

Volume XVI Issue III Version I Year 2016

Feyissa Begna Deressa¹, Feyera Gemedha Dima² and Adem Edao³

¹ Jimma University

Received: 11 December 2015 Accepted: 31 December 2015 Published: 15 January 2016

5

Abstract

Background: Bovine cysticercosis and human taeniasis is an important parasitic disease and more common in developing countries including Ethiopia where meat is an important component of human diet and traditionally consumed raw on several occasions. Methodology: Cross-sectional study was conducted from November 2014 to April 2015 at Asella municipal abattoir in Arsi zone of Oromia to determine prevalence of bovine cysticercosis and status of human taeniasis with its associated risk factors around Asella town. Routine meat inspection method and questionnaire survey were performed for this study. Result: From the total of 430 carcass inspected, 5(1.2

15

Index terms— bovine, cysticercosis, taenia saginata, prevalence, risk factors, taeniasis.

1 Introduction

livestock in developing countries play a crucial role in improving food security, generating cash income and are an asset. The total livestock population in Ethiopia according to 2014 estimation was 56.71 million cattle, 29.33 million sheep and 29.11 million goats ??CSA, 2015), which places Ethiopia first in Africa and ninth in the world in terms of total stock population. From the total cattle population 98.95% are local breeds and the remaining are hybrid and exotic breeds. Cattle constitute large portion of livestock population and are managed by small holder farmers under extensive low input traditional system (CSA, 2015). However, its productivity remains marginal due to prevalent diseases, malnutrition and management constraints. Among that *T. saginata*/ bovine cysticercosis is the one which remains a major public and animal health problem ??EARG, 2000).

Bovine cysticercosis is an infection of cattle caused by the larval stage *T. saginata* which live in human intestinal. This parasite is universally distributed in developing as well as in developed countries (Gracey and Collins, 1992; Cabaret et al., 2002; Dorny et al., 2009). In humans, the disease is called taeniasis which is accompanied with symptoms like nausea, abdominal discomfort, epigastric pain, diarrhea, excessive appetite or loss of appetite, weakness, loss of weight and intestinal blockage. Sometimes, the mobile gravid segments may make their way to unusual sites such as the appendix and biliary tract and may cause serious disorders ??WHO, 2013). Live cattle having *C. bovis* shows no symptoms, however, heavy infestation by the larvae may cause myocarditis or heart failure ??Gracey and Collins, 1992). Cysticerci can remain alive in cattle anywhere from weeks to years and such infection in cattle is a public health problem as the infected raw or undercooked beef causes taeniasis in human (Garcia, 2003; Garcia et al., 2007). It has economic significance as well as the economic losses accruing from the condemned and downgraded carcasses and due to treatment of carcasses before human consumption is substantial ??Yoder et al., 1994; Onyango-Abuje, 1996; Giesecke, 1997).

Bovine cysticercosis and taeniasis are common where hygienic conditions are poor and the inhabitants traditionally eat raw or insufficiently cooked or sun-cured meat ??Minozzo et al., 2002). Inadequate health education and low availability of taenicides are the major obstacles for the control of such infections (Pawlowski, 1996). Due to these reasons, taeniasis is more common in developing countries including Ethiopia where meat is an important component of human diet and traditionally consumed raw on several occasions. Lack of awareness about raw meat consumption, existence of highest population density, poor hygiene and sanitary facilities some of the factors that facilitate transmission (Jones et al., 1997).

45 **2 L**

46 **3 Global Journal of**

47 The epidemiology of bovine cysticercosis/ human taeniasis various from one area to another so control measures
48 appropriate in one area is not necessarily of value in another. Hence, it is essential to have adequate knowledge
49 of the epidemiology of the disease before contemplating control programmes. In Ethiopia some studies have been
50 conducted on bovine cysticercus at different times. But the studies performed were limited to few parts of the
51 country and there was no information on prevalence of bovine cysticercosis and human taeniasis in and around
52 Asella district. Therefore, the objectives of this study were: ? To determine the prevalence of bovine cysticercosis
53 at Asella municipal abattoir, ? To estimate status of taeniasis and associated risk factors in and around the study
54 area II.

55 **4 Material and Methodology a) Description of the Study Area**

56 The present study was conducted at Asella municipal abattoir, and Asella town and its surrounding, Tiyoworeda.
57 Asella town is a capital of Arsi Zone, Oromia regional state, Ethiopia.

