

1 Prevalence of Fasciola Infection in Slaughtered Animals in 2 Kashmir

3 Tanveer A. Sofi¹ and Nazima Gu²

4 ¹ University of Kashmir

5 *Received: 16 December 2015 Accepted: 5 January 2016 Published: 15 January 2016*

6

7 **Abstract**

8 Fasciolosis is denoted as a significant veterinary health problem. During current study, a total
9 of 714 cattle slaughtered at different abattoirs of Srinagar city (JK) were examined for the
10 presence of Fasciola sps in the liver from January 2014 to January 2016. There was moderate
11 prevalence of 26.84

12

13 **Index terms**— epidemiology, fasciola, cattle, abattoir and srinagar.

14 **1 Introduction**

15 uminant productivity around the world is majorily affected by trematode parasitism (Vercruyse and Claerebout
16 2001). Among them, Fasciolosis gains public concern not only due to its prevalence and economic significance to
17 animal stock in all continents ??Schweizer et al., 2005 ?? Mungube et al., 2006) but also to its zoonotic aspect.
18 Bovine Fasciolosis is an impedent in profitable bovine farming and for butchers and consumers too. Parasite of
19 genus Fasciola i.e Fasciola hepatica and Fasciola gigantica is the causative agent of Fasciolosis which occur in
20 a wide range of definitive hosts. Over the last decade there has been a substantial increase in the number of
21 fasciolosis cases recorded. It is spurred on by both environmental changes (warmer, wetter climate) and man-
22 made modifications such as an increase in animal movements and intensification of livestock farming (Mas- Coma
23 et al., 2005).

24 According to Annual Reports of Department of Animal Husbandry, Dairying and Fisheries, species -wise
25 incidence of Bovine Fasciolosis in India is tabulated as under: While comparing the apparent prevalence of
26 liver fluke infection, detected by liver, faeces and bile examination it has been reported that examination of liver
27 or bile samples was more sensitive than faecal examination (Braun et al., 1995 and ??umar et al., 2002). Thus
28 the abattoir study was carried out to determine the prevalence.

29 Year

30 **2 II. Material and Methods**

31 A two-year prospective systematic sampling study was undertaken from January 2014 to January 2016 to
32 determine the relative occurrence of Fasciola infection in the livers of cattle presented to six abattoirs across
33 the Kashmir. Samples were taken from the three studied localities i.e., Hazratbal, Parimpooora, and Gouskimer
34 of Srinagar district but sampling effort was more important in Parimpooora locality, where four slaughterhouses
35 were closely located.

36 The sample size was calculated using the formula given by Thrustfield, M. (2005).

37 **3 ?? = 1 96 2 1**

38 Where n = required sample size P exp = expected prevalence= 50% d = desired absolute precision=5% Hence,
39 d = 0.05 and p= 0.5 (50%).

40 The expected prevalence in the study area was 55 % (Akhoun and Peer, 2014). Thus the minimum desired
41 annual sample size was calculated to 381. However, due to drastic floods only 316 cattle were examined in

9 OVERALL PREVALENCE (TABLE 1)

42 Year 2014 as collection areas were inaccessible and sample size was extended to 396 in Year 2015. The age of
43 each animal was confirmed by looking at the physical appearance of body and examining the dental pad and
44 incisor teeth ??Cockrill, 1974). The data was collected according to predesigned proforma: Young (1Yr-3Yrs),
45 adult (3-6Yrs) and aged (Above 6 years). During survey the gender and breed of animals was also recorded. ?
46 Assessment of Body condition Body scoring of the cattle was made based on the method described by ??icholson
47 and Butterworth (1986). Each scoring were given number from 1(L-, very lean) to 9 (F+, very fat) and these
48 scores finally included under three body condition scores, good, medium and poor.

4 ? Season

50 On the basis of temperature and precipitation, four seasons in a year recognized in Kashmir valley are: winter
51 (December to February); spring (March to May); summer (June to August); autumn (September to November)
52 (Dar et al., 2002).

5 b) Postmortem examination ? Types of infection

53 Infection based on causative agent were classified as *Fasciola hepatica*, *Fasciola gigantica*, mixed *Fasciola* species
54 (*Fasciola hepatica*, *Fasciola gigantica*) infection.

6 c) Postmortem fluke recovery

55 Worms were recovered from infected livers by squeezing them manually to macerate the parenchyma and the
56 flukes were carefully removed and placed in petridish containing 0.15M Dubocco's PBS buffer (pH 7.3) for initial
57 washing. The flukes were stored in collection vials containing PBS and were transported to the laboratory of
58 Department of Zoology, University of Kashmir, Srinagar. Fasciolids were identified primarily on differences
59 in body shape and size of the adults, with the smaller *F. hepatica* exhibiting wide and defined shoulders
60 compared to the slender *F. gigantica* having less defined shoulders and shorter cephalic cones (Soulsby, 1986). For
61 permanent slide preparation flukes were rapidly killed in 70% ethyl alcohol to avoid shrinkage. The flukes were
62 then transferred to vials containing 6-10% formalin for preservation. Flukes were stained with Borax Carmine,
63 dehydrated in ascending grades of ethanol, cleared in Xylene and mounted in Balsam Canada and viewed under
64 monocular light microscope.

7 d) Data Analysis

65 Data was recorded, entered and managed into MS Excel work sheet and analyzed using Minitab Version
66 13. Prevalence was calculated as percentage of infected among the examined samples. Chi square test was
67 employed to examine the effect of above mentioned epidemiological determinants on the level of parasitism in
68 host. In all statistical analysis, confidence level was held at 95% and P-value is <0.05 (at 5% level of significance)
69 was considered as significant.

8 IV. Results

70 Fasciolosis in an area is influenced by a multifactorial system which comprises both definitive and intermediate
71 hosts, parasite and environmental effects. Numerous factors (both intrinsic and extrinsic) form an association
72 posing a potential epidemiological threat and it is important that the existence and localization of such an
73 association should be recognized beforehand so that the situation can be brought under control. Thus in this
74 portion of result, these factors have been assessed and potential reason behind the association have been well
75 documented

9 Overall Prevalence (Table 1)

76 The overall prevalence of Fasciolosis for the period of two years (2014-2015) was found to be 26.84% in the
77 current study areas. In 2015, the percentage prevalence was higher (27.02%) than in 2014 (25.31%). There was
78 an increase of 1.71% in prevalence rate from 2014 to 2015. But difference in prevalence rate was not statistically
79 significant ($p>0.05$) as there was sampling error in year 2014 because of scarcity of data collection for a period
of 2 months (September and October) due to Floods that affected the whole valley.

