

1 Estimation of New Drug Product Approval Probabilities in 2 Phased Clinical Trials

3 Okeh UM¹ and Oyeka ICA²

4 ¹ Nnamdi Azikiwe University Awka

5 *Received: 12 December 2015 Accepted: 1 January 2016 Published: 15 January 2016*

6

7 **Abstract**

8 This paper proposes and presents a method for the estimation of approval probabilities of new
9 drug or product. The proposed method assumes that three evaluation communities are used
10 to assess and evaluate the quality of a new drug or product and that the evaluation is done by
11 the committees in three period phased clinical trials of the drug product using matched
12 samples of subjects at each phase. Estimates of absolute and conditional approval
13 probabilities by various combination evaluation committees at each phase of clinical trials are
14 provided. Test statistics are also developed testing desired hypothesis at each of the phased
15 clinical trials. The proposed method is illustrated with some sample data. It is shown in terms
16 of estimated probability that it is more difficult for all three evaluation committees to be in
17 complex agreement to approve or not approve a new drug or product than for fewer evaluation
18 committees to grant approval.

19

20 **Index terms**— evaluation committees, product, volunteer, probabilities, phased controlled clinical trials,
21 diagnostic screening tests.

22 **1 I. Introduction**

23 s observed in Onyiora et al (2013) most health care professionals would want their patients to have the best
24 available clinical care but the problem these professional often have is the inability to clearly identify the optimum
25 drug or intervention procedure to adopt in patient treatment and management and often rely on own experience
26 or these of colleagues in actual practice. However, health professionals are increasingly relying on evidence based
27 medical and health practices hinged on a systematic revision evaluation, evaluation, assessment and application
28 of clinical research findings ??Rising, Bacchetti and Baro,2009; ??how and Liu,2004).

29 In medical practice and health management, erroneous and misguided approval of a new drug or product is
30 often hazardous and costly in human and material resources (Gobburn and ??eske, 2009).

31 Following a sequence of clinical trials often conducted in phases by evaluation bodies or committees, approval
32 of a new drug or product for use in a population may be granted if the drug or product satisfies some set of
33 predetermined criteria for use ??Haff, 2003). In controlled clinical trials of new drug or product using cross
34 sectional, prospective or retrospective study methods, the trials are usually conducted in phases using usually
35 test animals and subsequently volunteer human subjects ??Onyiora et al, 2013; ??ipkovic et al, 2008). Approval
36 for use of a new drug product in a population is granted only after the phased clinical trials the proportion of
37 subjects improving with the new drug or product is higher than the proportion improving with the standard
38 drug under all or most of the evaluation committees involved in the phased clinical trials.

39 Following the phased clinical trial procedures, specifically using the three period phased clinical trials by three
40 evaluation committees. Onyiora et al ??2013) proposed and developed a probability model that would enable
41 the calculation of the proportion or probabilities of approving or not approving new drug or product by none,
42 some or all the evaluation committees.

43 The probability estimation model developed the authors is however most useful if the probabilities a-g are
44 given or already be used in the estimation of the probabilities of possible outcomes including the outcomes or

2 II. PROPOSED METHOD

45 evenly listed in the authors' Table 2. The method under reference does not however provide a method to use in
46 the a-priori estimate of the probabilities 'a-g' if not already given and are not known, and must be estimated
47 from sample data obtained in relevant count phased clinical test trials of a new drug or product.

48 In this paper we propose to develop a more generalized method for the estimation of probabilities of outcomes
49 in phased controlled clinical trials of a drug or product by three evaluation committees. The present method
50 would readily enable one estimate probabilities of approval or non-approval of a new drug or product using
51 sample data obtained in three phased clinical trials by three evaluation committees: cross-section, prospective or
52 retrospective clinical trials conducted in three phases. Now to conduct the clinical trials, matched random samples
53 of consenting subjects or volunteers matched by age, sex, body weight and other demographic characteristics are
54 to be used. If the study is a retrospective one then the required data would of course be obtained from case
55 history files of the study participants. Suppose in the first phase of the controlled clinical trials each of the
56 evaluation committees tests, screens or administers a new drug or product to a different but comparable sample
57 of such matched samples of subjects of equal sizes n_1 . In the second phased of the clinical trials three samples
58 of the three cooperating approval agencies, three equal samples of size n_2 .

