Psilostomidae and Echinochasmidae. J Barsiene , V Kiseliene . Helminthologia 1990a. 27 p. .
  77. Chromosome sets of Diplostomum paracaudum (Lies, 1959) Shigin 1977 and Diplostomum baeri (Dubois, 1937). J Barsiene , G Staneviciute , K Niewiadomska , V Kiseliene . Acta Parasitol. Polonica 1990a. 35 (2) p. .
  78. Karyotypes of Isthmiophora melis (Schrank, 1788) and Moliniella anceps (Molin, 1858) (Trematoda: Echinostomatidae). J Barsiene , V Kiseliene , B Grabda-Kazubska . Acta Parasitol. Polonica 1990b. 35 p. .
  79. J Barsiene , V Kise1iene . Karyological studies of Echinoparyphium aconiatum, 1990b. 1909. Dietz. p. 1782. (Hypoderaeum conoideum (Blanch)
  80. Karyological studies of trematodes within the genus Echinostoma. J Barsiene , V Kiseliene . Acta Parasitol. Polonica 1991. 36 p. .
  81. A comparative karyological study of trematodes within the genus Diplostomum. J Barsiene , G Staneviciute . Helminthologia 1991. 28 p. .
  82. Karyological studies of trematodes within genus Echinoparyphium (Echinostomatidae). J Barsiene . Ekologija 1991a. 2.
  83. A comparative study on chromosomes in plagiorchiid trematodes. III. Karyotypes of Paralepoderma progeneticum (Buttner, 1951) and Omphalometra flexuosum (Rudolphi, 1809). J Barsiene , B Grabda-Kazubska . Acta Parasitol. Polonica 1991a. 36 p. .
  84. Cathaemasia hians (Rudolphi, 1809) Looss, 1899, Sphaeridiotrema globulus (Rudolphi, 1819) and Azygia lucii (Szidat, 1932). J Barsiene . Ekologija 1991b. 2 p. . (Karyotypes of Paramphistomum sp)
  85. Chromosome sets of Diplodiscus subclavatus (Pallas, 1760) and Notocotylus noyeri Joyeux, 1922 (Trematoda). J Barsiene , B Grabda-Kazubska . Acta Parasitol. Polonica 1991b. 36 p. .
  86. Chromosome sets of Tylodelphys clavata, Tylodelphys excavata and Posthodiplostomum cuticola (Diplostomatidae, Trematoda) from freshwater snails. J Barsiene . Angew. Parasitol 1991c. 32 p. .
  87. Karyotypes of Pleurogenes claviger (Rudolphi, 1819) and Pleurogenoides medians (Olsson, 1876) (Trematoda, Pleurogenidae), J Barsiene , B Grabda-Kazubska . 1991c.
  88. The chromosome set of Apatemon minor and Apatemon sp. (Trematoda) with description of tetraploid embryos. J Barsiene . Angewandte Parasitologie 1992. 32 p. .
  89. The karyotypes of trematodes. 370 pp. Vilnius, Academia, J Barsiene . 1993. (in Russian)
  90. Chromosome Analysis of Two Digenean Species of the Families Heterophyidae and Monorchiidae (Trematoda). J Barsiene , V Roca , G Tapia , J E Martin . Research and Reviews in Parasilology 1995. 55 (3) p. .
  91. Contribution a la morphologie et a la biologie de Diplozoon paradoxum v. Nordmann, 1832. J Bovet . Bull Soc Neuchatel Sci 1967. 3 p. .
  92. Gyrodactylid developmental biology: historical review, current status and future trends. J Cable , P D Harris . Int. J. Parasitol 2002. 32 p. .
  93. Classe des Monogenes, Monogenoidea Bychowsky. J G Baer , L Euzet . Biologie. IV. Plathelminthes, Mesozoaires, Acanthocephales Grasse PP (ed) Traite de Zoologie. Anatomie, Systématique (ed.) 1961. p. . (Nemertiens. Masson et Cie Editeurs)
  94. Karyotype of Fasciola sp. obtained from Korean cattle. J K Rhee , G S Eun , S B Lee . Korean J. Parasitol 1987. 25 (1) p. .