80 The result of current study indicated that Fasciolosis in cattle is spread relatively with moderate prevalence
81 rate of 26.84% in the study area as compared to high prevalence of 51.42%, 42.06% and Month-wise prevalence
82 (Fig. 1)

83 The results revealed that the lowest prevalence of Fasciolosis for Year 2014 was in the month of May (14.2%)
84 and highest being in the month of August (35.8%). However in Year 2015, the prevalence rate was highest in the
85 month of September (44.66%) followed by October (39.66%) and lowest in May (9.3%). Moreover, the infection
86 was reported throughout the year due to resistance of metacercariae for desiccation, especially during the dry
87 season and continued presence of the shallow water, enough vegetation and humidity for continued exposure of
88 the animals to encysted metacercariae and no restriction on cattle grazing habits and movement between the
89 infected and treated localities which was also suggested by El Bahy, 1998.

96 These On seasonal basis, the current study showed maximum spread of disease in Autumn Season i.e. 33.33%
97 and 40% in Year 2014 and 2015 respectively. The minimum infection was recorded in spring season showing
98 prevalence of 20% and 12.9% in consecutive studied years. There was no statistically significant difference
99 between seasons in year 2014 which has already been stated could be attributed to skipping the data of two
100 months due to natural disaster Kashmir valley faced. However statistically significant difference was observed
101 between seasons in year 2015. This difference could be due to a variety of weather condition in each year. The
102 highest prevalence in autumn was also reported by Chaudhri et al. 1993

103 **10 Distribution on the basis of infection type (Table 3)**

104 Of the total 192 affected livers by fasciolosis, 149 (77.60%), 24 (12.5%) and 19 (9.89%) respectively showed
105 *Fasciola gigantica*, *Fasciola hepatica* and mixed infection (*Fasciola hepatica* and *Fasciola gigantica*).

106 The finding of this study was in consistence with the earlier investigation by Ashrafi et al. 2004 Genderwise
107 prevalence (Table 5) Out of 531 males and 183 females slaughtered during the survey period, males won by
108 retaining lesser infection of 19.96% and were par to females who showed higher prevalence of 46.99%. The
109 difference was highly significant and thus revealed sex as determinant influencing the prevalence of Fasciolosis
110 rate. Our findings are in agreement with results of Daniel 1995; ??olina et In the current studied abattoirs,
111 the number of slaughtered male cattles (531) was far higher than the females (183). The number of positive
112 females was higher in proportion than males even if the number of female cattle that come to abattoir were
113 fewer in number. These results were in consistent to ??ara et al. 2009. High infection rate in females can be
114 multifactorial like high stress during parturition period (Spithill et al. 1999), weak and malnourished making
115 them more susceptible to infection (Blood and Radostits, 2000) or due to the feeding conditions i.e females are
116 generally being let loose to graze freely in pastures. The other possible reason for the same could be that the
117 most of people traditionally feed their lactating cows with grasses during dry season which are grown around
118 rivers and marshy areas for the sake of getting high milk yield as suggested by Gracy et al. 1999

119 **11 Breedwise prevalence of Fasciolosis (Table7)**

120 Out of the total 71 cattle examined, 213 were reared locally and 501 were imported from other states to the
121 valley for slaughter purpose. The prevalence of fasciolosis was 40.80% and 20.90% for local and nonlocal breed
122 cattle, respectively. There was statistically significant ($\chi^2 = 29.06$, $P = 0.000$) association of fasciolosis with
123 breeds. Our results are in agreement with study conducted by Teklu et al. 2015. This difference in prevalence
124 based on breed might be due to the management of the animals as most of the local animals were reared in the
125 extensive system of management which makes them easily susceptible to the parasites

Figure 1: R

1

Figure 2: Pg 1 :