59 2 II. Proposed Method

60 To develop a method for use in estimating probabilities that may help in the assessment and evaluation of a new
61 drug or product for possible approval for use in a population when these probabilities are not a-priori given, we
62 may assume following Onyiorah et al (2013) (that three mutually co-operating evaluation bodies or committees
63 x, y and z co-operating in the sense that they employ the same evaluation criteria used for the drug or product
64 quality assessment or evaluation) phased controlled clinical trials. The evaluation would be done using controlled
65 crosssectional comparative either prospective or retrospective study in clinical trials conducted in three phases.
66 Now to conduct the clinical trials, matched random samples of consenting subjects or volunteers matched by age,
67 sex, body weight and other demographic characteristics are to be used. If the study is a retrospective one then
68 the required data would of course be obtained from case history files of the study participants. Suppose in the
69 first phase of the controlled clinical trials each of the evaluation committees tests, screens or administers a new
70 drug or product to a different but comparable sample of such matched samples of subjects of equal sizes, n_1 . In
71 the second phase of the clinical trials samples of three equal samples of size n_2 matched pairs of subjects matched
72 on the same demographic characteristics as in the first phase of the trials are used pairs of the three co-operating
73 evaluation committees are assigned to test, screen or treat members in one of each of the three paired samples
74 of matched subjects, with one evaluation committee in each pair testing the first members say of each paired
75 sample of subjects and the other member of the paired evaluation committees testing the second members, say
76 of the paired sample of subjects assigned to that evaluating committee.

77 In the third and last phase of the clinical trials matched triples of size n_3 subjects are used. That is n_3
78 samples each of three matched subjects are used. One subject in each matched triple, that is one subject in each
79 of three matched subjects is tested, screened or treated by one of the three evaluation committees. $? ? = ? ? ?$
80 = Let(1)

81 $x \text{ ix } P u ? + =$ Also define $ix \text{ ix } x \text{ x } E u \text{ Var } u ? ? + + + = = 1 1 1 1 1 1 n n x \text{ ix } x \text{ x } ix \text{ x } x \text{ i } i E$
82 $W E u n \text{ Var } W \text{ Var } u n ? ? + + + = = = = ? ? ? 1 1 ? x \text{ x } x \text{ x } W f P n n ? + + + = = = (1)$

83 The sample estimate of the variance of x is from Equation ??2 1 1 ?() (1) () x x x x W Var Var n n ?
84 ? ? + + + ? = =

85 A null hypothesis that may often be of interest could be that the proportion x of subjects responding
86 positive under evaluation committee X is at most some value, x_0 or symbolically: $0 1 : : (0 1) x x_0 x x_0 x_0 H$
87 versus $H ? ? ? ? + + ? > ?$

88 The null hypothesis H_0 of Equation 8 may be tested using the test statistic() () () 2 2 1 1 2 . () ? 1 x x_0 x
89 $x_0 x x x n W n \text{ Var } W ? ? ? ? + + + ? ? = =$

90 Which under H_0 has approximately the chi-square distribution with 1 degree of freedom for sufficiently large
91 n_1 . The null hypothesis H_0 of equation 8 is rejected at α level of significance if x is the proportion on
92 probability that on the average subjects tested, screened or treated by evaluation committee X responds positive.
93 Its sample estimate is where $x f_+$ is the number of subjects responding positive under evaluation committee X,
94 that is when tested by evaluation committee X. This $x f_+$ is the total number of 1s in the frequency distribution
95 of the n_1 values of 0s and 1s in $ix u$ for $i=1,2, \dots, n_1$. where $y f_+$ is the number of subjects responding positive
96 to evaluation committee Y in the first phase of clinical trials which is the total number of 1s in 1, 1, 2, ..., $y =$
97 $? ? ? =$ Let $1 1 1 1 (1) () (1) () . ; () . (1) iy u i n =$.

98 The corresponding sample variance is $2 1 1 ?() (1) () y y y y \text{ Var } W \text{ Var } n n ? ? + + + ? = =$

99 A null hypothesis similar to that of Equation ??7 for evaluation committee X may also be stated and tested
100 for evaluation committee approval agency.