  95. The karyotype of Fischoederius cobboldi (Poirier, 1883) from Korean cattle. J K Rhee , R H Youn , H I Lee . Korean J. Parasitol 1988. 26 (2) p. .
  96. Chromosome studies in the digenetic trematodes of the family Paramphistomatidae. J N Saksena . Proc. Nat. Acad. Sci, (Nat. Acad. SciIndia
    ) 1962. 32 p. .
  97. Chromosome studies of fifteen species of Indian digenetic trematodes. J N Saksena . Proc. Nat. Acad. Sci. India 1969. 39 (1-4) p. .
  98. J V Barsiene , G J Stanyavichyute , O M Oriovskaya . Karyological investigations on trematodes of the family Schistosomatidae in North-West Chukotka. Parazitologiya, 1989. 23 p. .
  99. J V Barsiene , G J Stanyavichyute . Karyotypes of Trichobilharzia szidati and Bilharzieha polvnicu (Schistosomatidae, Trematoda). Parazitologiya, 1993. 27 p. .
  100. Occurrence of triploidy and parthenogenesis in the allocreadiid trematode, Allocreadium fasciatusi Kakaji. J V Ramanjaneyulu , R Madhavi . Current Sci 1983. 1969. 52 (10) p. .
  101. Cytological investigations on two species of allocreadiid trematodes with special references to the occurrence of triploidy and parthenogenesis in Allocreadium fasciatusi. J V Ramanjaneyulu , R Madhavi . Int. J. Parasitol 1984. 14 p. .
  102. The molecular and morphometrical description of a new diplozoid species from the gills of the Garra rufa (Heckel, 1843) (Cyprinidae) from Turkeyincluding a commentary on taxonomic division of Diplozoidae. K Civanova , M Koyun , B Koubkova . Parasitol Res 2013. 112 p. .
  103. Chromosome analysis of Schistosoma rodhaini (Trematoda: Schistosomatidae). Can. K H Atkinson . J. Genet. Cytol 1980. 22 p. .
  104. Karyological study in the digenetic trematode Notocotylus attenuates. K J Rao , Venkat Reddy , P . Curr. Sci 1982. 51 p. .
  105. Chromosomes of Kuhnia scombri and Kuhnia sprostonae (Monogenea, Polyopisthocotylea, Mazocraeidae). K Rohde . Acta Parasitol 1994. 39 p. .
  106. Comparative cytogenetics of Opisthorchid species (Trematoda, Opisthorchiidae). K S Zadesenets , A V Katokhin , V A Mordvinov , N B Rubtsov . Parasitology International 2012. 61 (1) p. .
  107. Studies on chromosomes of the lung fluke in Japan. K Terasaki . Jap. J. Parasitol 1977. 26 p. .
  108. Chromosome analysis on a South American lung fluke, Paragonimus peruvianus. K Terasaki . Jap. J. Parasitol 1978. 27 (1) p. .
  109. Comparative studies on the karyotypes of Paragonimus westermani and Paragonimus pulmonalis Japan. K Terasaki . J. Parasitol 1980. 29 p. .
  110. Comparative studies on the karyotypes of Echinostoma cinetorchis and hortense (Echinostomatidae: Trematoda). K Terasaki , N M?ri?ama , S Tani , K Ishida . Jap. J. Parasitol 1982. 31 (6) p. .
  111. Karyotype of lung fluke, Paragonimus westermani filipinus Miyazaki. K Terasaki . Jap. J. of Veter. Sci 1983. 45 (1) p. .
  112. K W Perkins . Studies on morphology and biology of Acetodextra amiuri (Stafford) (Trematoda: Heterophyidae), 1956. 55 p. .
  113. Preliminary studies on the karyotype of Euparagonimus cenocopiosus Chen. Lei Changqiu , .; Wang Pengpeng , Song Changeun . J. Parasitol. Parasitic Dis 1985. 1962. 3 (1) p. .
  114. Sur la Formation de l'CEuf, la Maturation et la Fecondation de l'Oocyte chez lo Distomum hepaticum. L F Henneguy . C. R. Acad. Sci 1902. p. 134.
  115. Observation of meiosis of Fasciolopsis buski. L Gao . Hereditas (Beijing) 1985. 7 (2) p. .
  116. Chromosome sets of Fasciola hepatica and Fasciola gigantica. L N Romanenko , N M Pleshanova . Tr. VIGIS (Teoreticheskie problemy veterinarnoy ge?mintologii), 1975. 22 p. .