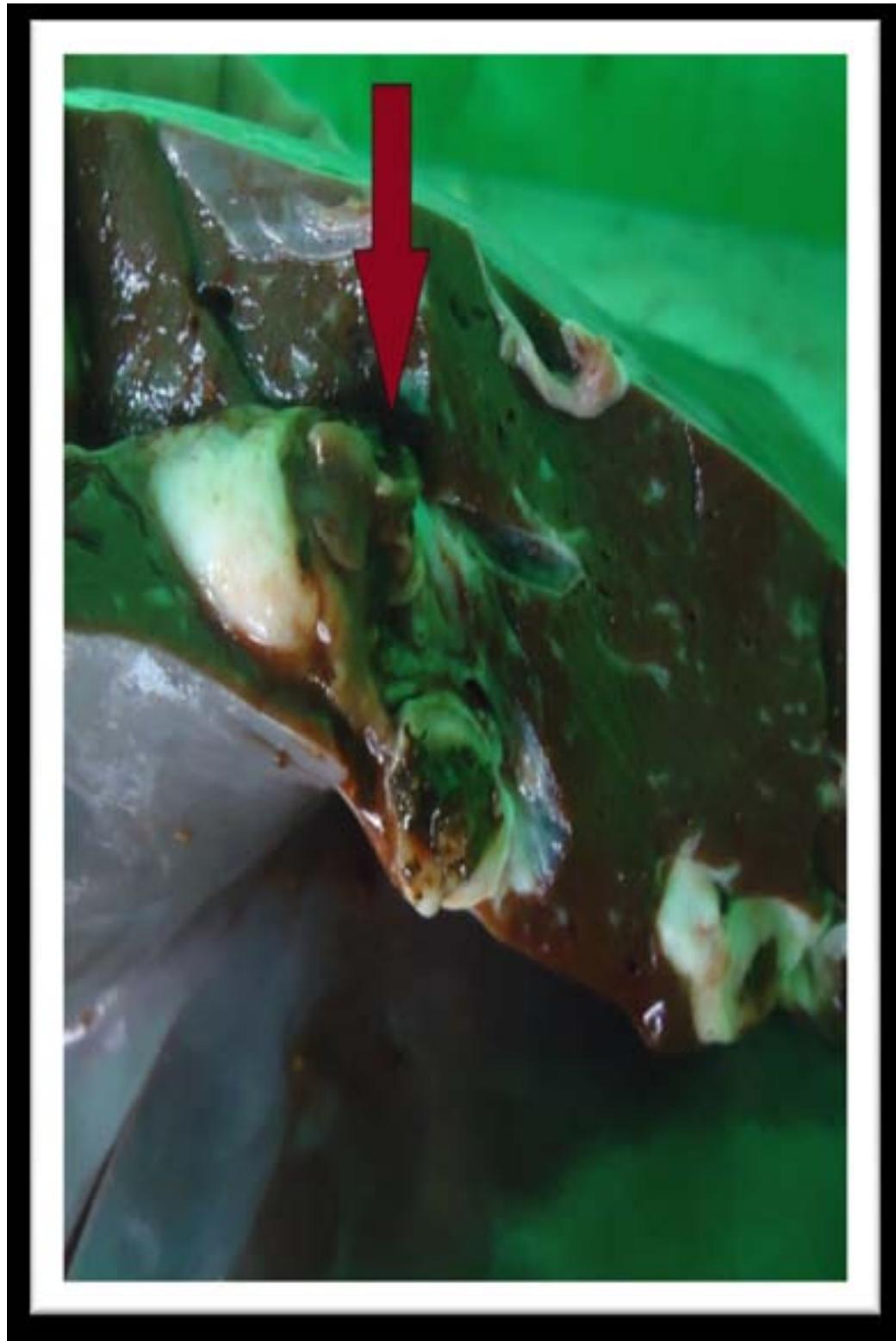
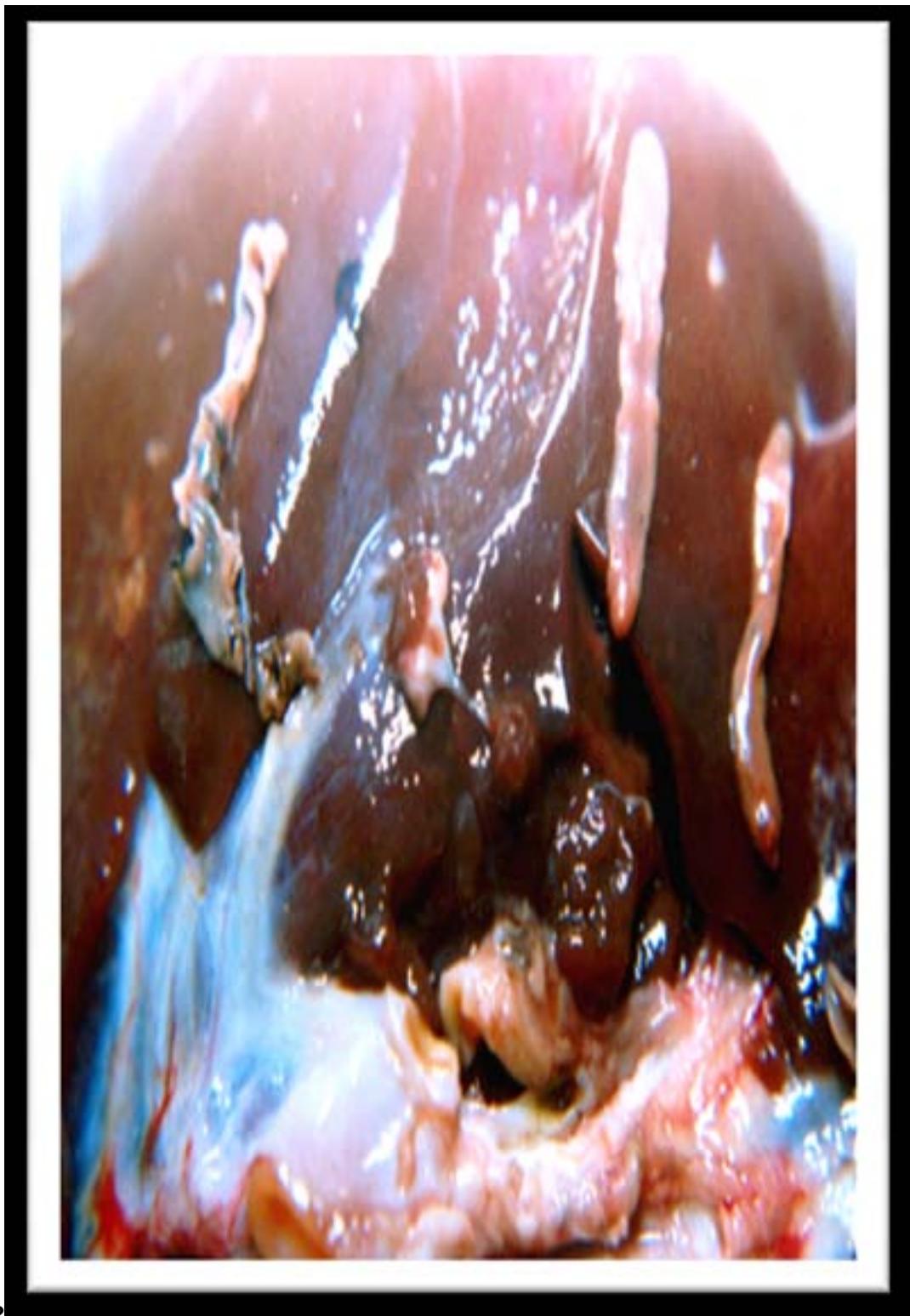



Figure 3:

2

Figure 4: Figure 2 :