101 Following similar approaches as above, we also develop sample estimate approval probability z for
102 evaluation committee agency Z as $1 ? z z z W f p n n ? + + + = =$

103 Where $z f_+$ is the number of subjects responding positive when tested, screened or administered a new drug
104 or products evaluation committee approval agency Z during the first phase of clinical trials. The corresponding
105 sample variance is similarly estimated.

106 Note that, To estimate conditional probabilities of approval of a new drug or product by any pair of evaluation

committees X and Y say during the second phase of clinical trials, we may let The expected value and variance of

109 3 = = =

110 Where $. y x f +$ is the number of pairs of subjects for which subjects tested in the pairs by evaluation committee
 111 Y respond positive given that the corresponding subjects in the same pairs treated by evaluation committee X
 112 have also responded positive to the drug or product in the second phase of clinical trials. Thus $x n = ?$

113 The sample variance of \bar{y} is from Equation ??3() (). . . 2 .

114 4 ?1 ?y x y x y x y x y x x

115 Var W Var ny n? ? ? + + + ? ==

116 For the second phase of clinical trials, the null hypothesis that may be of interest concerning evaluation
117 committees approved agencies X and Y say may be that the proportion of subjects responding positive when
118 tested by evaluation committee Y given positive response under evaluation committee agency X is at least some
119 value 0 . , y x ? + that+ + + + ? < ? ?

120 The null hypothesis H_0 of Equation 26 may be tested using the test statistic() () 0 02 2 . . 2 .

121 . .

122 5 ()

123 ?(1)y x x yx x y x yx y x y x y x W n n Var W ? ? ? ? ? + + + ? ? = = ?

124 Which has approximately the chi-square distribution with 1 degree of freedom for sufficiently large $yx n$. The
125 null hypothesis H_0 is rejected at the α level of significance if Equation 10 is satisfied otherwise H_0 is accepted.

126 To estimate conditional probability of positive response under evaluation committees X and Z we may let

127 . ; () .

128 (1) is the number of matched triples of subjects in which the subjects tested in phase three by evaluation
129 committee Y respond positive given that the other two subjects in the matched triples tested by evaluation
130 committee X and Z respectively have also responded positive, which is also really the total number of 1s in $z \times$
131 $z \times z \times n Z \times z \times x \times z \times z \times z \times z Z \times zx \times z \times Z \times zx \times z \times z$

132 6 P P >

133 Other conditional probabilities may be similarly estimated as desired. Now we have so far presented the
134 probability estimation procedures generally under the assumption that all three evaluation committees are
135 equally competent in experience or otherwise to assess and evaluate new drug or product. In reality however
136 some evaluation committees may be better qualified, experienced, with higher expertise, better equipped etc,
137 than others and hence may play supervisory roles and be able to obtain more reliable results.

138 Hence we may but without loss of generality assume that three evaluation committees used here can be ordered
139 in terms of experience and seniority in assessment, evaluation and approval of new drugs or products ranked from
140 the most senior down to the least senior. Thus we may again but without loss of generality assume that evaluation
141 committee X is the most senior followed by evaluation committees Y and Z in this order. This would in effect
142 mean that any drug or product approved by evaluation committee Z would be subject to further approvals by
143 evaluation committee Y and finally by evaluation committee X.

Under these assumptions the probabilities already estimated above would be sufficient to estimate the required overall approval probability after the third and last phase of controlled clinical trials.

146 Never the-less the present probability estimation model would enable the estimation of the probabilities of all
147 events that can possibly be obtained in the event space of all conceivable outcomes in phased controlled clinical
148 trials. For example the probability that say evaluation committees X and Y do not approve a new drug or product
149 given that evaluation committee Z approves, is the probability of the event(/) AB C which is (/) () ().

