

1 Early Diagnosis of Neuron Mitochondrial Dysfunction May
2 Reverse Global Metabolic and Neurodegenerative Disease

3 Martins IJ¹

4 ¹ The University of Western Australia

5 *Received: 9 December 2015 Accepted: 5 January 2016 Published: 15 January 2016*

6

7 **Abstract**

8 The rise in obesity and diabetes in various countries have reached epidemic proportions [1] with
9 the inability of the brain to regulate body weight and energy balance in the early part of life
10 and related to neurodegenerative disease in these countries. Neurons in the brain become
11 sensitive to Western diets with alterations in neurons that lead to brain circuitry disorders or
12 feeding signals [2]. In insulin resistance and neurodegenerative diseases the astrocyte-neuron
13 interaction is defective in the brain [3] and consumption of a Western diet does not allow
14 neurons to metabolize glucose and fatty acids but instead leads to mitochondrial apoptosis
15 and programmed neuron death. In the periphery in global communities liver steatosis can be
16 reversible with hepatocyte mitochondria still able to metabolize fatty acids and glucose after
17 consumption of a healthy low calorie diet but in the brain neuron mitochondria may not
18 continue with mitochondrial biogenesis but continue to undergo apoptosis with neuron death.
19 Networks between various brain cells involve membrane and nuclear lipid signals with diets
20 involved in the regulation, transmission and communication between various brain cells. The
21 three main types of glial cells are the astrocytes, oligodendrocytes and microglia with
22 astrocytes involved with the maintenance of endothelial cells in brain capillaries and the blood
23 brain barrier (BBB) to prevent toxic substances and their entry into the brain with the
24 prevention of mitochondrial apoptosis in neurons. Astrocytes have been shown to be
25 important to neuron lifespan and survival [4,5] with diets and lifestyle involved with epigenetic
26 modification that disrupt astrocyte signalling [3] involved in the maintenance of neurons in
27 individuals in global populations. Nutritional diets that prevent epigenetic alterations include
28 DNA methylation, covalent histone modification and non-coding RNAs that are involved in
29 gene activation and repression with chromatin structure modifica

30

31 *Index terms—*

32 **1 Editorial**

33 **2 Early Diagnosis of Neuron Mitochondrial Dysfunction May
34 Reverse Global Metabolic and**

35 Neurodegenerative Disease

36 Martins IJ

3 Editorial

37 The rise in obesity and diabetes in various countries have reached epidemic proportions [1] with the inability of
38 the brain to regulate body weight and energy balance in the early part of life and related to neurodegenerative
39 disease in these countries. Neurons in the brain become sensitive to Western diets with alterations in neurons that
40 lead to brain circuitry disorders or feeding signals [2]. In insulin resistance and neurodegenerative diseases the
41 astrocyte-neuron interaction is defective in the brain [3] and consumption of a Western diet does not allow neurons
42 to metabolize glucose and fatty acids but instead leads to mitochondrial apoptosis and programmed neuron death.
43 In the periphery in global communities liver steatosis can be reversible with hepatocyte mitochondria still able
44 to metabolize fatty acids and glucose after consumption of a healthy low calorie diet but in the brain neuron
45 mitochondria may not continue with mitochondrial biogenesis but continue to undergo apoptosis with neuron
46 death.

47 Networks between various brain cells involve membrane and nuclear lipid signals with diets involved in the
48 regulation, transmission and communication between various brain cells. The three main types of glial cells
49 are the astrocytes, oligodendrocytes and microglia with astrocytes involved with the maintenance of endothelial
50 cells in brain capillaries and the blood brain barrier (BBB) to prevent toxic substances and their entry into the
51 brain with the prevention of mitochondrial apoptosis in neurons. Astrocytes have been shown to be important
52 to neuron lifespan and survival [4,5] with diets and lifestyle involved with epigenetic modification that disrupt
53 astrocyte signalling [3] involved in the maintenance of neurons in individuals in global populations. Nutritional
54 diets that prevent epigenetic alterations include DNA methylation, covalent histone modification and non-coding
55 RNAs that are involved in gene activation and repression with chromatin structure modifications associated
56 with intact circadian regulation critical for the increased survival of astrocytes and neurons. Atherogenic diets
57 that stimulate bacterial lipopolysaccharides (LPS), mycotoxin and xenobiotics into the central nervous system
58 may induce various cellular stresses with the induction of mitochondrial apoptosis induced neurodegenerative
59 diseases.