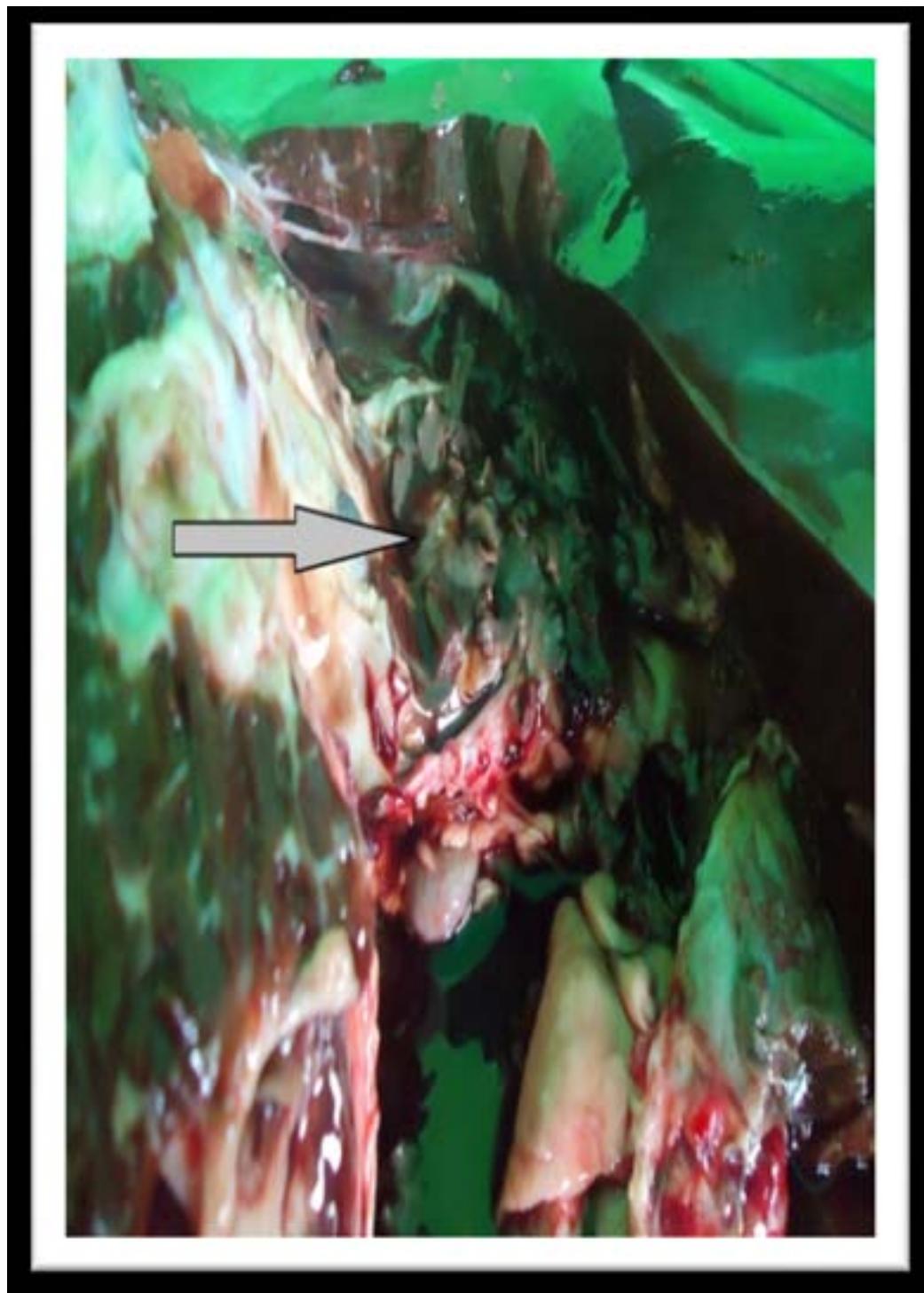
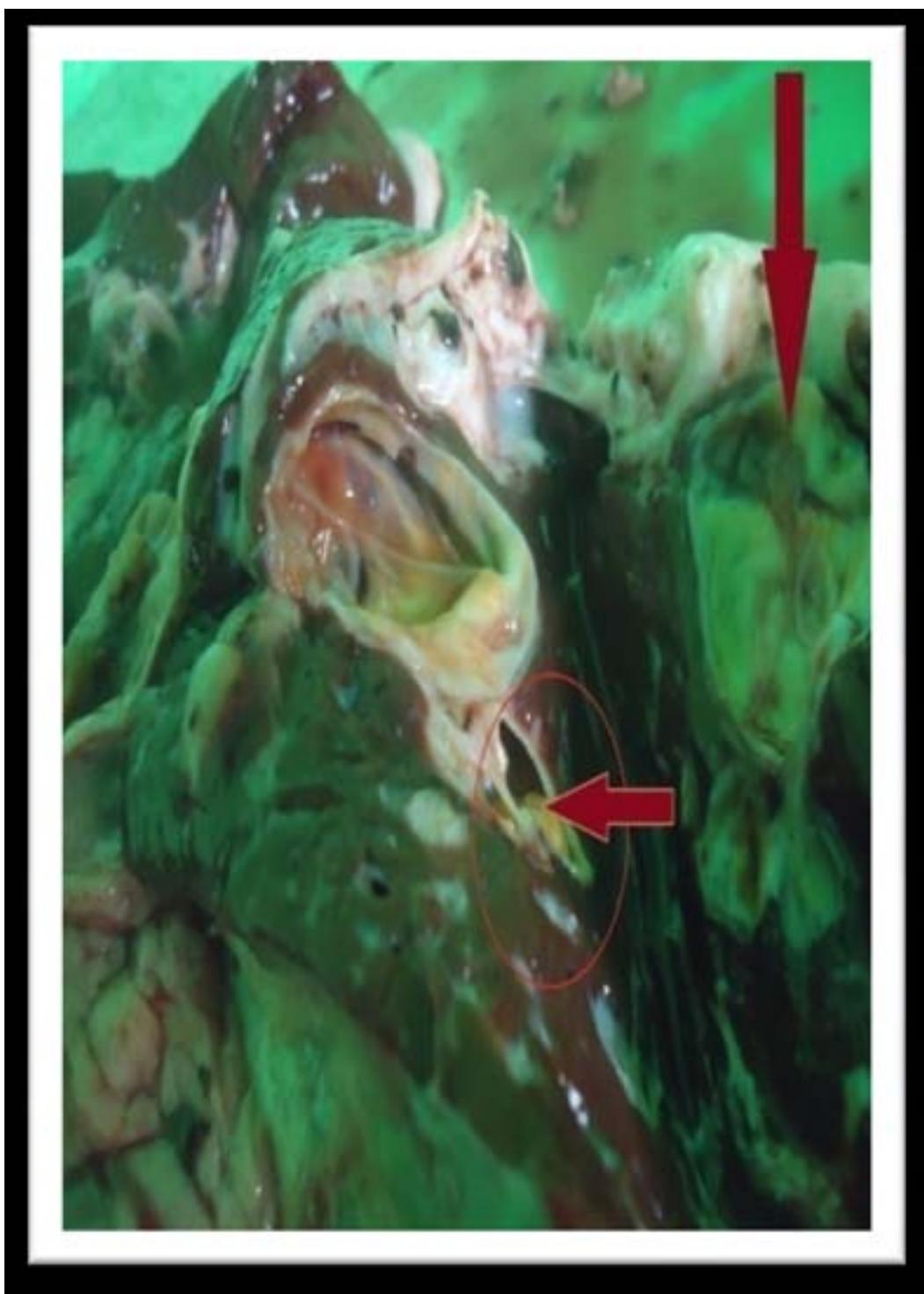
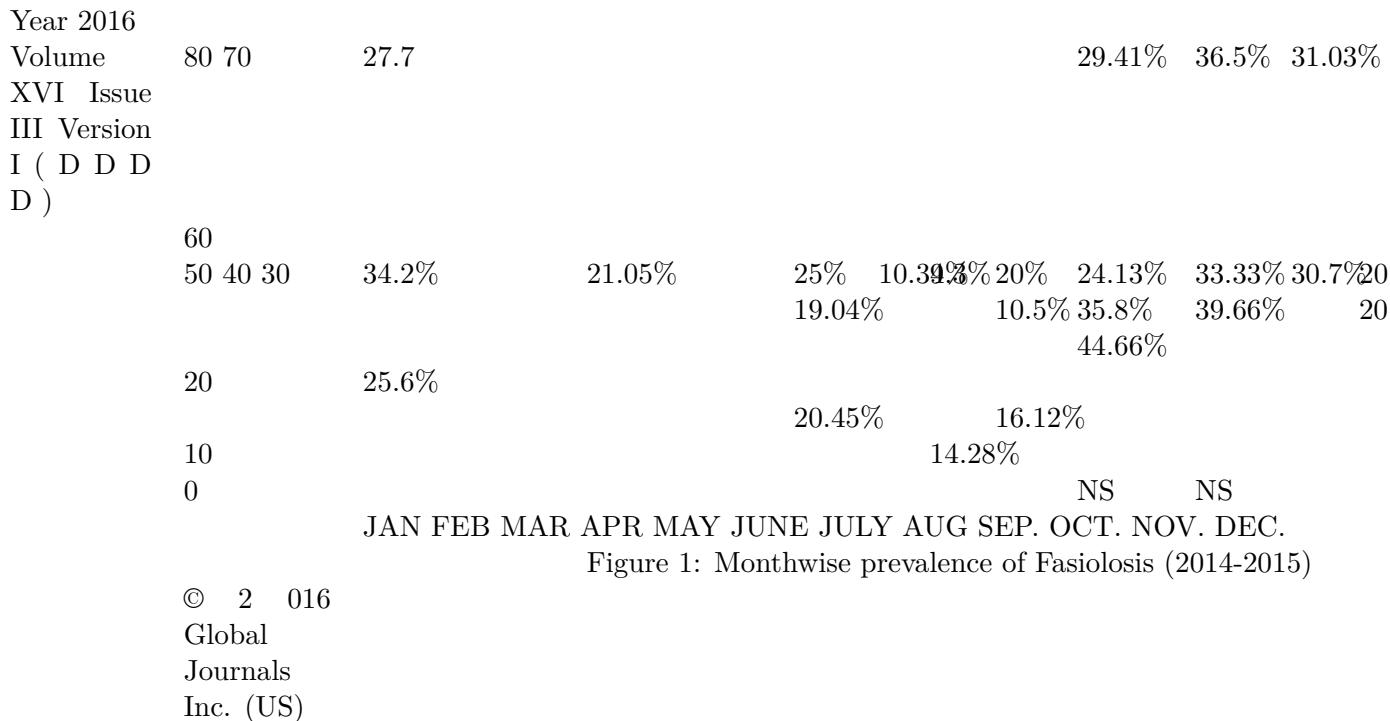


