Effects of Exercise on Doxorubicin Accumulation and Multidrug Resistance Protein Expression in Striated Muscle

By Colin J Quinn, Noah M. Gibson, Keith B. Pfannenstiel, Alex C. Bashore, Reid Hayward & David S. Hydock

University of Northern Colorado, United States

Abstract: The chemotherapy drug doxorubicin (DOX) is well known to induce cardiac and skeletal muscle dysfunction. Previous studies demonstrate that exercise can mitigate dysfunction, reduce myocardial DOX accumulation, and depress markers of oxidative stress, but a putative mechanism is unknown. The aim of this study was to determine whether multidrug resistance protein (MRP) expression contributes to the protective effects of exercise against DOX-induced muscular dysfunction. Lower left ventricle (LV) and soleus DOX concentrations were observed in exercised animals, and MRP-1, MRP-2, and MRP-7 expression was significantly increased in the LV with exercise. No MRP variations were apparent in skeletal muscles following the exercise protocol. As a marker of oxidative stress, malondialdehyde+4 hydroxyalkenal levels were analyzed, and exercise reduced both cardiac and skeletal muscle levels from exercised trained animals treated with DOX had significantly lower levels than SED-DOX. This study suggests increased MRP expression with exercise may contribute to exercise-induced protection in cardiac muscle but not skeletal muscle.

Keywords: ABC transporters, adriamycin, anthracyclines, cardiotoxicity, chemotherapy, oxidative stress, myotoxicity.

GJMR-K Classification: NLMC Code: WE 500
Effects of Exercise on Doxorubicin Accumulation and Multidrug Resistance Protein Expression in Striaged Muscle

Colin J Quinn, Noah M. Gibson, Keith B. Pfannenstiel, Alex C. Bashore, Reid Hayward, & David S. Hydock

Abstract: The chemotherapy drug doxorubicin (DOX) is well known to induce cardiac and skeletal muscle dysfunction. Previous studies demonstrate that exercise can mitigate dysfunction, reduce myocardial DOX accumulation, and depress markers of oxidative stress, but a putative mechanism is unknown. The aim of this study was to determine whether multidrug resistance protein (MRP) expression contributes to the protective effects of exercise against DOX-induced muscular dysfunction. Lower left ventricle (LV) and soleus DOX concentrations were observed in exercised animals, and MRP-1, MRP-2, and MRP-7 expression was significantly increased in the LV with exercise. No MRP variations were apparent in skeletal muscles following the exercise protocol. As a marker of oxidative stress, malondialdehyde+4 hydroxynonenal levels were analyzed, and exercise reduced both cardiac and skeletal muscle levels from exercised trained animals treated with DOX had significantly lower levels than SED-DOX. This study suggests increased MRP expression with exercise may contribute to exercise-induced protection in cardiac muscle but not skeletal muscle.

Keywords: ABC transporters, adriamycin, anthracyclines, cardiotoxicity, chemotherapy, oxidative stress, myotoxicity.

I. Introduction

Anthraccline antibiotics are commonly used chemotherapeutic agents that have a wide range of applications to treat many cancer types including solid tumors. Doxorubicin (DOX, trade name: Adriamycin) is one of the most effective anthracyclines; however, it is associated with cardiotoxicity. This cardiotoxicity is dose-dependent and can eventually lead to congestive heart failure. Mechanisms of the cardiotoxic milieu associated with anthracyclines are mainly attributed to oxidative stress. DOX molecules undergo redox cycling at complex I of the electron transport chain. Additionally, DOX impairs mitochondrial respiration and elevates the formation of reactive oxygen species (ROS). An overproduction of ROS can damage cellular components and induce signaling pathways that lead to apoptosis, necrosis, and autophagy.

Endurance exercise interventions have been used as an effective strategy to mitigate the severity of anthracycline cardiotoxicity. With both voluntary wheel running and treadmill training, our laboratory has observed attenuated DOX-induced cardiac dysfunction analyzed both in vivo and ex vivo. With echocardiographic functional analyses, exercise preconditioned animals receiving DOX show increased fractional shortening, aortic and mitral valve maximal blood flow velocity, and mean blood flow velocity when compared to sedentary animals receiving DOX. Furthermore, isolated working heart experiments have shown preservation in left ventricular developed pressures, maximal rate of pressure development, and maximal rate of pressure decline with exercise.