60 The increased global susceptibility to insulin resistance associated with brain aging and neurodegenerative
61 diseases now indicate neuron vulnerability to senescence or apoptosis [6] and require early plasma biomarker
62 diagnosis that may assist with reversal of neuron senescence to healthy neurons that may be interpreted from
63 lipidomic tests, genomic tests and proteomic tests [7]. The information provided from these tests now are relevant
64 to the early diagnosis of neuron senescence and linked to mitochondrial biogenesis versus mitochondrial apoptosis
65 that determine the lifespan of neurons. The tests may further assist in novel and important Alzheimer's disease
66 therapeutics that reverse amyloid beta oligomers damage to neurons in diabetes related neurodegenerative disease
67 and Alzheimer's disease [8].

68 Figure ??: Downregulation of the calorie sensitive gene Sirtuin 1 is important to mitochondrial biogenesis
69 with Sirt 1/pr53 regulation of other anti-aging genes such as Klotho, p66shc, Foxo3a and the anti-aging
70 transcription factor PGC1-alpha involved in mitochondrial function. Plasma protein analysis for the diagnosis
71 of neuron mitochondrial function has become important with neurodegeneration closely linked to the global
72 diabetic epidemic, NAFLD and various chronic diseases. Proteins such as apelin, angiotensin II, gelsolin, heat
73 shock proteins, thrombospondin 1, transforming growth factor beta, tumour necrosis factor alpha, insulin like
74 growth factor 1, fibroblast growth factor 21, adiponectin, GDF11 and hepatocyte growth factor are involved
75 with mitochondrial survival and may involve p53 regulation of mitochondrial function in metabolic and
76 neurodegenerative diseases.

77 Genomic analysis now indicate that the antiaging gene Sirtuin 1 (Sirt 1) regulates other anti-aging genes that
78 are now critical to mitochondrial biogenesis and neuron proliferation [8]. Sirt 1's regulation of mitochondria
79 involve p53 regulation and include other anti-aging genes (Figure ??) that synthesize the Klotho anti-aging
80 protein, p66shc longevity protein and transcription factors such as Forkhead box O3(FOXO3a) and peroxisome
81 proliferator-activated receptor gamma coactivator 1-alpha (PGC1 alpha) that are essential for the maintenance
82 of mitochondrial function in cells [9][10][11]. In Figure ?? the plasma proteome analysis of various proteins
83 may now indicate the diagnosis of neuron apoptosis versus neuron survival from the determination of plasma
84 proteins that are relevant to mitochondrial biogenesis versus mitochondrial apoptosis. The plasma proteome
85 analysis for neuron survival that involve mitochondrial health include proteins such as apelin, angiotensin II,
86 gelsolin, heat shock proteins (HSP 70, HSP 60), thrombospondin 1 (TSP-1), Transforming growth factor beta
87 (TGF beta), Tumour necrosis factor alpha (TNF alpha), Insulin like growth factor 1 (IGF-1), Fibroblast growth
88 factor 21 (FGF21), adiponectin, GDF11 and hepatocyte growth factor (HGF). Dysregulated crosstalk between
89 the adipose tissue and the liver [10] alter the release of these proteins with low and defective transport of these
90 proteins to neurons in the brain relevant to increased mitochondrial senescence versus mitochondrial biogenesis.

91 The gene-environment interaction identifies Sirt 1 in many global populations as the defective gene involved in
92 the defective nuclear-mitochondria interactions in the adipose tissue and the liver relevant to the mitochondrial
93 theory of aging [12][13][14]. Sirt 1 (nicotinamide adenine dinucleotide dependent class III histone deacetylase)
94 targets transcription factors such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha
95 (PGC 1-<alpha>), p53, pregnane X receptor (PXR), peroxisome proliferator-activated receptor (PPAR) to
96 adapt gene expression to mitochondrial function with relevance to metabolic activity, insulin resistance and
97 inflammation. Sirt 1 is involved in chromatin remodelling with effects on the nuclear and mitochondria
98 interactions that determine neuron proliferation via mitochondrial biogenesis by deacetylation of PGC 1 alpha

100 and p53 transcription factors that are important to mitochondrial DNA homeostasis [15][16][17][18][19]. Sirt
101 1's regulation of circadian clocks regulate mitochondrial function that determine neuron synaptic plasticity in
102 various neurological diseases [10,[20][21][22][23][24] ??25] ??26] ??27] ??28] ??29] ??30] ??31] ??32] ??33] ??34].
103 Major commercial interests in simple proteome tests that can be conducted in any routine laboratory may
104 now indicate from plasma proteome analysis the proliferation of mitochondria with relevance to neuron survival
105 and prevention of programmed cell death. In the current global non alcoholic fatty liver disease (NAFLD)
106 epidemic the various proteins are important to neuron mitochondrial biogenesis and alterations in these proteins
107 in the blood plasma may be involved in mitochondrial apoptosis and determine early neuron cell death. Sirt
108 1 and Sirt 3 are both involved with neuron mitochondria function with Sirt 1's important role in circadian
109 regulation of Sirt 3's regulation of mitochondrial function ??35, ??6]. However with the aging process various
110 plasma proteins are now relevant to mitochondrial health by the regulation of Sirt 1/p53 expression (Figure
111 ??) that may involve astrocyte regulation of mitochondrial biogenesis versus apoptosis that determine synaptic
112 dysfunction and neurodegeneration ??37] ??38] ??39].