Figure 5:




Figure 6:

1

YEAR	EX.	INF.	PREV	? 2 (P-Value)
2014	316	80	25.31%	0.183
2015	396	107	27.02%	0.669
Total	714	192	26.84%	

Figure 7: Table 1 :

11 BREEDWISE PREVALENCE OF FASCIOLOSIS (TABLE7)

[Note: GSeason wise Prevalence (Tableand Fig 2)]

Figure 8:

2

Year	2014			2015		
Season	Ex.	Inf.	Prev.	Ex.	Inf.	Prev.
Spring	115	23	20%	82	10	12.9%
Summer	99	26	26.26%	102	20	19.6%
Autumn	12	4	33.33%	146	59	40%
Winter	90	27	30%	66	18	27.27%

[Note: ? 2 (p-Value) 3.218(0.486) 25.26(0.000)]

Figure 9: Table 2 :

3

Infection Type	Infect	Prev.	Overall
	Among Infected Ones (N=192)	Preva- lence (N=714)	
F. gigantica	149	77.60%	20.86%
F. hepatica	24	12.5%	3.361%
Mixed	19	9.89%	2.66%
?2		254.29(p=0.000)	22(p=0.000)

Age-wise distribution (Table4)

Out of 714 cattles, 166 heads were of age group <1-3 Years, 396 of age between 3-6 years and 152 having age >6 Years. Among these 3 age categories, prevalence of Fasciolain livers was highest in >3-6 years age group (30.30%) followed by age group >6 years (28.28%) and least infection in bovines of age 1

Figure 10: Table 3 :

4

Age	Ex.	Inf.	Prevalence	? 2 p-Value
1Yr-3Yrs	166	29	17.46%	9.991
3Yrs-6Yrs	396	120	30.30%	0.007
>6Yrs	152	43	28.28%	

Figure 11: Table 4 :

Figure 12:

5

	Exam	Infected	Prevalence
Males	531	106	19.96%
Females	183	86	46.99%
?2 (p-value)			49.221(0.000)

Association of body condition with infection (Table 6)

Among all examined animals (n = 714), 30.53% (n = 218) were marked as poor (body score 1-3), 35.05% (n = 250) as Medium (4-6) and 34.44% (n = 246) as Good (7-9) body conditions. 42.66% of infection (n i

Figure 13: Table 5 :

11 BREEDWISE PREVALENCE OF FASCIOLOSIS (TABLE7)

6

Body Condition	Ex.	Inf.	Prevalence	? 2	p-Value
Poor	218	93	42.66%		41.223
Medium	250	56	22.40%		0.000
Good	246	43	17.47%		

Figure 14: Table 6 :

7

			Year 2016	
			Volume XVI Issue III Version I	
			D D D D)	
			(G	
Breed	Ex.	Inf.	Prevalence	? 2 p-Value
Locals	213	87	40.80%	29.06 0.000
Non-locals	501	105	20.90%	

© 2016 Global Journals Inc. (US)

Figure 15: Table 7 :

126 [Affroze et al.] , S Affroze , N Begum , M S Islam , Rony .