In addition to the cardiotoxicity of anthracyclines, myotoxic effects are also evident and can manifest as increased fatigue and reduced force production. This has been reported as being due to oxidative stress as well, which can affect calcium handling and actin-myosin cross bridge cycling. While there is relatively little research examining these mechanisms, it has been reported that exercise plays a beneficial role by mitigating skeletal muscle dysfunction, autophagic signaling, and proteolysis.

The multidrug resistance protein (MRP) family, which is part of the super family of ATP binding cassette (ABC) transporters, includes a group of drug efflux pumps and transporters known to extrude cellular anthracyclines. Gene transfected upregulation of MRPs has been shown to confer multidrug resistance on cultured cells by decreasing intracellular drug concentrations. Additionally, MRP-1 knockout cardiomyocytes show increased 4-hydroxynonenal production, a marker of oxidative stress, when exposed to DOX. Parry and Hayward indicated cardiomyocyte expression of MRP-1 and MRP-2 was increased in previously-exercised rats receiving DOX versus paired sedentary animals.

Our laboratory has previously reported that exercise preconditioning is associated with a decrease in cardiac DOX accumulation and reduced lipid peroxidation. Additionally, Marques-Aleixo et al.
demonstrated treadmill and free-wheel running in rats preserved oxidative phosphorylation proteins, mitochondrial complexes’ I and V content and activity, and mitochondrial biogenesis while decreasing oxidative stress associated with DOX treatment. Taken together, prior exercise may influence MRP content and consequent uncontrolled ROS generation. The purpose of this study was to determine if MRP expression in striated muscle is up regulated with exercise and if its expression is linked with decreases in DOX accumulation and oxidative stress.

II. METHODS

a) Animal Care and use

All procedures were approved by the University of Northern Colorado Institutional Animal Care and Use Committee and were in compliance with the Animal Welfare Act guidelines. Ten week old male Sprague-Dawley rats (n=32) were purchased from Harlan Laboratories (Indianapolis, IN) and housed in an environmentally controlled facility on a 12:12 hour light: dark cycle. Rat chow (Teklad 2016: Harlan) and distilled water were provided ad libitum. Rats were randomly assigned to sedentary (SED, n=16) or wheel run (WR, n=16) groups. WR rats were housed in cages equipped with voluntary running wheels and allowed 24-hour access to wheels for 10 weeks. SED animals were restricted to normal cage activity for the duration of the study. Following completion of the ten weeks of exercise, WR animals were removed from wheel cages.

Twenty-four hours following removal from wheel access, both groups (SED & WR) were randomly assigned to receive a single bolus injection of DOX or saline as a placebo (SED-DOX, n=8; SED-SAL, n=8; WR-DOX, n=8; WR-SAL, n=8). DOX animals received 15 mg DOX/kg body mass i.p. and SAL animals received an equivalent volume of 0.9% SAL i.p. injection. All animals were euthanized 24 hours following DOX or SAL injection with an i.p. injection of heparin zed (500 U) sodium pentobarbital (50 mg/kg). Immediately following the absence of a tail-pinch reflex, the heart was rapidly excised. The right ventricle (LV) was isolated and subjected to protein precipitation by adding 200 µL of a 50:50 (v/v) mixture of HPLC-grade methanol and 40% ZnSO4 to 150 µL of homogenized tissue. Fifty µL of daunorubicin (DAUN) (Sigma: St. Louis, MO) at an initial concentration of 500 ng/mL was added to the sample as an internal standard. The sample was vortexed for 1 min before centrifugation at 1,500 g for 10 minutes. The supernatant was filtered through a 0.2 µm syringe filter and injected directly onto the column to initiate the analytical method. Quantification of DOX and DAUN was performed using a Shimadzu HPLC system (Shimadzu: Kyoto, Japan) equipped with the following components: DGU-14A degasser, dual pump LC-10A LC chromatograph, SPD-M10A diode array detector, SCL-10A system controller, and RF-10Axl fluorescence detector. The stationary phase consisted of a reverse phase Zorbax C8 column (Agilent Technologies: Santa Clara, CA). The fluorescence detector used to quantify DOX and DAUN was operated at an excitation of 470 nm and emission of 550 nm. A volume of 20 µL of sample was injected directly onto the column.