58 **5 b) Study Population**

59 The study animals comprise indigenous cattle brought to Asella Municipal abattoir for slaughter from different
60 districts in and around Assela town and it includes cattle of different age, sex, breed and body condition categories.
61 For the survey data, the target populations were residents of Asella town and surrounding kebeles (Burqa cilalo,
62 Dosha, Harobilallo, Café Misoma and Gora silingo) and includes all age group >18 and both female and males

63 **6 c) Study Design**

64 A cross-sectional study was used to study the prevalence of bovine cysticercosis at Asella municipal abattoir by
65 using routine meat inspection technique in municipality slaughter house for the presence of *C. bovis*. Moreover,
66 a cross-sectional study was conducted by a semi-structured questionnaire survey to assess the status of *T. saginata*/taeniosis and associated risk factors.

68 **7 III.**

69 **8 Sample Collection Method a) Active Abattoir Survey**

70 Animal samples were collected by active abattoir survey. The study animals were selected using simple random
71 sampling method and age, breed, sex and body condition of each study animals was recorded on prepared
72 format paper at ante-mortem. Body condition scoring of the cattle was made based on the guideline provide
73 by ??Nicholson and Butter, 1986) and all animals included in the study were animals with, medium and good
74 body condition. Age determination was carried out by means of their dentition as described by (De-lahunta and
75 Habel, 1989) and all the inspected animals were at the age of adult and old age group. Prior to sampling, each
76 selected animal were given an identification number by writing a code on its head by using unwashable ink.

77 Meat inspection was made in accordance with the procedures of Ethiopian Ministry of Agriculture Meat
78 Inspection Regulation (MOA, 1972) for the detection of *T. saginata*'s cysts. Because of owners' discomfort on
79 multiple incisions for the thorough examination of major muscles, only the masseters muscle and internal organs
80 such as tongue, heart, liver, kidney, lung and diaphragm were used as indicators of the presence of cysts in the
81 carcass. Careful examination on the carcass of study unit was made through palpation of the organs followed by
82 incision as follows: the surface and substance of tongue was examined visually, followed by longitudinal ventral
83 incision from the tip of the root. Extensive deep incision was made into external and internal muscles of masseters
84 parallel to the plane of the jaw (parallel to the jaw bone from the lower jaw). Visual inspection and longitudinal
85 incision of the myocardium from base to apex was made. The muscles of diaphragm were examined visually and
86 by making incision. Examination of kidney, liver, and the lung was also conducted accordingly by visualization,
87 palpation and incision. Cysts observed in theses organs were carefully dissected and numbers and nature of cysts
88 in each organ was recorded for each animal. The nature of the cyst was recorded as calcified and viable by visual
89 observation of its appearance, as (Ashwani and Gebrehiwot, 2011) dead degenerated or calcified cysterci clearly
90 form identifiable spots of white and have fibrotic lesions, while the viable cysticerci are pinkish-red in colour.

91 **9 b) Questionnaire survey**

92 Semi-structured questionnaire survey used to asses, potential risk factors and its public health importance.
93 Questionnaire survey on the disease occurrence and risk factor assessment was administered to 415 volunteer
94 respondents who were selected based on convenience sampling method and the interview was conducted phase
95 to phase. The potential risk factors of taeniasis considered in this study were :age, sex, religion, occupation,
96 educational status, and habit of raw meat consumption. The awareness of the diseases, presence/absence of
97 sanitation facilities like toilet and the drug used for treatment were also included in the questionnaire survey
98 and at the end of interview some advices were provided to the respondents on how to control and prevents *T.*
99 *Saginata* infection/cysticercosis.

100 **c) Sample Size Determination**

101 The desired sample size was calculated using the standard formula described by Thrus field (Thrus field, 2005)
102 for simple random sampling method. Since there was no similar previous study at this area, expected prevalence
103 was considered 50%, 5%desired absolute precision and 95% confidence level were used to calculate the minimal
104 sample size. Hence, the sample size required was 384 heads of cattle. But to increase the precision of the study the
105 sample size were increased and a total of 430 heads of cattle were included in the current study. For questionnaire
106 survey sample size was calculated by using the formula given by Arsham (2002) which is: $N= 0.25/SE^2$, When:
107 $N=$ sample size, SE (standard error) $=5\%$,

108 The sample size required for the questionnaire survey as per the above formula is 100 for each site (urban and
109 rural). However, to include different risk factors and increase the precision of the result the total number was
110 increased to 415individuals.