150 7 (/) (). (/) (/). (/). () () P A B C P C P A P C A P
151 B P C B P C A B P B A P A P C

152 = ? ? + = = = = = = = = = = = = = =

With these results the probability that all the three evaluation committees X, Y and Z approved a new drug or product is the probability of the event whose probability is easily shown to be If there is a supervising evaluation committee such as evaluation committee X who must approve in addition to at least one other evaluation committee before a new drug or product is considered approved for use, then the required events set is (, ,)

157 X

158 8 S ABC ABC ABC = whose sample estimate is

159 The probability that evaluation committees Y and Z approve a drug or product evaluation committee X does
160 not approve it is the probability of the event, The probability that none of the evaluation committees approves

161 a drug or product for use is the probability of the event 0 () Teams of research scientists in the Department of
162 Pharmacology of three Universities X, Y and Z were interested in conducting phased controlled prospective clinical
163 trials on a certain herb product believed by a local population to be effective in the treatment of malaria. In the
164 first phase of clinical trials the three research teams collected three random samples each of size 40 of volunteer
165 malaria patients matched on age, gender and body mass index(BMI),and each research team or committee team
166 administered appropriately determined dosages of the herb product each on patients in only one of the three
167 matched samples.S ABC = which is ()0 () () 1 () () () ()

168 **9 /). () (/). () () P S P A B C P A P B P C P B**
169 **A P A P C A P A P C B P B P ABC**

170 = = ? + + ? ? ? + Which when

171 In the second phase of clinical trials three matched pairs of patients each of size 30 were used. The three
172 research teams were also then paired. Each pair of the research team administered dosages of the herb product
173 to one paired sample of patients with one research team administering the dosage to say the first patient in each
174 pair and the other research team 43 administering the dosage to the remaining patient in the pair.

175 In the third phase of clinical trials 25 samples of matched triples of patients, that is 25 samples each of three
176 matched patients were used. The three research teams each administered dosages of the herb product to only one
177 patient in each of the 25 matched triples of patients. At the end of each phase of the clinical trials the research
178 scientists assesses the malaria patients as either recovered (R) or not recovered (N) obtaining the results shown
179 in Table 2

180 **10 S/No**

181 Team 1(Sample 1) Team 2(Sample 2) Team 3(Sample 3) X Y Z 1 R N R 2 R R N 3 R N N 4 N R R 5 R R R 6
182 R N R 7 N R N 8 N N N 9 N N R 10 N R R 11 N N N 12 R N R 13 N R R 14 R R R 15 N N R 16 R N N 17 R
183 R N 18 R R R 19 N R R 20 R N R 21 N N N 22 R R R 23 N R N 24 R R R 25 N R N 26 R N R 27 R R R 28 R
184 R N 29 R R N 30 R R N 31 N R R 32 R N R 33 N R N 34 R R N 35 N R R 36 N N N 37 N N R 38 R N N 39
185 R N R 40 R N N i n 40 40 40 1 f + 23() x f + 22() y f + 22X Y X Z Y Z 1 N N R N N N 2 R R N R R R 3 R
186 R R R N R 4 N R R N R R 5 N R N R R R 6 R N R R N R
187 Volume XVI Issue V Version I 7 N R N R R N 8 N N N N R R 9 R N R R R R 10 N N R N N N 11 N N R
188 R N R 12 R N N R N N 13 R N N N R N 14 R R R R N N 15 N R N R N N 16 N N R N R R 17 R N R R R R
189 18 N N R R R N 19 N R N N N N 20 N N N N N 21 N R R N N N 22 R N R N N R 23 N N R R R N 24 R
190 R R N R R 25 N R N N N R 26 N R N R N R 27 N R N N R N 28 R N R N R R 29 N N R R R R 30 R N R R
191 R R . k j n .N R N 2 R N N 3 R R N 4 N R R 5 N N R 6 R R R 7 N N N 8 N R N 9 R R R 10 N N N 11 N N
192 N 12 N N R 13 R R N 14 R N N 15 N N N 16 R R R 17 N N R 18 R N R 19 R N N 20 N N R 21 N R N 22 N
193 R N 23 R R R 24 N R R 25 N R R . k l j n .

194 **11 8()**

195 x yz n .

196 **12 5()**

197 **13 4()**

198 x yz f + . 4() y xz f + . 4() z xy f +

199 = = = = = = = = = = =

200 From Table ?? = = = = = = = = = = = = = Finally from= = = = = = =

201 These probability estimates are now used with Table ?? to obtain sample estimates of some possible outcomes
202 in three phased controlled clinical trials of a product, namely anti-malaria herb product.