127 [Kuchai et al.] , J A Kuchai , M Z Chishti , M M Zaki , S A Dar . (Muzaffar Rasool)

128 [Kumar and Banerjee] , V Kumar , P S Banerjee . (Hira Ram)

129 [Mungube et al. ()] 'A crosssectional survey on fasciolosis in selected settlements of Taveta Division'. E O Mungube , D M Sila , C W Kariuki , S M Bauni , B A Tenhagen , L Wamae , J Nginyi , G A Omundi .
130 *Livestock Research for Rural Development* 2012. 24 (4) p. .

131 [Radostitis et al. ()] *A text book of the disease of cattle, sheep, goats, pigs and horse: Veterinary medicine*, O M Radostitis , D C Blood , C C Gay . 1994. London, UK; Bailliere, Tindall. p. . (8th ed.)

132 [Teklu et al. ()] 'Abattoir prevalence of bovine fasciolosis in the manucipal abattoir of Wukro, Northern Ethiopia'. H Teklu , Abebe , N Kumar . *Journal of International Academic Research for Multidisciplinary* 2015. 2 (12) p. .

133 [Mufti ()] *An epidemiological study of bovine fasciolosis in potohar region. Faculty of Sciences*, S Mufti . 2011. Rawalpindi, Pakiston. Arid Agriculture University

134 [Dar et al. ()] *Biodiversity of the Kashmir Himalaya*, G H Dar , R C Bhagat , M A Khan . 2002. Srinagar -190006. Valley Book House. p. 19.

135 [Ogunrinade and Adegoke ()] 'Bovine fascioliasis in Nigeria. Intercurrent parasitic and bacterial infection'. A Ogunrinade , G O Adegoke . *Tropical Animal Health Production* 1982. 14 p. .

136 [Fufa et al. ()] *Bovine fasciolosis: Carpological, abattoir survey and its economic impact due to liver condemnation at Soddo municipal abattoir, Southern Ethiopia*. *Tropical Animal Health Production*, A Fufa , A Loma , M Bekele , R Alemayehu . 2009. 42 p. .

137 [Abunna et al. ()] *Bovine Fasciolosis: Coprological, Abattoir Survey and its Economic Impact due to Liver Condemnation at Soddo Municipal Abattoir, Southern Ethiopia*. *Tropical Animal Health and Production*, F Abunna , L Asfaw , A Megers , A Regassa . 2009. 42 p. .

138 [Bekele et al. ()] 'Bovine fasciolosis: Prevalence and its economic loss due to liver condemnation at Adwa municipal abattoir, North Ethiopia'. M Bekele , Haftom , G Yehenew . *Ethiopian Journal of Agricultural Science and Technology* 2010. 1 p. .

139 [Mihreteab et al. ()] 'Bovine Fasciolosis: Prevalence and its Economic loss due to liver condemnation at Adwa Municipal Abattoir, North Ethiopia. School of Veterinary Medicine, College of Agriculture and Veterinary Medicine'. B Mihreteab , T Haftom , G Yehenew . *Jimma. Ethiopian Journal of Applied sciences and Technology* 2010. 1 (1) p. .

140 [Khan et al. ()] *Bovine fasciolosis: Prevalence, effects of treatment on productivity and cost benefit analysis in five districts of*, M K Khan , M S Sajid , M N Khan , Z Iqbal , M U Iqbal . 2009. Punjab, Pakistan. 87 p. . (Research in Veterinary Science)

141 [Nega et al. ()] 'Comparison of Coprological and Postmoretem Examinations Techniques for the Deterimination of Prevalence and Economic Significance of Bovine Fasciolosis'. M Nega , B Bogale , M Chanie , A Melaku , T Fentahun . *Journal of Advanced Veterinary Research* 2012. 2 p. .

142 [Braun et al. ()] 'Diagnosis of liver flukes in cows-a coparison of the findings in the liver, in the faeces and in the bile'. U Braun , R Wolfensberger , H Hertzberg . *Schweizer Archiv for Tierheilkunde* 1995. 137 (5) p. .

143 [Jabore and Ali ()] 'Dry season bovine fasciolosis in northwestern part of Ethiopia'. Yilma Jabore , Mesfin Ali . *Revue Medical Veterinary* 2000. 151 (6) p. .

144 [Daniel ()] *Economic importance of organs condemnation due to fasciolosis and hydatidosis in cattle and sheep slaughtered at Dire Dawa Abattoir, DVM thesis*, F Daniel . 1995. Ethiopia. Faculty of Veterinary Medicine, Addis Ababa University Debre zeit

145 [Fatima et al. ()] 'Epidemiological Study of Fasciolosis in Cattle of Kashmir Valley'. M Fatima , M Z Chishti , F Ahmad , B A Lone . *Advances in Biological Research* 2012. 6 (3) p. .

146 [Maqbool et al. ()] 'Epidemiology and chemotherapy of fascioliasis in buffaloes'. A Maqbool , M J Arshad , F Mahmood , A Hussain . *Assiut. Vet. Med. J* 1994. 30 p. .

147 [Chaudhri et al. ()] 'Epidemiology and control of *Fasciola gigantica* infection of cattle and buffaloes in Eastern Haryana'. S S Chaudhri , R P Gupta , S Kumar , J Singh , A K Sangwan . *India. Indian. J. Anin. Sci* 1993. 63 p. .