111 **11 IV.**

112 **12 Data Management and Analysis**

113 The data collected were entered, recorded and stored in Microsoft excel spread sheets program version 2010.
114 Descriptive and inferential analyzed was made by using SPSS version 20 software. Fisher's and Chisquare (X^2
115) tests were used to determine the variation in prevalence of infection between different groups for abattoir and
116 questionnaire survey respectively. Statistical significance level was set at $P < 0.05$ at 95% confidence level to
117 determine whether there are statistical significant differences between the parameters measured.

118 V.

119 **13 Result**

120 Prevalence of *C. bovis*: the study showed that 5(1.2%) were positive for bovine cysticercosis. The statistical
121 analysis of the data revealed that no significant difference ($p > 0.05$) was observed in the prevalence of cysticercosis
122 in relation to the risk factors like: sex, breed, body condition and ages. But high prevalence of *C. bovis* was
123 observed in local breed, old age and female animals relative to cross breed, adult age and male animals respectively,
124 while almost no difference was indicated between animals of good and medium body condition as shown in Table
125 1. Anatomical distribution of cysts: frequency analysis of active abattoir survey revealed that nearly the there
126 was the same distribution of *C. bovis*in the examined organs as follows: liver (0.9%), heart (0.7%), tongue (0.5%)
127 and masseters muscle (0.5%). From the total number of 16 *C. bovis* observed on different organs, 7(43.8%),
128 5(31.3%), 2(12.5%) and 2(12.5%) were localized on the liver, heart, tongue and masseters muscle (table 2)and
129 out of the total cyst observed 6 (37.5%) of them were viable with organ distribution of 50%, 33.3% and 16.7%
130 on liver, heart and masseters muscle respectively as indicated in table 2. Questionnaire survey: Of the total 415
131 interviewed respondents 44.3% (184/415) had contracted *T. saginata* infection at least once in their life time and
132 the respondents confirmed that they were positive by witnessing they observed proglottids in their feces and/or
133 under wear. Since due to religious purpose pork meat is not consumed in the study area, the proglottids observed
134 were surely to be of *T. saginata*. From positive respondents 32% got taeniasis only before 2000E.C (2008G.C),
135 while 6.7% got taeniasis after 2000 E.C (2008 G.C) and 5.5% were those remain positive both before and after
136 2000E.C. Out of those witnessed their positivity, 88.6% and 10.9% respondents used modern and traditional
137 drugs for treatment respectively, while the remaining percent uses nothing for treatment as indicated by tables 4
138 respectively. Out of total respondents 90.6% (376/415) uses toilet, 73.5% (305/415) have awareness about human
139 taeniasis.

140 **14 Association of risk factors with prevalence of taeniasis:**

141 A statistical analysis showed that there was a highly significant variation between urban and rural, higher and
142 lower age group, raw meat and cooked meat consumers, female and male, occupation group, and educational
143 levels ($p < 0.05$).High prevalence of humantaeniasiswas reported in rural area, male, higher age group, farmer,
144 raw meat consumer and illiterate. But no statistical significance variation was seen among religion ($p > 0.05$) as
145 shown below by tables 5.

146 **15 VI.**

147 **16 Discussion**

148 The prevalence of *C. bovis* among the carcasses inspected at Asella municipal abattoir was 1.2% which is
149 comparable with the findings of (Birhanu, et al., 2013) ??nd kidney) and masseters muscle while other predilection
150 sites are rarely inspected due to multiple mutilation of carcass causes reduction in marketability of the meat and
151 the owners not permit multiple incision of heavy muscles. This may in turn lead to omitting of infected animals
152 as the sensitivity of detecting the parasite will decline with limited number of incisions (Wanzala, 2003) and
153 experimental studies showed a 5-50 times higher prevalence will be achieved by complete slicing of the predilection
154 sites ??Minozzo, 2002).

16 DISCUSSION

155 But the current study's result was higher relative to the finding of ??Zdolec et al., 2012) and (Blessing et al.,
156 2011) who reported 0.11% and 0.2% from Croatia and South Africa. This could be due to strict application of
157 meat inspection and public health extension rules and difference in hygiene measures in the study countries. It's
158 known that sanitation facilities are better in the developed countries than in the developing countries in which
159 poor environmental hygiene increase the prevalence of the diseases in the environment. More number of *C. bovis*
160 was observed in the liver than other organs inspected. The reason is that absence of specific predilection site for
161 *C. bovis* as stated by (Scandrett, 2009) so more number of larvae collected through mesenteric and portal veins
162 residing in the liver.