203 The estimates are presented in Table 5. committees Y and Z approved the drug with equal probability of
204 0.550.

205 In the second phase of clinical trials (Table ?? given that evaluation committee X has approved the drug,
206 evaluation committees Y and Z are found to approve the drug with estimated probabilities of 0.333 and 0.556
207 respectively while if evaluation committee Y has already approved the drug, then evaluation committee Z would
208 be expected to approve the drug with probability 0.688.

209 In the third phase of clinical trials (Table 4) it is seen that if evaluation committees X and Y have already
210 approved the drug, then evaluation committee Z would approve the drug with an estimated probability of 0.667
211 while evaluation committee Y would approve with estimated probability of 0.800 if evaluation committees X and
212 Z have already granted the approval.

213 From Table 5, it is seen that if all three evaluation committees are required to grant approval before a new drug
214 or product (anti-malaria herb product)can be approved for use in a population then the estimated probability
215 of such an approval being granted is only 12.7 percent, which is relatively more stringent compared with when

216 only two evaluation committees are required to grant approval with an estimated probability of (.0575)(0.333)
217 (0.575)(0.556) (0.530(0.688) 3(0.127) 0.889 0.381 0.508, + + ? = = =

218 which is relatively more liberal. Note from Table 5 that at the end of the third phase of clinical trials if the drug
219 must be approved by at least one evaluation committee as the supervisory committee, then evaluation committee
220 X is seen to be the most stringent with an estimated overall probability of approval of only 38.4 percent while
221 evaluation committee Z is the most liberal with an estimated overall probability of approval of as high as 57.1
222 percent.

223 It is found that just as the probability of three evaluation committees completely agreeing approve drug after
224 the third phase of clinical trials is rather small at 0.127, the probability of three committees being in complete
225 agreement not to approve the drug is even much smaller with an estimated value of only 7.9 percent.

226 **14 III. Summary and Conclusion**

227 We have in this paper developed and presented statistical method that would enable the estimation of probabilities
228 of approving and not approving a new drug or product for possible use in a population under the assumption
229 that three evaluation committees are used to assess and evaluate the drug or product in clinical trials conducted
230 in three phases. At each phase of clinical trials evaluation committees used matched samples of subjects for drug
231 or product quality evaluation or assessment.

232 Test statistics were developed for testing any desired hypothesis about approval probabilities each phase of
233 clinical trials. The proposed method was illustrated with some sample data and the results show that the
234 probabilities of three evaluation committees being in complete agreement to approve and not approve a new drug
235 or product are likely to be much smaller than the probabilities that only some of the three evaluation committees
approve the drug or product ¹

$$H_0 : ? . y x ? 0 y x . \quad \text{versus} \quad H_1 : ? . y x ? 0 y x . , (0 ?$$

Figure 1:

Estimation of New Drug Product Approval Probabi

Stated in terms of sample estimates of probabilities, this would mean that in the third phase of three phased controlled clinical trials of a new drug or ? + product by these evaluation committee X,Y and Z. V if and only if in the second phase of clinical y.xz =

The sample estimate of the variance of V ar(? + ?y xz . ? + is y.xz) = z ?

Again if of research interest a null hypothesis z similar to that of Equation 26 may be stated and similarly tested for y xz ? + . ?x yz ? + is similarly obtain

$$ar(? + x.yz) = ??$$

Again if of research interest a null hypothesis

OR

In terms of estimated probabilities,

. x z x . P AB C P P P (/) z =?

? . y +

z y

P

P

() P A

; () a P P B x

; ()

b P

P C

y

. z xy y x x . . .

P P P etc .

c c P

And

(/) P B A

. y x d P P C A e P P C B . ; (/) ; (/) z x . z y f P P C AB ;
(/)

(P (S 2 Year 2016 D D D D) F

39 40 41

42

S

yz = (ABC which is es-
timated as

() yz P S

(. .) (1 (/ P A B C P A BC P BC P C B P B P ABC)). () (/).

which when expressed in terms of sample probabilities becomes

[Note: $P(ABC) = P(C/AB).P(B/A).P(A) = P z.xy ; P y.x ; P x$ Volume XVI Issue V Version I]

Figure 4:

11

(

Figure 5: Table 1 Table 1 :

Year 2016

Volume XVI Issue V Version I

D D D D) F

(

© 2016 Global Journals Inc. (US)

Figure 6: .