  117. Chromosomal apparatus of trematodes of the general Diplostomum and Tylodelphys (Strigeidida, Diplostomatidae) and its taxonomic significance. L N Romanenko , A A Shigin . Parazitologiia 1977. 11 (6) p. .
  118. The life cycles of Bunodera sacculata and Bunodera luciopercae (Trematoda: Allocreadidae) in Algonquin Park. L R G Cannon . Ontario. Can. J. Zool 1971. 49 p. .
  119. Platyhelminthes. M Benazzi , G Benazzi-Lentati . Animal cytogenetics. Ed. B. John. Berlin, Stuttgart: Gerzuder Borntraeger 1976. 1.
  120. Structure and behaviour of the chromosomes of Paramphistomum crassum Stiles and Goldberger (Trematoda, Digenea). M D L Srivastava , A G Iha . Proc. Nat. Acad. Sci, (Nat. Acad. SciIndia Ann
    ) 1964a. p. 126.
  121. Structure and behaviour of the chromosomes of Isoparorchis hypselobargi Billet, (Trematoda, Digenea, Hemiuridae). M D L Srivastava , A G Iha . Proc. Nat. Acad. Sci. India, N 126, (Nat. Acad. Sci. India, N 126) 1964b.
  122. Uber die Spermatogeneso des Dicrocoelium lanceolatum. M Dingler . Arch. f. Zellf 1910. 4 p. .
  123. The chromosomes in the maturation of the germ cells of the frog lung fluke, Pneumonoeces medioplexus. M I Pennypacker . Arch. Biol. Paris 1936. 47 p. .
  124. The chromosomes and extranuclear material in the maturing germ cells of a frog lung-fluke, Pneumonoeces similiplexus Stafford. M I Pennypacker . J. Morph 1940. 66 p. .
  125. The chromosomes. 6 th ed, M J D White . 1973. London: Chapman and Hall.
  126. Effects of gammairradiation on the infectivity and chromosome aberration of Clonorchis sinensis. M Park , S Yong . The Korean Journal of Parasitology 2003. 41 (1) p. .
  127. A description of karyotype of the giant liver fluke Fascioloides magna (Trematoda, Platyhelminthes) and a review of Fasciolidae cytogenetics. M Reblanova , M Spakulova , M Orosova , E Bazsalovicsova , D Rajsky . Helminthologia 2010. 47 (2) p. .
  128. A comparative study of karyotypes and chromosomal location of rDNA genes in important liver flukes Fasciola hepatica and Fascioloides magna (Trematoda: Fasciolidae), M Reblanova , M Spakulova , M Orosova , I Kralova-Hromadova , Eva Bazsalovicsova , D Rajsky . 2011.
  129. Chromosomes of Fasciola hepatica (Digenea: Fasciolidae) from western Bohemia (CSFR). M Spakulova , I Kraova . Helminthologia 1991. 28 (4) p. .
  130. Karyotype of an avian Schistosome Trichobilharzia szidati (Digenea: Schistosomatidae). M Spakulova , P Horak , I Kralova . International Journal for Pararasitology 1996. 26 (7) p. .
  131. Studies on the karyotype of the echinostome Echinostoma barbosai Lie et Basch. Mutafova , I Kanev . Trematoda: Echinostomatidae) from Bulgaria. Helminthology (Bulg.) 1983. 1966. 16 p. .
  132. Studies on the karyotype of Echinoparyphium aconiatum Diez, 1909 (Trematoda: Echinostomatidae). Mutafova , I Kanev . Helminthology (Bulg.) 1984. 17 p. .
  133. Studies on the karyotype of Echinostoma revolutum (Frolich, 1802) and Echinostoma echinatum (Zeder, 1803) (Trematoda: Echinostomatidae). Mutafova , I Kanev . Helminthology (Bulg.) 1986. 22 p. .
  134. , Nasmark Gigantocotyle Explanatum . Cur. Sci. (India) 1937. 44 (11) p. .
  135. Three karyotypes and their phenotypes of Japanese liver flukes (Fasciola sp). N Moriyama , M Tsuji , T Seto . Jpn. J. Parasitol 1979. 28 p. .