148 [Pfukenyi et al. ()] 'Epidemiology and control of trematode infections in cattle in Zimbabwe: a review'. D M Pfukenyi , J Monrad , S Mukaratirwa . *J. S. Afr. Vet. Assoc* 2005a. 76 p. .

149 [Keyyu et al. ()] 'Epidemiology of *Fasciola gigantica* and paramphistomes in cattle on traditional, smallscale dairy and largescale dairy farms in the southern highlands of Tanzania'. J D Keyyu , J Monrad , N C Kyvssgard , A A Kassuku . *Tropical Animal Health and Production* 2005. 37 p. 303314.

11 BREEDWISE PREVALENCE OF FASCIOLOSIS (TABLE7)

181 [Maqbool et al. ()] 'Epidemiology of fasciolosis in buffaloes under different managemental conditions'. A Maqbool
182 , C S Hayat , T Akhtar , H A Hashmi . *Vet. arhiv* 2002. 72 p. .

183 [Schweizer et al. ()] 'Estimating the financial losses due to bovine fasciolosis in Switzerland'. G Schweizer , U
184 Braun , P Deplazes , P R Torgerson . *Veterinary Record* 2005. 157 p. .

185 [Ashrafi et al. ()] 'Evidence Suggesting that *Fasciola gigantica* Might be the Most Prevalent Causal Agent of
186 Fascioliasis in Northern Iran'. K Ashrafi , Massoud 1, K Holakouei 2, M Mahmoodi 2 , M A Ma Joafshani 3
187 , Valero . *Iranian J Publ Health* 2004. 4 (4) p. . (MD Bargues)

188 [Garg and Yadov ()] 'Faecal examination vis-à-vis bile examination for the diagnosis of bursal fasciolosis'. Rajat
189 Garg , C L Yadov . *Journal of Veterinary Parasitology* 2002. 16 p. .

190 [Spithill et al. ()] *Fasciola gigantica: epidemiology, control, immunology and molecular biology*, T W Spithill , P
191 M Smooker , D B Copeman . 1999. Wallingford, Oxon, UK: CABI. p. .

192 [Mas-Coma et al. ()] 'Fascioliasis and other plant-borne trematode zoonoses'. S Mas-Coma , M P Bargues , M
193 A Valero . *International Journal for Parasitology* 2005. 35 p. .

194 [Kendall ()] 'Fascioliasis in Pakistan'. S B Kendall . *Ann. Trop. Med. Parasitol* 1954. 48 (3) p. .

195 [Rahmeto ()] *Fasciolosis Clinical occurrences, Coprological, Abattoir and Snail survey in and around Wolisso*, A
196 Rahmeto . 1992. Ethiopia. Faculty of Veterinary Medicine, Addis Ababa University, Debre Zeit (DVM thesis)

197 [Dwinger et al. ()] 'Fasciolosis in beef cattle in North West Argentina'. R H Dwinger , P D Leriche , G I Kuhne
198 . *Trop. Anim. Health Prod* 1982. 14 p. .

199 [Alemu and Abebe ()] *Fasciolosis: Prevalence, Evaluation of Floatation and Simple Sedimentation Diagnostic
200 Techniques and Monetary Loss due to Liver Condemnation in Cattle Slaughtered at Wolaita Soddo Municipal
201 Abattoir, Southern Ethiopia. Food Science and Quality Management*, A Alemu , B Abebe . 2015. p. 43.

202 [Gracy et al. ()] J Gracy , S David , Robert Collins , Huey . *Meat Hygiene*, (Harcourt Brace) 1999. p. . (10
203 edition)

204 [Assanji ()] 'Helminth infection in livestock'. M F Assanji . *J. Helminthol* 1988. 62 p. .

205 [Graber ()] 'Helminths and helminthiasis of domestic and wild animals of Ethiopia'. M M Graber . *Bulletin Animal
206 Health Production* 1975. 23 p. .

207 [Soulsby ()] *Helminths, Arthropods and Protozoa of Domesticated Animals*, 7th, Ejl Soulsby . 1986. London:
208 Bailliere Tindall. p. .

209 [Mulcahy et al. ()] 'Immunology of *Fasciola hepatica* infection'. G Mulcahy , P Joyce , J P Dalton . *Fasciolosis*
210 *CAB International*, J P Dalton (ed.) 1999. p. .

211 [Chakiso et al. ()] 'On Farm Study of Bovine Fasciolosis in Lemo District and its economic loss due to liver
212 condemnation at Hossana Municipal abattoir, Southern Ethiopia'. B Chakiso , S Menkir , M Desta . *Int.J.
213 Curr.Microbiol.App.Sci* 2014. 3 (4) p. .

214 [Abrous et al. ()] 'Paramphistomum daubneyi and *F. hepatica*: Influence of temperature changes on the shedding
215 of cercariae from dually infected *Lymnaea truncatula*'. M Abrous , D Rondelaud , G Dreyfuss , J Cabaret .
216 *Parasitol. Res* 1999. 85 p. .

217 [Faria et al. ()] 'Prevalence and dynamics of natural infection with *Fasciola hepatica* (Linnaeus, 1758) in Brazilian
218 cattles. *Revue Méd*'. R N Faria , M C Cury , W S Lima . *Vét* 2005. 156 (2) p. .

219 [Belay et al. ()] 'Prevalence and Economic Losses of Bovine Fasciolosis in Dessie Municipal Abattoir, South Wollo
220 Zone'. E Belay , W Molla , A Amare . *Ethiopia. European Journal of Biological Sciences* 2012. 4 (2) p. .

221 [Mwabonimana et al. ()] 'Prevalence and Economic Significance of Bovine Fasciolosis in Slaughtered Cattle at
222 Arusha Abattoir Tanzania'. M F Mwabonimana , A A Kassuku , H A Ngowi , L S B Mellau , H E Nonga ,
223 E D Karimuribo . *Tanzania Veterinary J* 2009. 26 p. .

224 [Tesfay et al. ()] 'Prevalence of bovine fasciolosis and its associated risk factors in Mekelle municipal abattoir'.
225 H Tesfay , T Dejene , E Kebede . *Journal of the Drylands* 2012. p. .

226 [Mulugeta et al. ()] 'Prevalence of Bovine Fasciolosis and its Economic Significane in and Around Assela'. S
227 Mulugeta , F Begna , E Tsegaye . *Ethiopia. Global Journal of Medical research* 2011. 11 (3) .