113 HGF has also been shown to be important to neuron and axon survival with relevance to HGF in p53
114 transcriptional regulation and mitochondrial biogenesis ??40] ??41] ??42] ??43] ??44] ??45] ??46] ??47] ??48]
115 ??49] [76,77] with its connections to Sirt 1/IGF-1/GH regulation by diet and nutrition [78]. TNF alpha [79] is
116 particularly sensitive to mitochondrial induced neuronal apoptosis and with TGF beta [80] overide Sirt 1's control
117 of circadian regulation with relevance to mitochondrial related neuron apoptosis [81,82].

118 Adiponectin levels are closely connected to mitochondrial biogenesis with Sirt 1 regulation important
119 to adiponectin gene expression [83][84][85][86][87]. Plasma TSP1 levels have become important to mitochondrial
120 apoptosis with levels of LPS involved in TSP1 regulation and Sirt 1 repression [7]. TSP1 effects on CD47 receptor
121 to prevent mitochondrial biogenesis and TSP-1 effects on p53 expression override Sirt 1/p53 transcriptional
122 regulation of neuron synapticity and survival [88][89][90][91][92][93]. Sirt 1 regulation of brain derived
123 neurotrophic factor (BDNF) is now important to BDNF induced mitochondrial function and synaptic plasticity
124 [9]. Early analysis of plasma proteins (Figure ??) that determine mitochondrial survival by p53 transcriptional
125 regulation may now be important to Sirt 1 metabolism of toxic oligomers such as amyloid beta and alpha synuclein
126 in neurodegenerative diseases [9,10].

127 Furthermore plasma lipidomic analysis allow interpretation that in insulin resistance and neurodegenerative
128 diseases the increased plasma ceramides and sphingosine 1 phosphate are associated with increased liver/neuron
129 mitochondrial apoptosis with programmed cell death of neurons associated with Sirt 1 repression. Lipids such as
130 ceramides have been shown to inhibit Sirt 1/p53 transcriptional regulation and induce cell death in neurons or
131 hepatocytes [94,95]. In contrast sphingosine 1 phosphate may act as a Sirt 1 activator by actions on increased
132 PGC1alpha levels with increased mitochondrial biogenesis [96]. Ceramides supersede the effects of various plasma
133 proteins (Figure ??) that have been shown to regulate p53 transcriptional activity to prevent mitochondrial
134 apoptosis with relevance to neuron differentiation with plasma ceramide levels important to mitochondrial
135 related defects in synaptic plasticity and neurodegeneration [3,7]. Nutritional therapy is required to promote
136 the nuclear-mitochondria interaction and prevent mitochondrial apoptosis with improvement in the astrocyte-
137 neuron crosstalk that determines the lifespan of neurons [97]. Diet and nutrition is particularly relevant to
138 neuron Sirt 1 regulation of the circadian rhythm with relevance to mitochondrial biogenesis and the prevention
139 of high glucose induced mitochondrial dysfunction in neurons [98]. The effects of high fat diets that contain
140 palmitic acid induce liver steatosis and steatosis may be reversible but accelerated mitochondrial disease in
141 neurons [99][100][101][102][103] by palmitic acid as a Sirt 1 inhibitor may induce irreversible neurodegenerative
142 disease ??53]. Nutriproteomic diets [7] have become important by the release from the adipose tissue and liver of
143 proteins essential for the maintenance of the nuclear-mitochondria crosstalk in neurons. In the developing world
144 nutritional therapy may be superseded with relevance to xenobiotic induced mitochondrial apoptosis [104] with
145 accelerated synaptic plasticity defects and neurodegeneration. Activators of Sirt 1 such as leucine may be essential
146 for mitochondrial biogenesis [105,106] and with stress disorders the apelinergic system defects [57] may lead to
147 accelerated mitochondrial apoptosis with neuroendocrine disease. Interests in nutritional therapy include Sirt 1
148 activators such as pyrroloquinoline quinone, resveratrol and rutin [107][108][109][110] that specifically stimulate
149 mitochondria biogenesis in the liver and brain compared with ochratoxin A [111] that interferes with mitochondrial
150 respiration.