  136. Karyological studies of bovine pancreatic flukes (Eurytrema sp.) and their phenotypes. N Moriyama . J. Parasitol 1982a. 68 (5) p. .
  137. Taxonomical studies of Japanese bovine pancreatic flukes (Eurytrema sp, N Moriyama . 1982b.
  138. Taxonomic values of chromosomes and cytoplasmic inclusions in a digenetic trematode-Phyllodistomum spatula. O P Dhingra . Res. Bull. Panjab. Univer. Zool 1954a. 51 p. .
  139. Gametogenesis and fertilization in Isoparorchis eurytremum. O P Dhingra . Res. Bull. Panjab. Univ 1954b. 44 p. .
  140. Spermatogenesis of a digenetic trematode Gastrothylax cruminifer. O P Dhingra . Res. Bull. Panjab Univ 1955a. 65 p. .
  141. Spermatogenesis of a digenetic trematode Cotylophoron elongatum. O P Dhingra . Res. Bull. Panjab Univ 1955b. 64 p. .
  142. Gametogenesis in Paramphistomum microbothrium Faschoeder. O Sey . Acta Vet. Hung 1971. 1901. 21 p. .
  143. Taxonomic analysis of Pegosomum asperum and Pegosomum saginatum (Trematoda: Echinostomatidae). O V Aleksandrova , G P Podgornova . Parazitologiia 1978. 12 p. .
  144. The germ cell cycle in the trematode. P D Chen . Paragonimus kellicotti Ward. Trans. Amer. Micros. Soc 1937. 56 p. .
  145. P D Harris . Observations on the development of the male reproductive system on Gyrodactylus gasterostei Glaser, (Monogenea, Gyrodactylidae
    ) 1985. 1974. 91 p. .
  146. , Polonica . 33 p. .
  147. Gametogenesis and fertilization in the frog lung fluke Haematoloechus medioplexus Stafford (Trematoda: Plagiochiidae). P R Barton . J. Morph 1960. 107 p. .
  148. Gametogenesis and fertilization in the frog lung fluke, Haematoloechus medioplexus Stafford (Trematoda: Plagiorchiidae). P R Burton . J. Morph 1960. 107 p. .
  149. Comparative morphometry, morphology of egg and adult surface topography under light and scanning electron microscopies, and metaphase karyotype among three size-races of Fasciola gigantica in Thailand. P Srimuzipo , C Komalamisra , W Choochote , A Jipakdi , P Vanichthanakom , P Keha , D Riyong , K Sukontason , N Komalamisra , K Sukontason , P Tippawangkosol . Southeast Asian J. Trop. Med. Publ. Health 2000. 31 (2) p. .
  150. Chromosomes in the evolution of Platyhelminthes. Genetics of parasitic helminths: recent progress and future directions. P T Loverde . 53rd Annual Meeting, (Chicago, Illinois
    ) 1978. American Society of Parasitologist.
  151. The Chromosomes of Cotylogaster occidentalis and Cotylaspis insignis (Trematoda: Aspidogastrea) with Evolutionary Considerations. P T Loverde , D W Frederickse . Proceedings of the Helminthological Society 1978. 45 (2) p. .
  152. Chromosomes of two species of Paragonimus. P T Loverde . Trans. Am. Microsc. Soc 1979. 98 p. .
  153. Chromosome numbers of some Schistosomes. P T Loverde , R E Kuntz . J. Parasitol 1981. 67 p. 726.
  154. Chromosome studies in the liver fluke, Fasciola gigantica Cobbold, 1856, from Andhra Pradesh. P V Reddy , S Subramanyam . Curr. Sci 1973. 42 p. .
  155. Chromosome studies in Paramphistomum cervi Zeder 1970 (Trematoda: Digenea-Paramphistomidae). P V Reddy , S Subramanyam . Caryologia 1975. 28 p. .
  156. Phylogeny of diplozoids in five genera of the subfamily Diplozoinae Palombi, 1949 as inferred from ITS-2 rDNA sequences. Q Gao , M X Chen , W J Yao , Y Gao , Y Song , G T Wang , M X Wang , P Nie . Parasitology 2007. 134 p. .