228 [Mulugeta et al. ()] 'Prevalence of Bovine Fasciolosis and its economic significane in and around Assela'. Shiferaw
229 Mulugeta , Feyisa Begna , Ephrem Tsegaye . *Ethiopia. Global Journals Inc* 2011. 11 p. .

230 [Assefa et al. ()] 'Prevalence of bovine Fasciolosis in and around Inchini town, West Showa Zone, Ada'a Bega
231 Woreda'. A Assefa , Z Assefa , D Beyene , F Desissa . *Central Ethiopia. J. Vet. Med. Anim. Health* 2015. 7
232 (6) p. .

233 [Yeneneh et al. ()] 'Prevalence of cattle fluke's infection at Andassa Livestock Research Center in north-west of
234 Ethiopia'. Asressa Yeneneh , Hassen Kebede , Tewodros Fentahun , Mersha Chanie . *Veterinary Research
235 Forum* 2012. 3 (2) p. .

236 [Ghirmire and Karki ()] *Prevalence of fascioliasis and efficacy of various anthelmintics in buffaloes of Rural*
237 *Kathmandu vetcon*, N P Ghirmire , N P S Karki . 1996. p. 43.

238 [Bhutto et al. ()] 'Prevalence of fascioliasis in buffaloes under different agro-climatic areas of Sindh Province of
239 Pakistan'. B Bhutto , A Arijo , M S Phullan , A Rind . *International Journal of Agricultural Biology* 2012.
240 14 p. .

241 [Akhoon and Peer ()] 'Prevalence of fascioliasis in district Srinagar of Kashmir valley'. Z A Akhoon , F U Peer .
242 *Vet. Sci. Res. J* 2014. 5 (1&2) p. .

243 [Phiri et al. ()] 'Prevalence of Fasciolosis in Zambian Cattle Observed at Selected Abattoirs with Emphasis on
244 Age, Sex and Origin'. A M Phiri , I K Phiri , C S Sikasunge , J Monrad . *J. Veterinary Medicine B* 2005. 52
245 p. .

246 [Molina et al. ()] *Prevalence of infection with fasciola gigantea and its relationship to carcass and liver weights*
247 *and fluke and egg counts in slaughter cattle and buffaloes in Southern Mindanao, Philippines. Tropical Animal*
248 *Health Production*, E C Molina , E A Gonzaga , L A Lumbae . 2005. 37 p. .

249 [Kabir et al. ()] 'Prevalence of zoonotic parasitic diseases of domestic animals in different abattoir of Comilla
250 and Brahman Baria region in Bangladesh'. M H B Kabir , M Eliyas , M A Hashem , Mohiuddin , O F Miazi
251 . <http://journals.sfu.ca/bd/index.php/UJZRU> *Univ.J.Zool.Rajshahu univ* 2010. 28 p. .

252 [Islam and Mondal ()] 'Risk Factors and Gross Pathology of Bovine Liver Fluke Infection at Netrokona District'.
253 S A Islam , M A Mondal , MM H . *J. Anim. Sci. Adv* 2013. 3 (2) p. .

254 [Qureshi et al. ()] 'Seasonal and monthly prevalence pattern of fascioliasis in buffaloes and its relation to some
255 climatic factors in north eastern areas of Punjab'. A W Qureshi , A Tanveer , A Maqbool , S Niaz . *Pakistan.*
256 *Iranian Journal of Veterinary Research* 2012. 13 (2) p. .

257 [Sheikh et al. ()] 'Seasonal prevalence of bovine Fascioliasis in Kashmir valley'. G N Sheikh , G J Qadri , Gunjan
258 Das . *Indian Journal of Veterinary Medicine* 2007. 27 (2) p. .

259 [Mir et al. ()] 'Seasonal prevalence of trematode parasites of sheep (Ovis aries L.) in Kashmir Valley'. R A Mir
260 , M Z Chishti , M A Zarger , H Tak , F A Dar . *India. Nigerian Journal of Parasitology* 2008. 29 (2) p. .

261 [Rehman et al. ()] 'Slaughter house based epidemiology and estimation of economic losses of bovine Fascioliasis
262 in Tehsil Sargodha'. T U Rehman , M N Khan , M S Sajid , M T Javed . *Pakistan Journal of Science* 2013.
263 65 (4) .

264 [Ahmad and Tak ()] 'Some Epidemiological Aspects of Fascioliasis among Cattle of Ladakh'. J Ahmad ,
265 Hidayatullah Tak . *Global Veterinaria* 2011. 7 (4) p. .

266 [El-Bahy ()] 'Strategic Control of Fascioliasis in Egypt. Review article'. N M El-Bahy . *Continual Scientific*
267 *Committee of Pathology, Microbiology and Parasitology* 1998.

268 [Tilahun et al. ()] 'Study on Prevalence of Bovine Fasciolosis at Nekemte Veterinary Clinic'. Z Tilahun , D
269 Nemomsa , K Haimanot , Girma . *Oromia, Ethiopia. European Journal of Biological Sciences* 2014. 6 (2) p.
270 . East Wollega Zone

271 [Dagne ()] *Survey on Prevalence and Economic Significance of Bovine Fasciolosis in Debre Berhan region*, M
272 Dagne . 1994. Ethiopia. Faculty of Veterinary Medicine, Addis Ababa University, Debre Zeit (DVM Thesis)

273 [Anderson et al. ()] 'The sensitivity and specificity of two methods for detecting *Fasciola* infection in cattle'. N
274 Anderson , T T Luong , N G Vo , K L Bui , P M Smooker , T W Spithill . *Vet. Parasitol* 1999. 83 p. .

275 [Vercruyse and Claerebout ()] 'Treatment vs non treatment of helminth infection in cattle defining the thresh-
276 old'. J Vercruyse , E Claerebout . *Veterinary Parasitology* 2001. 98 p. .

277 [Thrustfield ()] *Veterinary Epidemiology.3 rd Edition*, Black Well Science Ltd, M Thrustfield . 2005. Cambridge,
278 USA. p. .

279 [Urquhart et al. ()] 'Veterinary Parasitology. 2 nd edition'. G M Urquhart , J Armour , J L Duncan , A M Dunn
280 , F W Jennings . *Blackwell Science Ltd., Osney Mead* 1996.