151 4 Conclusion

152 Interests in the early diagnosis of neuron senescence has become a major concern for many global communities
153 with accelerated neurodegeneration involved with the metabolic syndrome and various chronic diseases. The
154 mitochondria in neurons are sensitive to dysregulation with irreversible defects in these mitochondria that result
155 in neuron apoptosis early in life. The plasma proteins such as Apelin, Angiotensin II, Gelsolin, Heat shock proteins
156 (HSP 70, HSP 60), Thrombospondin 1 (TSP-1), Transforming growth factor beta (TGF beta), Tumour necrosis
157 factor alpha (TNF alpha), Insulin like growth factor 1 (IGF-1), Fibroblast growth factor 21 (FGF21), GDF11,
158 Adiponectin and Hepatocyte growth factor (HGF) should be measured early in life to determine mitochondrial
159 damage in brain cells. The importance of the plasma profile is now relevant to assessment by nutritional therapy
160 to reverse and halt neuron loss that is irreversible with relevance to the accelerated neurodegeneration and early

¹⁶¹ nutritional regulation has become critical to the reversal of the global NAFLD, metabolic syndrome and chronic
¹⁶² diseases.

¹⁶³ **5 Volume XVI Issue II Version I**

Figure 1:

¹⁶⁴ 1

Early Diagnosis of Neuron Mitochondrial Dysfunction May Reverse Global Metabolic and Neurodegenerative Disease

Crosstalk 54. Attané C., Foussal C., Le Gonidec S., Benani A., between circadian rhythmicity, mitochondrial Daviaud D., et al., (2012): Apelin treatment dynamics and macrophage bactericidal activity. *Immunology*. 2014 Nov; 143(3): increases complete Fatty Acid oxidation, 490-7. mitochondrial oxidative capacity, and biogenesis in

25. Langmesser S 1 , Albrecht U. Life time-circadian muscle of insulin-resistant mice. *Diabetes*; 61(2):
clocks, mitochondria and metabolism. *Chronobiol* 310-20.

Int. 2006; 23(1-2): 151-7. 55. Frier B.C., Williams D.B. and Wright D.C., (2009) The

26. Hu F. and Liu F., (2011): Mitochondrial stress: a effects of apelin treatment on skeletal muscle
bridge between mitochondrial dysfunction and mitochondrial content. *Am J Physiol Regul Integr*
metabolic diseases? *Cell Signal*; 23(10): 1528-33. *Comp Physiol*; 297(6): R1761-8.

27. Todorova V. and Blokland A., (2016): Mitochondria 56. Dikalov S.I. and Nazarewicz R.R., (2013):
and Synaptic Plasticity in the Mature and Aging Angiotensin II-induced production of mitochondrial
Year 2016 (D D D D) A 58. Volume XVI Issue II Version I 28. Aguilar-Arnal L. and Sassone-Corsi P., (2015): Nervous System. *Curr Neuropharmacol*; 2016. [Epub ahead of print] Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription. *Proc Natl Acad Sci U S A*; 112(22): 6863-70. 29. Hirschey M.D., Shimazu T., Huang J.Y. and Verdin E., (2009): Acetylation of mitochondrial proteins. *Methods Enzymol*; 457: 137-47. 30. Tang B.L. (2016): Sirt1 and the Mitochondria. *Mol Cells*; 39(2): 87-95. 31. Rey G. andReddy A.B., (2013):Protein acetylation links the circadian clock to mitochondrial function. *Proc Natl Acad Sci U S A*; 110(9): 3210-1. 32. Anderson K.A. and Hirschey M.D., (2012): Mitochondrial protein acetylation regulates metabolism. *Essays Biochem*; 52: 23-35. 33. Sack M.N. andFinkel T., (2012)Mitochondrial metabolism, sirtuins, and aging. *Cold Spring Harb Perspect Biol*; 1:4(12). 34. Kil I.S., Ryu K.W., Lee S.K., Kim J.Y., Chu S.Y. et al., (2015): Circadian Oscillation of Sulfiredoxin in the Mitochondria. *Mol Cell*; 59(4): 651-63. 35. Brenmoehl J. and Hoeflich A., (2013): Dual
41. Metcalfe A.M., Dixon R.M. and Radda G.K., (1997): Wild-type but not mutant p53 activates the hepatocyte growth factor/scatter factor promoter. *Nucleic Acids Res*; 25(5): 983-986.

42. Stein Y., Jacob A., Goldfinger N., Straussman R. andRotter V., (2016): Mutant p53 modulates the signal of hepatocyte growth factor (HGF) to endow cancer cells with drug resistance. *European Journal of Cancer*; 61(Supplement 1): S134.