  157. Chromosomes in parthenogenetic miracidia and embryonic cercariae of Schistosomatium douthitti. R ? Short , M Y Menzel . Exper. Parasitol 1959. 8 p. .
  158. The gametogenesis of the digenetic trematode. R A R Gress?n . Sphaerostoma bramae (Muller) Luhe. Parasitol 1958. 48 p. .
  159. Oogenesis in the hermaphroditic digenea (Trematoda). R A R Gresson . Parasitology 1964. 54 (3) p. .
  160. Structure of the karyotypes of Opisthioglyphe ranae, Paralepoderma brumpti and Skrjabinoeces sp. R B Petkeviciute , G J Stanevieiute , R P Stenko . Trematoda: Plagiorchiidae) (in Russian). Parazitologya, 1990. 24 p. .
  161. Chromosomes and sex in Schistosomatium douthitti. R B Sh?rt . J . Hered 1957. 48 p. .
  162. Chromosomes and sex in Schistosomatium douthitti (Trematoda: Schistosomatidae). R B Short . J. Heredity 1957. 48 p. .
  163. Chromosomes of nine species of Schistosomes. R B Short , M Y Menzel . Journal of Parasitology 1960. 4 p. .
  164. Somatic chromosomes of Schistosoma mansoni. R B Short , M V Menzel , S Pathak . Journal of Parasitology 1979. 65 p. .
  165. Conventional Giemsa and C-banded karyotypes of Schistosoma rnonsoni and Schistosoma rodhaini. R B Short , A I Grossman . Journal of Parasitology 1981. 67 p. .
  166. Presidential address. R B Short . J. Parasitol 1983. 69 (1) p. .
  167. Chromosomes of Heterobilharzia americana (Digenea: Schistosomatidae) from Texas. R B Short , A I Grossman . J. Parasitol 1986. 72 p. .
  168. Chromosomes of Heterobilharzia americana (Digenea: Schgaria), with ZWA sex determination, from Louisiana. R B Short , W H Teehan , J D Liberatos . Journal of Parasitology 1987. 73 (5) p. .
  169. Eireifung und Befruchtung und Embryonalentwicklung des Zoogonus minis Lss. R Goldschmidt . Zool. Jahrb. Abt. f. Anat 1905. p. 21.
  170. Uber das Verhalten des Chromatins bei der Eireifung und Befruchtung des Dicrocoelium lanceolatum. R Goldschmidt . Arch. f. Zellf 1908. p. 1.
  171. Observation on chromosomes and gametogenesis of Transversotrema patialense (Trematoda), R Madhavi , J V Ramanjaneulu . 1986.
  172. R Madhavi , J V Ramanjaneyulu . Chromosomes of Atrophecaecum burminis (Bhalerao, 1926) (Trematoda: Acanthostomidae), 1988.
  173. Studies on the germ-cell cycle of Cryptocotyle linqua Creplin. I. Gametogenesis in the adult. R M Cable . Quarterly Journal of Microscopic Science 1931. 74 p. .
  174. Phylogeny and taxonomy of the trematodes with reference to marine species. R M Cable . Symbiosis in the Sea. Univ, W A Vernberg (ed.) (Columbia, S.C.
    ) 1974. South Carolina Press. p. .
  175. The comparative karyological analysis of three species of trematodes of genus Notocotylus. R Petkeviciute , J Barsiene . Parazitologiya 1988. 22 p. .
  176. Cytogenetic characteristics of Notocotylus noyeri Joyeux, 1922 (Trematoda, Notocotylidae). R Petkeviciute , J Barsiene , V Mazeika . Acta Parasitologica Lituanica 1989a. 23 p. . (in Russian)
  177. Cytogenetic analysis of two populations of Diplodiscus subclavatus (Trematoda, Diplodiscidae). Parazitologiya, R Petkeviciute , V Kiseliene , R P Stenko . 1989b. 23 p. . (in Russian)
  178. The karyotypes of Triaenophorus nodulosus and T. crassus (Cestoda: Pseudophyllidea). R Petkeviciute , E P Leshko . Int. J. Parasitol 1991. 21 p. .
  179. Karyotypic characterization of Apatemon gracilis. R Petkeviciute , G Staneviciute . Journal of Helminthology 1999. 73 p. .