163 Questionnaire survey indicated that human taeniasis was common in the study area with prevalence of 44.3%.
164 This agree with the finding of (Mesfin and Nuraddis, 2012) 44% in Hawassa town and (Dawit and Temesgen,
165 2013) 44.44% in Shire Indasilassie district. But this result is lower relative to the finding of (Lielt et al., 2015)
166 64% in Bishoftu, (Dawit, 2012) 62.5% in Wolaittasoddo, (Fetene and Nibret, 2014) 58%, (Abunna, 2013) 70%
167 in Yirgalem, (Bedu et al., 2011) 56.7% at Zeway, (Abunna et al., 2008) 64.2% in Awassa town and (Megersa
168 et al., 2010) 56.7% Jimma town. The reason for reporting lower prevalence of human taeniasis in the current
169 study area could be due to the difference in the religious composition of the respondents, and sample size taken.
170 Out of total respondents of the current study, 45.1% were Muslims that they have traditionally low habit of
171 consuming raw meat than Christians and from the total respondents only 50.8% were raw meat consumers. Raw
172 meat consumption is the only way of getting *T.saginata* infection, so as raw meat consumption decrease in the
173 area the infection also decrease. The other is sample size difference and as sample size increase the precision will
174 also increases. In the present study the sample size is very large (415) while in the above finding very small (not
175 greater than 170). The other point is that some respondents shy to openly tell about taeniasis and this could
176 also end up with low recovery of positive people in the study area.

177 It was revealed that *T.saginata* infection was more prevalent in the rural area than urban. This could be due
178 to low level of personal and environmental sanitation facilities and absence of meat inspection in the rural area
179 than urban area. This finding agrees with the statement of ??Minozzo et al.,2002) who stated that taeniasis are
180 common where hygienic conditions are poor and the inhabitants traditionally eat raw or insufficiently cooked or
181 sun-cured meat.

182 The current study indicates that the ages of respondents have strong association with the prevalence of
183 *T.saginata* infection and high in higher age group (>35 years) than other age group (<18 and 18-35 years) (table
184 5) which is in agreement with the previous study of (Abunna et al., 2008; ??dugna et al., 2013;Lielt et al., 2015).
185 This might be due to that the habit of raw meat consumption increase with age and the higher age group have
186 better income to consume raw meat and more prone to *C.bovis*. But lower age groups are student that they have
187 no sufficient access to raw meat from butcher's houses as commonly raw meat was eaten at this site and they are
188 less invited than elder on different ceremony where raw meat consumption culturally practiced.

189 In this study *T. saginata* was more prevalent in men than in women which is a similar report with findings
190 of (Hailu, 2005;Abunna, 2013;Lielt et al., 2015) in other parts of Ethiopia. This may be due to cultural practice
191 in Ethiopia that men not commonly prepare their dishes at home rather they frequently visiting but cheries and
192 restaurants than women for beef consumption. In this study no statistically significant difference were observed
193 between the proportion of taeniasis in Muslim and Christian community which is in consent with the previous
194 reports of (Tembo, 2001;Abunna, 2007;Dawit et al., 2012). The reason behind may be they share same culture
195 and habit of raw meat The current study revealed that raw beef consumers had contracted taeniasis infection
196 more frequently than the non raw beef consumers which is inlined with the report of (Megersa, 2010;Fetene and
197 Nibret, 2014). The reason is well known that in the consumption of raw meat the degree of ingesting *C.bovis*
198 with meat is higher (Gajadhar et al., 2006;Garcia et al., 2007). *T. saginata* infection is highly prevalent in the
199 illiterate than literate respondents and this report agrees with the finding of (Abunna et al., 2008;Kebede et
200 al., 2009; ??dugna et al., 2013) and also the current study revealed that the farmers had contracted taeniasis
201 than individuals with other occupational status. This difference might be from low level of awareness in the
202 illiterate and farmers than literate individuals and other occupational status. The other reason for reporting high
203 prevalence of taeniasis in the farmer community is that most of Ethiopian farmers are illiterate and from rural
204 area where environmental hygiene is low and backyard slaughter was practiced with very low awareness about
205 the diseases.