43. Xia S. andLaterra J., (2006): Hepatocyte growth factor increases mitochondrial mass in glioblastoma cells. *Biochem Biophys Res Commun*; 345(4): 1358-64. 44. Tyndall S.J. and Walikonis R.S., (2007) Signaling by hepatocyte growth factor in neurons is induced by pharmacological stimulation of synaptic activity. *Synapse*; 61(4): 199-204. 45. Maina F. andKlein R., (1999): Hepatocyte growth factor, a versatile signal for developing neurons. *Nat Neurosci*; 2(3): 213-7. 46. Maina F., Hilton M.C., Andres R., Wyatt S., Klein R.,et al., (1998): Multiple roles for hepatocyte growth factor in sympathetic neuron development. *Neuron*; 20(5): 835-46. 47. Hamanoue M., Takemoto N., Matsumoto K., Nakamura T., Nakajima K. et al., (1996): Neurotrophic effect of hepatocyte growth factor on central nervous system neurons in vitro. *J Neurosci Res*; 43(5): 554-64. 48. Wong W.K., Cheung A.W., Yu S.W.,

165 .1 Acknowledgements

166 [Oliva-Ramírez J 1 et al.] , Oliva-Ramírez J 1 , M M Moreno-Altamirano , B Pineda-Olvera , P Cauich-Sánchez
167 , F J Sánchez-García .
168 [Myotubes and Metab] , . J Nutrit Myotubes , Metab . ID 239750. 2014.
169 [Qiao et al. ()] ‘Adiponectin increases skeletal muscle mitochondrial biogenesis by suppressing mitogenactivated
170 protein kinase phosphatase-1’. L Qiao , B Kinney , H S Yoo , B Lee , J Schaack . *Diabetes* 2012. 61 (6) p. .
171 [Gan et al. ()] ‘Adiponectin prevents reduction of lipid-induced mitochondrial biogenesis via AMPK/ACC2
172 pathway in chicken adipocyte’. L Gan , J Yan , Z Liu , M Feng , C Sun . *J Cell Biochem* 2015. 116 (6)
173 p. .
174 [Frazier et al. ()] ‘Age-dependent regulation of skeletal muscle mitochondria by the thrombospondin-1 receptor
175 CD47’. E P Frazier , J S Isenberg , S Shiva , L Zhao , P Schlesinger . *Matrix Biol* 2011. 30 (2) p. .
176 [Mattson and Magnus ()] ‘Ageing and neuronal vulnerability’. M P Mattson , T Magnus . *Nat Rev Neurosci*
177 2006. 7 (4) p. .
178 [Hage-Sleiman et al. ()] ‘and Ceramide as Collaborators in the Stress Response’. R Hage-Sleiman , M O Esmerian
179 , H Kobeissy , G Dbaibo . *Int J Mol Sci* 2013. 14 (3) p. .
180 [Koczor et al. ()] ‘and Mitochondrial DNA, Their Role in Mitochondrial Homeostasis and Toxicity of Antiretroviral
181 virals’. C A Koczor , R C White , P Zhao , L Zhu , E Fields . *Am J Pathol* 2012. 180 (6) p. .
182 [Martins ()] ‘Anti-Aging Genes Improve Appetite Regulation and Reverse Cell Senescence and Apoptosis in
183 Global Populations’. I J Martins . *Adv Aging Res* 2016. 5 p. .
184 [Martins ()] ‘Appetite Control with Relevance to Mitochondrial Biogenesis and Activation of Post-Prandial Lipid
185 Metabolism in Obesity Linked Diabetes’. I J Martins . *Ann. Obes. Disord* 2016. 1 (3) p. .
186 [Park et al. ()] ‘as guardian of the mitochondrial genome’. J-H Park , J Zhuang , J Li , P M Hwang . *FEBS
187 Letters* 2016. 590 (7) p. .
188 [Park et al. ()] ‘as guardian of the mitochondrial genome’. J-H Park , J Zhuang , J Li , P M Hwang . *FEBS
189 Letters* 2016. 590 (7) p. .
190 [Ricci et al. ()] ‘Astrocyte-neuron interactions in neurological disorders’. G Ricci , L Volpi , L Pasquali , L
191 Petrozzi , G Siciliano . *J Biol Phys* 2009. 2009. 35 (4) p. .
192 [Lane et al. ()] ‘Beyond amyloid: the future of therapeutics for Alzheimer’s disease’. R F Lane , D W Shineman
193 , J W Steele , L B Lee , H M Fillit . *Adv Pharmacol* 2012. 64 p. .
194 [Sikora et al. ()] ‘Cellular senescence in ageing, age-related disease and longevity’. E Sikora , A Bielak-Zmijewska
195 , G Mosieniak . *Curr Vasc Pharmacol* 2014. 12 (5) p. .
196 [Neufeld-Cohen et al. ()] ‘Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient
197 utilization by PERIOD proteins’. A Neufeld-Cohen , M S Robles , R Aviram , G Manella , Y Adamovich .
198 *Proc Natl Acad Sci* 2016. 113 (12) p. .
199 [Gómez-Abellán et al. ()] ‘Circadian expression of adiponectin and its receptors in human adipose tissue’. P
200 Gómez-Abellán , C Gómez-Santos , J A Madrid , F I Milagro , J Campion . *Endocrinology* 2010. 151 (1) p. .
201 [Nilsson et al. ()] ‘Circadian variation in human cerebrospinal fluid production measured by magnetic resonance
202 imaging’. C Nilsson , F Ståhlberg , C Thomsen , O Henriksen , M Herning . *Am J Physiol* 1992. 262 (1) p. .
203 (Pt 2)
204 [Yuzefovich et al. ()] ‘Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin
205 signaling in L6 skeletal muscle cells: role of oxidative stress’. L Yuzefovich , G Wilson , L Racheck . *Am J
206 Physiol Endocrinol Metab* 2010. 299 (6) p. .
207 [Penzo et al. ()] ‘Effects of fatty acids on mitochondria: implications for cell death’. D Penzo , C Tagliapietra ,
208 R Colonna , V Petronilli , P Bernardi . *Biochim Biophys Acta* 2002. 1555 (1-3) p. .
209 [Safdar et al. ()] ‘Exercise increases mitochondrial PGC-1alpha content and promotes nuclearmitochondrial
210 cross-talk to coordinate mitochondrial biogenesis’. A Safdar , J P Little , A J Stokl , B P Hettinga , M
211 Akhtar . *J Biol Chem* 2011. 286 (12) p. .
212 [Mironova et al. ()] ‘Formation of palmitic acid/Ca²⁺ complexes in the mitochondrial membrane: a possible role
213 in the cyclosporininsensitive permeability transition’. G D Mironova , E Gritsenko , O Gateau-Roesch , C
214 Levrat , A Agafonov . *J Bioenerg Biomembr* 2004. 36 (2) p. .
215 [Vernadakis ()] ‘Glia-neuron intercommunications and synaptic plasticity’. A Vernadakis . *Prog Neurobiol* 1996.
216 49 (3) p. .
217 [Wong et al. ()] ‘Hepatocyte growth factor promotes motor neuron survival and synergizes with ciliary neu-
218 rotrophic factor’. V Wong , D J Glass , R Arriaga , G D Yancopoulos , R M Lindsay . *J Biol Chem* 1997. 272
219 (8) p. .