  180. Chromosomes of Aspidogaster conchicola. R Petkeviciute . Journal of Helminthology 2001b. 75 p. .
  181. Comparative karyological analysis of three species of Bothriocephalus Rudolphi 1808 (Cestoda: Pseudophyllidea), R Petkeviciute . 2003.
  182. Chromosome analysis of Phyllodistomum folium (Trematoda, Gorgoderidae) infecting three European populations of zebra mussels. R Petkeviciute , G Staneviciute , D P Molloy . Parasitol. Res 2003. 90 p. .
  183. Comparative karyological analysis of three members of Allocreadiidae (Digenea): taxonomic and phylogenetic implications. R Petkeviciute , G Staneviciute . Parasitology Research 2008. 103 p. .
  184. Clarification of the systematic position of Cercariaeum crassum Wesenberg-Lund, 1934 (Digenea), based on karyological analysis and DNA sequences. R Petkeviciute , V Stunzenas , G Staneviciute . Journal of Helminthology 2011. p. .
  185. La Fecondation et la Segmentation chez le Thysanozoon brocchii. R Schockaert . Cellule 1905. 22 p. .
  186. Chromosomen und Geschlecht bei Bilharzia mansoni. S G Niyamasena . Ztschr. Parasitenk 1940. 11 p. .
  187. Chromosomes of Schistosoma mansoni and Ornithobilharzia canaliculata (Trematoda: Schistosomatidae). Short , M Y Menzel . Assoc. South. Biol. Bull 1957. 4 p. 15.
  188. Chromosomes of Cyclocoelum oculeum Trematoda Cyclocoelidae. S J Taft , Le Grande , WH . Journal of Parasitology 1979. 65 (4) p. .
  189. The role of chromosomes in the taxonomy of some digenetic trematodes. S Subramanyam , P Venkat Reddy . The Nucleus 1977. 20 p. .
  190. Gametogenesis and early development in Gigantocotyle bathycotyle (Fischoeder, 1901) Nasmark, 1937. S Willmott . J. Helminth 1950. 24 p. .
  191. Electrophoretic studies on enzymes of diploid and triploid Paragonimus westermani. T Agatsuma , S Habe . Parasitology 1985. 91 p. .
  192. On the Karyotype of a Laboratory Trichinella Strain from Bulgaria. T Mutafova , S Komandarev . Z. Parasitenk 1976. 48 p. .
  193. Studies on the karyotype of Paramphistomum microbothrium Fischoeder. T Mutafova . Helminthology (Bulg.) 1983a. 1901. 16 p. .
  194. Morphology and behavior of the acrocentric chromosomes in the karyotype of Philophthalmus sp. during mitosis. T Mutafova . Helminthology (Bulg.) 1983b. 15 p. .
  195. Effect of diethylnitrosamin on the chromosome structure of rats infected with Fasciola hepatica and on that of the liver fluke. T Mutafova , N Tsocheva , O Polyakova-Krsteva , L Krstev . Khelmithologiya (Sofia) 1986. 22 p. .
  196. Comparative karyological investigation of Echinoparyphium aconiatum Dietz, 1909 and Echinoparyphium recuriatum (Linstow. 1873) Dietz, 1909 (Trematoda: Echinosomatidae). T Mutafova , I Kanev , I Vassilev . Helminthology (Bulg.) 1987. 24 p. .
  197. The morphology of chromosomes of Diplostomum pseudospathaceum Niewiadomska, 1984 (Diplostomidae) karyotype. T Mutafova , K Niewiadomska . Acta Parasitol. Polonica 1988. 33 p. .
  198. Cytological study of Rubenstrema exasperatum (Trematoda: Omphalometridae). T Mutafova , I Kanev . Int. J. Parasitol 1996. 26 p. .
  199. The chromosomal cycle in Parascaris equorum: oogenesis and diminution. T P Lin . Chromosoma 1954. 6 p. .
  200. Some observation in the digenetic trematode Philophthalmus sp. from eagle. Venkat Reddy , P Subramanyam , S . Curr . Sci 1971. 40 p. .
  201. Chromosome studies in the liver fluke, Fasciola gigantica Cobbold, 1856, from Andhra Pradesh. Venkat Reddy , P Subramanyam , S . Curr. Sci 1973. 42 p. .