206 The questionnaire survey result showed that the prevalence of taeniasis in human population is decreasing and
207 it also indicated that there was strong relationship between occurrence of *T.saginata* infection and residence area,
208 age, sex, habit of raw meat consumption, occupational and educational status of the respondents. Therefore,
209 continues public education should be provided to avoid consumption of raw meat and encourage use of latrines
210 and improved standards of human hygiene and backyard slaughtering of cattle should be restricted and slaughter
211 house which fulfills the necessary facilities and with qualified meat inspector should be constructed.

212 It is our proud privilege to express our sense of thankfulness to College of Agriculture and Veterinary Medicine,
213 School of Veterinary Medicine for providing the financial aid to complete this project. We also highly thankful

Asella and its surrounding is characterized by mid sub-tropical weather, with minimum and maximum temperature ranging from 8.4 to 22.6°C, and the relative humidity ranging from 43 to 60%. The average rainfall is 2000mm. The area has a bimodal rainfall occurring from March to April (short rainy season) and July to October (long rainy season). According to Arsi Planning Economic and Development Office (APEDO, (2007)), the area is densely populated, with livestock population of 85,893 cattle, 57,118 sheep, 10,725 goats, 7841 horses, 15,642 donkeys, 517 mules and 35,489 poultry. The farmers in the area practice mixed crop-livestock farming system.

Figure 1:

214 to Ato Haji Geleto the meat inspector of Asella municipal abattoir, for his valuable suggestions, experience share
215 during the abattoir visits. ¹

¹Prevalence of Bovine Cysticercosis and Status of Human Taeniasis in and Around Asella Town, Tiyoworeda, South East Ethiopia

South East Ethiopia

Ababa abattoir (Nuraddis and Frew, 2012), 3.65% from Jimma municipal abattoir (Teresa, et al., 2011), 3.11% indifferent agro climatic zones of Ethiopia (Tembo, 2001). But lower than the finding of (Dawit, 2004) 4.9% at Gondar, (Alula, 2010) 5.4% at Konbolcha, (Kebede, 2008) 18.49% in North West Ethiopia, (Abunna, 2008) 26.3% at Hawassa, (Hailu, 2005) 17.5% in East Shoa, (Fetene and Nibret, 2014) 5.1%, at Jimma municipal abattoir, (Belay, 2014) 5.2% at Municipal Abbatoir of Shire, (Abunna, 2013) 12% at Yirgalem and (Lielt, 2015) 5.6 at BishoftuElfora abattoir. This difference might be resulted from difference in the level of personal and environmental hygiene, habit of raw meat consumption, number of incision made at inspection site in the abattoir, and management type of the animals practiced. The main reason with low prevalence of bovine cysticercosis in the current study could be due to low number of organs inspected and low incision made at inspection site at the abattoir. In Asella municipal abattoir the commonly inspected organs for presence of *C. bovis* were internal organs (liver, heart, lung, tongue,

Year 2016
Volume XVI
Is-
sue
III
Ver-
sion
I
D
D
D
D
)
(
G

from a total number of 430 carcasses inspected, who reported prevalence of 2.58% from Bahir Dar Municipal Abattoir, 2.59% from Wolaita soddо municipal abattoir (Dawit, et al., 2012), 3% from Zeway Municipal Abattoir (Bedu, 2011), 3.6% from Addis © 2016 Global Journals Inc. (US)

Figure 2:

1

VII. Acknowledgements

Références

1. Central Statistical Agency (CSA). Agricultural Sample Survey, 2014/15, Volume II: Report on Livestock and livestock characteristics (Private peasant holdings). Statistical Bulletin 570. Central Statistical Agency (CSA), Federal Democratic Republic of Ethiopia, Addis Ababa. 2015.
2. Ethiopian Agricultural Research Organization (EARO). Beef Research Strategy. Ethiopian

Figure 3: Table 1 :

2

Organs	No. of organs inspected	No. of positive organs	Prevalence (%)	Total No of cyst on organ	No cyst per organs	viability (%)
Tongue	430	2	0.5	2	0(0/6)	
Masseters muscle	430	2	0.5	2	16.7(1/6)	
Heart	430	3	0.7	5	33.3(2/6)	
Liver	430	4	0.9	7	50(3/6)	
Lung	430	0	0	0	0	
Kidney	430	0	0	0	0	
Total	1720	11	0.64	16	100	

Figure 4: Table 2 :

3

Frequency	Percent

Figure 5: Table 3 :

4

Drug used	Taeniasis positive individuals Frequency	Percent
Modern drug	163	88.6
Traditional drug	19	10.3
Non drug users	2	1.1

Figure 6: Table 4 :