220 [Higashida et al. ()] K Higashida , S H Kim , S R Jung , M Asaka , J O Holloszy . *Effects of resveratrol and*
221 *SIRT1 on PGC-1? activity and mitochondrial biogenesis: a reevaluation*, 2013. 11 p. e1001603.

222 [Russell et al. ()] 'High glucoseinduced oxidative stress and mitochondrial dysfunction in neurons'. J W Russell
223 , D Golovoy , A M Vincent , P Mahendru , J A Olzmann . *FASEB J* 2002. 16 (13) p. .

224 [Martins ()] 'Increased Risk for Obesity and Diabetes with Neurodegeneration in Developing Countries'. I J
225 Martins . *J Mol Genet Med* 2013. 1 (001) p. .

226 [Voloboueva et al. ()] 'Inhibition of mitochondrial function in astrocytes: implications for neuroprotection'. L A
227 Voloboueva , S W Suh , R A Swanson , R G Giffard . *J Neurochem* 2007. 102 (4) p. .

228 [Sádaba et al. ()] 'Insulin-like growth factor 1 (IGF-1) therapy: Mitochondrial dysfunction and diseases'. M C
229 Sádaba , I Martín-Estal , J E Puche , I Castilla-Cortázar . *Biochim Biophys Acta* 2016. 1862 (7) p. .

230 [Sunx and Zemel ()] 'Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells
231 and adipocytes'. Sunx , M B Zemel . *Nutr Metab* 2009. 6 p. 26.

232 [Liang et al. ()] C Liang , B J Curry , P L Brown , M B Zemel . *Leucine Modulates Mitochondrial Biogenesis
233 and SIRT1-AMPK Signaling*, 2014. p. .

234 [Martins and Creegan ()] *Links between Insulin Resistance, Lipoprotein Metabolism and Amyloidosis in
235 Alzheimer's Disease. Health*, I J Martins , R Creegan . 2014. 6 p. .

236 [Lee and Wei ()] 'Mitochondria and aging'. H C Lee , Y H Wei . *Adv Exp Med Biol* 2012. 942 p. .

237 [Ben-Shachar and Laifenfeld ()] 'Mitochondria, synaptic plasticity, and schizophrenia'. D Ben-Shachar , D
238 Laifenfeld . *Int Rev Neurobiol* 2004. 59 p. .

239 [Roué et al. ()] 'Mitochondrial dysfunction in CD47-mediated caspase-independent cell death: ROS production
240 in the absence of cytochrome c and AIF release'. G Roué , N Bitton , V J Yuste , T Montange , M Rubio .
241 *Biochimie* 2003. 85 (8) p. .