  202. Chromosomes studies in Paramphistomum cervi Zeder 1970 (Trematoda: Digenea -Paramphistomatidae). Caryologia, Venkat Reddy , P Subramanyam , S . 1975. 28 p. .
  203. , Venkat Reddy , P Subramanyam , S . 1975b.
  204. La reduction dans le Zoogonus mirus Lss. ct la Primartypus. V Gregoire . La Cellule 1909. 25 p. .
  205. First contribution to karyology of two acoels (Turbellaria) and a dinophilid (Annelida), V J Birstein . 1990.
  206. On the Karyology of trematodes of the Genus Microphallus and their intermediate gastropod host II. V J Birstein , N A Mikhailova . Karyological study of Littorina saxatilis (Gastropoda: Prosobranchia), 1990.
  207. Chromosomes of a Monogenetic Trematode, Diclybothriumha mulatum (Simer, 1929) Price, 1942. V M Pickel , A W Jones . Transactions of the American Microscopical Society 1967. 86 (2) p. .
  208. Behaviour of chromosomes during gametogenesis and fertilization in Paradistomoides orientalis. V N Dha? , G P Sharma . Digenea: Trematoda). Caryologia 1984. 37 (3) p. .
  209. Eibildung, Eireifung, Samenreifung und Befruchtung von Brachyocoelium salamandrae (Brachyocoelium crassicolle Rud). Von Kemnitz , GA . Arch. f. Mik. Anat 1913. 1913. 10 p. . (Arch. f. Zellf.)
  210. Mitotic chromosomes of a species of Spirorchis (Trematoda: Spirorchiidae). W H Teehan , R B Short . J. Parasitol 1989. 73 p. .
  211. , W Kaewkong , K Imtawil , W Maleewong , P M Intapan , P Sri-Aroon , S Wongkham . 2012.
  212. Karyotype studies on Paragonimus westermani from Shaoxing County, Zhejiang. W Pengpeng , L Changqui , S Changeun . J. Parasitol. and Parasitic. Dis 1986. 4 (3) p. .
  213. Karyotype analysis of Fasciolopsis buski. X Dai . J. Chongquin Med. Univ 1990. 4 p. 11.
  214. Karyological study on several species of Monogenea of the genus Diplozoon, Y I Koroleva . 1968a.
  215. New data on karyology of some species of the genus Diplozoon. Y I Koroleva . Parazitologiya 1968b. 2 p. .
  216. Karyology of some species of Diplozoon. Y I Koroleva . Parazitologiya 1969. 3 p. .
  217. A note on the chromosomes of the common liver fluke (Fasciola sp. Y Sakaguchi , C Nakagawa . Japan. Chrom. Inf. Serv 1975. 19 p. .
  218. Chromosomes of two species of the lung fluke, Paragonimus ohirai and Paragonimus miyazakii. Y Sakaguchi , I Tada . Chrom. Inf. Serv 1975. 19 p. .
  219. A further chromosome study of the common liver fluke (Fasciola sp. Y Sakaguchi , Y Wakako . Japan. Chrom. Inf. Serv 1976. 20 p. .
  220. A further chromosome study of the common liver fluke (Fasciola sp. Y Sakaguchi , W Yoneda . Japan. CIS 1976. 20 p. .
  221. Chromosomes of a lung fluke. Y Sakaguchi , I Tada . Paragonimus westermani. Chrom. Inf. Serv 1976a. 20 p. .
  222. A comparative karyotype study of lung flukes, Paragonimus ohiria and Paragonimus miyazakii. Y Sakaguchi , I Tada . Jap. J. Parasit 1976b. 25 p. .
  223. Karyotype and gametogenesis of the common liver fluke, Fasciola sp. Y Sakaguchi . Japan. Jpn. J. Parasitol 1980. 29 p. .
  224. Karyotypic studies of lung flukes, Paragonimus iloktsuenensis, Paragonimus sadoensis and Paragonimus westermani. Y Sakaguchi , I Tada . Jap. J. Parasitol 1980. 29 p. .
Notes
1
Barsiene & Stanyavichyute (1993) © 2016 Global Journals Inc. (US)
2
© 2016 Global Journals Inc. (US)
Date: 2016-01-15