5

Variables	Categories	No of interviewees	No infected	Prevalence%	X ²	P -value
Residential area	Rural	307	151	49.2	11.2	0.001
	Urban	108	33	30.6		
Age	<18	92	19	20.7	67.1	0.000
	18-35	199	74	37.2		
	>35	124	91	73.4		
Sex	Male	216	113	52.3	11.6	0.000
	Female	199	71	35.7		
Religion	Christian	228	109	47.8	2.4	0.07
	Muslim	187	75	40.1		
Educational status	Illiterate	173	103	59.5	28.9	0.000
	Elementary	153	52	34		
	High school	54	20	37		
	College/above	35	9	25		
Occupational status	Student	128	25	19.5	55.2	0.000
	Farmer	205	125	61		
	Civil workers	25	10	40		
	Other private workers	57	24	42		
Raw meat	Consumers	211	131	62.1	54.8	0.000
	Non-consumer	204	53	26		
	Total	415	184	44.3		

Figure 7: Table 5 :

216 [Jones et al. (ed.) ()] , T C Jones , R D Hunt , W K Norval . Veterinary Pathology. 6th ed. Hong Kong: Lippincott
217 Williams and Wilkins 1st ed. USA: Mosby (ed.) 1997. 431 p. .

218 [Agricultural Research Organization, Animal Science Directorate ()] *Agricultural Research Organization, Animal Science Directorate*, 2000. Addis Ababa. p. .

220 [Wanzala et al. ()] 'Analysis of Post-Mortem Diagnosis of Bovine Cysticercosis in Kenyan Cattle'. W Wanzala ,
221 J Onyango-Abuje , E Kang'ethe , K Zessin , N Kyule , M Bauman , H Ochanda , Harrison . *Onderstepoort. J. Vet. Res* 2003. 1 p. .

223 [APEDO (Arsi Plan and Economic Development Office) ()] *APEDO (Arsi Plan and Economic Development Office)*, 2007. p. . (Socio Economic on Arsi Zone; Assela, Arsi)

225 [Adugna et al. ()] 'Bovine cysticercosis and human taeniosis in South-west Shoa zone of Oromia Region'. T
226 Adugna , H T Yacob , A Dinka , T Getachew . *Ethiopia. Ethiopia. Vet Journal*2013. 17 p. .

227 [Abunna et al. ()] 'Bovine cysticercosis in cattle slaughtered at Awassa municipal abattoir, Ethiopia: Prevalence,
228 cyst viability, distribution and its public health implication'. F Abunna , G Tilahun , B Megersa , B Kumsa
229 , A Regassa . *Health* 2008. Zoon and Publ. 55 p. .

230 [Megersa et al. ()] 'Bovine Cysticercosis In Cattle Slaughtered at Jimma Municipal Abattoir, South Western
231 Ethiopia: Prevalence, Cyst Viability and Its Socio Economic Importance'. B Megersa , E Tesfaye , A Regassa
232 , R Abebe , F Abunna . *Vet. World* 2010. 3 p. .

233 [Bedu et al. ()] 'Bovine Cysticercosis in Cattle Slaughtered at Zeway Municipal Abattoir: Prevalence and its
234 Public Health Importance'. H Bedu , K Tafess , B Shelima , D Woldeyohannes , B Amare . *J. Vet. Sci. Technol* 2011. 2 p. 108.

236 [Ashwani and Gebrehiwot ()] 'Bovine cysticercosis in Ethiopia: a review. Ethio'. K Ashwani , T Gebrehiwot .
237 *Vet. J* 2011. 15 p. .

238 [Kebede et al. ()] 'Current Status of Bovine Cysticercosis of Slaughtered Cattle in Addis Ababa Abattoir'. N
239 Kebede , Tilahung , A Hailu . *Tropical Animal Health and Production* 2009. 41 p. .

240 [Teresa et al. ()] 'cyst viability, body site distribution and public health significance of Bovine Cysticercosis at
241 Jimma south west Ethiopia'. G Teresa , A Melaku , B Basazenuw , M Chanie . *Glob. Vet* 2011. 7 p. .

242 [Kebede ()] 'Cysticercosis of slaughtered cattle in northwestern Ethiopia'. N Kebede . *Research in Veterinary
243 Science* 2008. 85 p. .

244 [Scandrett et al. ()] 'Distribution of Taeniasaginata Cysticerci in Tissues of Experimentally Infected Cattle'. B
245 Scandrett , S Parker , L Forbes , A Gajadhar , P Dekumyoy , J Weikagul , D Haines . *Vet. Parasitol* 2009.
246 164 p. .