242 [Jain et al. ()] 'Mitochondrial reactive oxygen species regulate transforming growth factor-? signaling'. M Jain ,
243 S Rivera , E A Monclús , L Syrenki , A Zirk . *J Biol Chem* 2013. 288 (2) p. .

244 [Sheng ()] 'Mitochondrial trafficking and anchoring in neurons: New insight and implications'. Z H Sheng . *J
245 Cell Biol* 2014. 204 (7) p. .

246 [Sheng and Cai ()] 'Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration'.
247 Z H Sheng , Q Cai . *Nat Rev Neurosci* 2012. 13 (2) p. .

248 [Bina and Rusak ()] 'Nerve growth factor phase shifts circadian activity rhythms in Syrian hamsters'. K G Bina
249 , B Rusak . *Neurosci Lett* 1996. 206 (2-3) p. .

250 [Brynczka and Merrick ()] 'Nerve growth factor potentiates p53 DNA binding but inhibits nitric oxide-induced
251 apoptosis in neuronal PC12 cells'. C Brynczka , B A Merrick . *Neurochem Res* 2007. 32 (9) p. .

252 [Zhou et al. ()] *Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator*, X Zhou ,
253 Q Hao , P Liao , S Luo , M Zhang . 2016. p. e15099.

254 [Pizzio et al. ()] 'Nerve growth factorinduced circadian phase shifts and MAP kinase activation in the hamster
255 suprachiasmatic nuclei'. G A Pizzio , E C Hainich , S A Plano , M R Ralph , D A Golombek . *European J
256 Neurosci* 2005. 22 (3) p. .

255 [Eisenberg and Burgess ()] 'Nutrition Education in an Era of Global Obesity and Diabetes: Thinking Outside
256 the Box'. D M Eisenberg , J D Burgess . *Acad. Med* 2015. 90 (7) p. .

257 [Kwon and Querfurth ()] 'Opposite effects of saturated and unsaturated free fatty acids on intracellular signaling
258 and metabolism in neuronal cells'. B Kwon , H W Querfurth . *Inflamm Cell Signal* 2014. 1 p. e200.

259 [Aquilano et al. ()] 'Orchestrates the PGC-1?-Mediated Antioxidant Response Upon Mild Redox and Metabolic
260 Imbalance'. K Aquilano , S Baldelli , B Pagliei , S M Cannata , G Rotilio , M R Ciriolo . *Antioxid Redox
261 Signal* 2013. 18 (4) p. .

262 [Martins ()] 'Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenera-
263 tive Diseases'. I J Martins . *Int J Mol Sci* 2015. 16 (12) p. .

263 [Dbaibo et al. ()] 'p53-dependent ceramide response to genotoxic stress'. G S Dbaibo , M Y Pushkareva , R A
264 Rachid , N Alter , M J Smyth . *J Clin Invest* 1998. 102 (2) p. .

265 [Hsiao et al. ()] 'Palmitic acid-induced neuron cell cycle G2/M arrest and endoplasmic reticular stress through
266 protein palmitoylation in SH-SY5Y human neuroblastoma cells'. Y H Hsiao , C I Lin , H Liao , Y H Chen ,
267 S H Lin . *Int J Mol Sci* 2014. 15 (11) p. .

268 [Sen et al. ()] 'PGC-1?, a key modulator of p53, promotes cell survival upon metabolic stress'. N Sen , Y K Satija
269 , S Das . *Mol Cell* 2011. 44 (4) p. .

270 [Jang et al. ()] 'Plasma and saliva levels of nerve growth factor and neuropeptides in chronic migraine patients'.
271 M U Jang , J W Park , H S Kho , S C Chung , J W Chung . *Oral Dis* 2011. 17 (2) p. .

275 [Presentation: Antiaging genes regulate post-prandial lipid metabolism with relevance to appetite, chronic disease and neurodege-
276 'Presentation: Antiaging genes regulate post-prandial lipid metabolism with relevance to appetite, chronic
277 disease and neurodegeneration'. https://www.researchgate.net/profile/Ian_Martins2Article
278 nd International Conference and Expo on Lipids: Metabolism Nutrition and Health, October 03-05, 2016.
279 (Appetite Control with Relevance to Mitochondrial Biogenesis and)

280 [Zhang et al. ()] 'Pyrroloquinoline quinone increases the expression and activity of Sirt1 and -3 genes in HepG2
281 cells'. J Zhang , S Meruvu , Y S Bedi , J Chau , A Arguelles . *Nutr Res* 2015. 35 (9) p. .

282 [Emanuele et al. ()] 'Raised plasma nerve growth factor levels associated with early-stage romantic love'. E
283 Emanuele , P Politi , M Bianchi , P Minoretti , M Bertona . *Psychoneuroendocrinology* 2006. 31 (3) p.
284 .