2

Figure 7: Table 2 :

Year 2016

D D D D) F
(

Figure 8:

. ?k lj ? + . x yz ?) . y xz ? +) . z xy
f x f y 22 and z 22; so that 23; 0.575();
+ + f + ? z z P 0.550(). c +
?0.550(); y y P b and ? + 0.800()
+ +

Figure 9:

n . y x 12; n . 18, and n . z 16
z
x

Also

f . y x 4; f . z x + 10; f . z 11.
+ y +

Hence

. ??0.333(); . y x y x P d ? + ? . z x . z 0.556()
+ x P); e and

Figure 10:

4

we have that

$$. z xy = = . 6 z xy n \text{ and } f +$$

Hence

$$. ?0.667() . z xy z xy P g ? + = =$$

Note also from Table 4 that

n	. n	. 8; f . y f	. x 4	so . ?5, . 0.800; y xz y x
y	x	xz	yz	that
xz	yz	+	+	

Figure 11: Table 4

5

S/No	Event	Estimated Approval Probability
1	ABC	0.127
2	ABC	0.064
3	ABC	0.193
4	ABC	0.191
5	ABC	0.251
6	ABC	0.108
7	ABC	0.021
8	ABC	0.079
9	S 2 (at least two evaluation committee)	0.635
10	one other) S X (evaluation committee and at least	0.384
11	one other) S Y (evaluation committee and at least	0.442
12	one other) S Z (evaluation committee and at least	0.571

It is seen from Table 2 that in the first phase of controlled clinical trials, evaluation committee X approved the anti-malaria herb product with an estimated probability of 0.575 while evaluation

Figure 12: Table 5 :

237 [Pocock ()] *Clinical Trials. A Practical Approach*, S J Pocock . 2004. John Wiley & Sons.

238 [Chow and Liu ()] *Design and Analysis of Clinical Trials: Concept and Methodologies*, S C Chow , J P Liu .
239 2004. John Wiley and Sons.

240 [Collier (2009)] 'Drug development cost estimates hard to swallow'. R Collier . *CMAJ* 2009. February 3. 180 (3)
241 p. .

242 [Koren et al. ()] 'Drugs in pregnancy'. G Koren , A Pastuszak , I Sinya . *N Engl J Med* 1998. 338 (16) p. .

243 [Lipkovich et al. ()] 'Evaluating Dose Response from flexible Dose Clinical Trials'. I Lipkovich , D H Adams , C
244 Mallinckrodt , D Faries , D Baron , J P Houston . *BMC Psychiatry* 2008.

245 [Huff ()] T E Huff . *The Rise of Early Modern Science: Islam, China, and the West*, 2003.

246 [Koren et al. ()] 'Perception of teratogenic risk by pregnant women exposed to drugs and chemicals during the
247 first trimester'. G Koren , M Boloja , D Long , Y Feldman , N H Shear . *Am J Obstet Gynecol* 1998. 1998.
248 160 p. . (Lancet.)

249 [Koren and Pastuszak ()] 'Prevention of unnecessary pregnancy termination by counselling women on drug,
250 chemical and radiation exposure during the first trimester'. G Koren , A Pastuszak . *Teratology* 1990. 41
251 p. .

252 [Gobburu and Lesko ()] 'Quantitative Disease, Drug, and Trial Models'. Jvs Gobburu , L J Lesko . *Annual Review
253 of Pharmacology and Toxicology* 2009. 49 p. .

254 [Gebski et al. ()] 'Randomized Trials: Elements of a Good Study'. V Gebski , E Beller , A C Keech . *Medical
255 Journal of Australia* 2001. Cambridge University Press. 175 p. 218.

256 [Rising et al. ()] 'Reporting Bias in Drug Trials Submitted to the Food and Drug Administration: Review of
257 Publication and Presentation'. K Rising , P Bacchetti , L Bero . <http://www.biomedcentral.com/1471-244X/8/3> *PLOS Medicine* 2009.

258