247 [Dorny et al. ()] 'Emerging food-born parasites'. P Dorny , N Praet , Deckers Gabriel , S . *Vet. Parasitol* 2009.
248 163 p. .

249 [Dawit ()] 'Epidemiology of Taenia saginata, taeniasis and cysticercosis in North Gondar zone Northwestern
250 Ethiopia., Faculty of Veterinary Medicine'. S Dawit . *DVM thesis*, 2004. Addis Ababa University: DebreZeit,
251 Ethiopia

252 [Tembo ()] *Epidemiology of Taenia saginata, Taeniasis/Cysticercosis in three selected agroclimatic zones*, A
253 Tembo . 2001. Berlin. Faculty of Veterinary Medicine Free University of Berlin (MSc. Thesis)

254 [Minozzojc et al. ()] 'Experimental Bovine Infection with Taeniasaginata Eggs: Recovery Rates and cysticerci
255 Location'. Gussorlf Minozzojc , De Castroea , O Lago , V T Soccoi . *Braz. Arch. biol. Technol* 2002. 45 p. .

256 [Garcia and Parasitology ()] L S Garcia , Parasitology . *Manual of Clinical Microbiology*, (Washington, D.C.)
257 2003. ASM Press. 8 p. 1895.

258 [Garcia et al. ()] L S Garcia , J A Jimenez , H Escalante , Cestodes . *Manual of Clinical Microbiology*,
259 (Washington, D.C) 2007. ASM Press. p. 2166. (9th ed.)

260 [Nicholson and Butterworth ()] *guide to body condition scoring zebu cattle international livestock center for
261 Africa*, M J Nicholson , M H Butterworth . 1986. Addis Ababa, Ethiopia.

262 [Pawlowski ()] 'Helmenthic Zoonosis Affecting Humans in Africa. Veterinary Medicine, Impacts on Human
263 Health and Nutrition in Africa'. Z S Pawlowski . *Proceedings of an International conference Lindberg*, (an
264 International conference Lindberg) 1996. p. .

265 [Legal notice No. 428 Negarite Gazexa Ministry of Agriculture ()] 'Legal notice No. 428 Negarite Gazexa'. *Min-
266 istry of Agriculture*, (Addis Ababa, Ethiopia) 1972. (Meat Inspection Regulations (MOA))

267 [Alula ()] *Major Metacestodes in Cattle Slaughtered at KombolchaELFORA Abattoir, North East Ethiopia:
268 prevalence, cyst viability organ distribution and socio economic implication. Faculty of Veterinary Medicine,
269 A Alula* . 2010. Hawassa, Ethiopia. Hawassa University (DVM Thesis)

270 [Graceyjf ()] *Meat Hygiene, 9 th edn*, Collins Graceyjf , DS . 1992. London. (Balliere Tindal)

16 DISCUSSION

271 [Gajadhar et al. ()] 'Overview of food-and water-borne zoonotic parasites at the farm level'. A A Gajadhar , W
272 B Scandrett , L B Forbes . *Revue Scientifique ET Technique (International Office of Epizootics)* 2006. 25 p. .

273 [Giesecke ()] *Prevalence and economic implications of taeniasis/cysticercosis in South Africa. Report on a*
274 *Workshop held at the Onderstepoort Veterinary Institute*, W H Giesecke . 1997. Onderstepoort, South Africa.
275 p. .

276 [Hailu ()] *Prevalence and risk factors for T. saginata cysticercosis in three selected areas of eastern Shoa*, D
277 Hailu . 2005. Debrezeit, Ethiopia. Addis Ababa University, Faculty of Veterinary Medicine (M.Sc thesis)

278 [Lielt et al. ()] *Prevalence and significance of bovine cysticercosis at Elfora abattoir, Bishoftu, Ethiopia, journal*
279 *of public health and epidemiology*, E Lielt , T Desalew , K Tsegabirhan , S Teshale , H Yohannes . 2015. 7 p. .

280 [Fetene and Nibret ()] 'Prevalence of Bovine Cysticercosis in Cattle and Zoonotic Significance in Jimma Town'.
281 F Fetene , M Nibret . *Acta Parasitol Glob* 2014. 5 p. .