285 [Doll et al. ()] 'Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity'. D N Doll , S L
286 Rellick , T L Barr , X Ren , J W Simpkins . *J Neurochem* 2015. 132 (4) p. .

287 [Sinha et al. ()] 'Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle'. M
288 Sinha , Y C Jang , J Oh , D Khong , E Y Wu . *Science* 2014. 344 (6184) p. .

289 [Gulbins et al. ()] 'Role of mitochondria in apoptosis'. E Gulbins , S Dreschers , J Bock . *Exp Physiol* 2003. 88
290 (1) p. .

291 [Su et al. ()] 'Rutin, a flavonoid and principal component of saussurea involucrata, attenuates physical fatigue
292 in a forced swimming mouse model'. K Y Su , C Y Yu , Y W Chen , Y T Huang , C T Chen . *Int J Med Sci*
293 2014. 11 (5) p. .

294 [Seo et al. ()] S Seo , M S Lee , E Chang , Y Shin , S Oh . *Rutin Increases Muscle Mitochondrial Biogenesis with
295 AMPK Activation in High-Fat Diet-Induced Obese Rats*, 2015. 7 p. .

296 [Yamamoto et al. ()] 'SIRT1 regulates adaptive response of the growth hormone–insulin-like growth factor-I axis
297 under fasting conditions in liver'. M Yamamoto , G Iguchi , H Fukuoka , K Suda , H Bando . *Proc Natl Acad
298 Sci* 2013. 110 (37) p. .

299 [Shen et al. ()] 'Sphingosine 1-phosphate (S1P) promotes mitochondrial biogenesis in Hep G2 cells by activating
300 Peroxisome proliferator-activated receptor ? coactivator 1? (PGC-1?)'. Z Shen , C Liu , P Liu , J Zhao , W
301 Xu . *Cell Stress Chaperones* 2014. 19 (4) p. .

302 [Barnea et al. ()] 'The circadian clock machinery controls adiponectin expression'. M Barnea , N Chapnik , Y
303 Genzer , O Froy . *Mol Cell Endocrinol* 2015. 399 p. .

304 [Tedeschi and Giovanni ()] 'The nonapoptotic role of p53 in neuronal biology: enlightening the dark side of the
305 moon'. A Tedeschi , Di Giovanni , S . *EMBO Rep* 2009. 10 (6) p. .

306 [Martins ()] 'The Role of Clinical Proteomics, Lipidomics, and Genomics in the Diagnosis of Alzheimer's Disease'.
307 I J Martins . *Proteomes* 2016. 4 (2) p. .

308 [Grossfeld et al. ()] 'Thrombospondin-1 expression in bladder cancer: association with p53 alterations, tumor
309 angiogenesis, and tumor progression'. G D Grossfeld , D A Ginsberg , J P Stein , B H Bochner , D Esrig . *J
310 Natl Cancer Inst* 1997. 89 (3) p. .

311 [Alvarez et al. ()] 'Thrombospondin-1 expression in epithelial ovarian carcinoma: association with p53 status,
312 tumor angiogenesis, and survival in platinum-treated patients'. A A Alvarez , J R Axelrod , R S Whitaker ,
313 P D Isner , R C Bentley . *Gynecol Oncol* 2001. 82 (2) p. .

314 [Baek et al. ()] 'Thrombospondin-1 mediates oncogenic Ras-induced senescence in premalignant lung tumors'. K
315 H Baek , D Bhang , A Zaslavsky , L C Wang , A Vachani . *J Clin Invest* 2013. 123 (10) p. .

316 [Kaur et al. ()] *Thrombospondin-1 Signaling through CD47 Inhibits Self-renewal by Regulating c-Myc and Other
317 Stem Cell Transcription Factors* *Scientific Reports*, S Kaur , D R Soto-Pantoja , E V Stein , C Liu , A G
318 Elkahloun . 2013. 1673. 3 p. .

319 [Gast et al. ()] 'Transforming growth factor-beta inhibits the expression of clock genes'. H Gast , S Gordic , S
320 Petrzilka , M Lopez , A Müller . *Ann N Y Acad Sci* 2012. 1261 p. .

321 [Lopez et al. ()] 'Tumor necrosis factor and transforming growth factor ? regulate clock genes by controlling the
322 expression of the cold inducible RNA-binding protein (CIRBP)'. M Lopez , D Meier , A Müller , P Franken
323 , J Fujita . *J Biol Chem* 2014. 289 (5) p. .

324 [Martins ()] 'Unhealthy Nutrigenomic Diets Accelerate NAFLD and Adiposity in Global communities'. I J
325 Martins . *J Mol Genet Med* 2015. 9 (1) p. .