282 [Blessing et al. ()] 'Prevalence of Bovine Cysticercosis in the North West Province of South Africa from'. M D
283 Blessing , K S Ethel , M M Mphane , E Lebogang , R B Francis , V N Rendani , N Mathew . *J. Hum. Ecol*
284 2000 to 2010. 2011. 36 p. .

285 [Mesfin and Nuraddis ()] 'Prevalence of Cysticercus Bovis in Hawassa Municipal Abattoir and its Public Health
286 Implication'. B Mesfin , I Nuraddis . *American-Eurasian J. Sci. Res* 2012. 7 p. .

287 [Belay and Mekelle ()] 'Prevalence of Cysticercusbovis in Cattle at Municipal Abbatoir of Shire'. S Belay , B A
288 Mekelle . *J. Vet. Sci. Technol* 2014. 5 p. 196.

289 [Zdolec et al. ()] 'Prevalence of Cysticercusbovis in slaughtered cattle determined by traditional meat inspection
290 in Croatian abattoir from'. N Zdolec , Vujevi ? I , V Dobrani? , M Juras , N Grgurevi? , Ardali ?d Njari , B
291 . *Inst. Parasitol. SAS* 2005. 2010. Helminthol2012. 49 p. .

292 [Nuraddis and Frew ()] 'Prevalence of Tania Saginata cysticercosis in Cattle Slaughtered in Addis Ababa
293 Municipal Abattoir'. I Nuraddis , Z Frew . *Ethiopia Glob. Vet* 2012. 8 p. .

294 [Abunna ()] *Prevalence, organ distribution, viability and socioeconomic implication of bovine cysticercosis/teniasis, Ethiopia Revue d'élevageet de médecinevétérinaire des pays tropicaux*, F Abunna . 2013. 66
295 p. 2530.

296 [Dawit et al. ()] 'Public Health and Economic Significance of Bovine Cysticercosis in Wolaita Soddo'. T Dawit , S
297 Tewodros , D Tilaye . *Southern Ethiopia. Glob. Vet* 2012. 9 p. .

298 [Yoder et al. ()] 'Public Veterinary Medicine: Food Safety and Handling, Epidemiological Findings from an Out
300 Break of Cysticercosis in Feed lot Cattle'. D R Yoder , E D Eblell , D D Hancock , B A Combs . *J.A.V.M*
301 A1994. 205 p. .

302 [Arsham ()] *Questionnaire Design and Surveys Sampling, SySurvey: The Online Survey Tool*, H Arsham .
303 <http://home.ubalt.edu/ntsbarsh/Business-stat> 2002.

304 [Dawit and Temesgen ()] 'Risk Factors and Public Health Significance of Cysticercosis in Cattle and Human in
305 Shire Indasilassie District'. G Dawit , M Temesgen . *Northern Ethiopia Adv. Biolog. Res* 2013. 7 p. .

306 [Onyango-Abuje et al. ()] 'Seroepidemiological survey of T. saginata cysticercosis in Kenya'. J A Onyango-Abuje
307 , J M Nginyi , M K Rugutt , S H Wright , P Lumumba , G Hughes , J S Harrison . *Vet. Parasitol* 1996. 64
308 p. .

309 [Birhanu et al. ()] 'Study on Zoonotic Metacestodes of Cattle Slaughtered at Bahir Dar Municipal Abattoir'. M
310 Birhanu , A Habtamu , T Dawit . *Northwest Ethiopia Glob. Vet* 2013. 10 p. .

311 [Abunna et al. ()] 'Taeniasis and its socio-economic Implication in Hawassa Town and its surrounding, Southern
312 Ethiopia'. F Abunna , G Tilahun , B Megersa , A Regassa . *East Afric J. Public Health* 2007. 4 p. .

313 [De-Lahunta and Habel ()] *Teeth apply Veterinary Anatomy W.B.Saunders Company*, A De-Lahunta , R Habel .
314 1989. p. .

315 [Cabaret et al. ()] 'The use of urban sewage sludge on pastures: The cysticercosis threat'. J Cabaret , S Geerts
316 , M Madeline , C Ballandonne , D Barbier . *Vet. Res* 2002. 33 p. .

317 [Thrusfield ()] *Veterinary epidemiology. 3 rd ed. Singapore, Black well Science*, M Thrusfield . 2005. p. 233.

318 [World Health organization (WHO). Taeniasis/ cysticercosis. WHO Fact sheet N.376° ()] *World Health organi-*
319 *zation (WHO). Taeniasis/ cysticercosis. WHO Fact sheet N.376°*, 2013.