c) MRP expression

LV and skeletal muscle homogenates were analyzed for MRP-1, MRP-2, and MRP-7 by Western blotting. Approximately 100 mg of tissue was homogenized in a dilution of 1:10 w:v in RIPA buffer (Sigma-Aldrich) using a Virtisheer homogenizer. Homogenates were centrifuged at 10,000 g for 10 minutes, and supernatant was removed for analysis. Total protein was determined by a Bradford assay. Homogenates were then subjected to protein precipitation by adding 200 µL of a 50:50 (v/v) mixture of HPLC-grade methanol and 40% ZnSO4 to 150 µL of homogenized tissue. Fifty µL of daunorubicin (DAUN) (Sigma: St. Louis, MO) at an initial concentration of 500 ng/mL was added to the sample as an internal standard. The sample was vortexed for 1 min before centrifugation at 1,500 g for 10 minutes. The supernatant was filtered through a 0.2 µm syringe filter and injected directly on to the column to initiate the analytical method. Quantification of DOX and DAUN was performed using a Shimadzu HPLC system (Shimadzu: Kyoto, Japan) equipped with the following components: DGU-14A degasser, dual pump LC-10A LC chromatograph, SPD-M10A diode array detector, SCL-10A system controller, and RF-10Axl fluorescence detector. The stationary phase consisted of a reverse phase Zorbax C8 column (Agilent Technologies: Santa Clara, CA). The fluorescence detector used to quantify DOX and DAUN was operated at an excitation of 470 nm and emission of 550 nm. A volume of 20 µL of sample was injected directly onto the column.

d) Lipid peroxidation

A commercially available assay kit (Bioxytech LPO-586, Oxis Research: Foster City, CA) was used to measure malondialdehyde + 4-hydroxyalkenals (MDA + 4-HAE) as an indicator of cellular lipid peroxidation. Tissue homogenates in RIPA were measured for the assay. A 200 µL aliquot of each sample was added to a micro centrifuge tube followed by 650 µL of N-methyl-2-
phenylindole in acetonitrile and briefly vortexed. Next, 150 µL of methanesulfonic acid was added, vortexed, and incubated at 45°C for 60 minutes. Samples were then centrifuged at 10,000 g for 10 minutes. The resulting supernatant was transferred to a cuvette, and absorbency was measured using a spectro photometer at 586 nm. MDA + 4-HAE was estimated from a standard curve. All samples were assayed in duplicate, and any samples varying more than 5% were reassayed.

e) Statistical analysis

All data are expressed as mean ± standard deviation (mean±SD). A Student’s t-test was performed to compare tissue DOX accumulation in DOX-treated groups (SED-DOX vs. WR-DOX). A two-way analysis of variance (ANOVA, drug x exercise) was performed to determine significant main effects and interactions for MRP expression and MDA + 4-HAE in LV, SOL, and EDL. If a significant difference was observed, a Tukey’s post hoc test was performed to identify where differences existed. For all procedures, significance was set at the α = 0.05 level.

III. RESULTS

a) Animal characteristics

Heart and skeletal muscle masses are presented in Table 1. No main effects or interactions (p>0.05) were observed between groups in skeletal muscle mass. A drug effect was observed for heart mass with animals receiving DOX having a lower heart mass (p=0.025), post hoc testing revealed that WR-DOX had significantly lower heart mass than SED-SAL (p<0.05).

b) Doxorubicin accumulation

Figure 1 illustrates DOX accumulation in cardiac and skeletal muscle. DOX accumulation varied between tissue types, which is consistent with previous reports from our laboratory 17. As expected, the LV accumulated the greatest quantity of DOX with a significantly lower level observed in WR animals when compared to SED (p<0.05, WR: 1055±188 ng/g versus SED: 1284±150 ng/g, Figure 1A). Similarly, exercise groups had a lower level of DOX in the SOL (p<0.05, WR: 505±99 ng/g versus SED: 626±86 ng/g, Figure 1B). In contrast to the oxidative muscle fibers found in the heart and SOL, no DOX level differences were observed in the EDL between exercised and sedentary animals (p>0.05, WR: 219±89 ng/g versus SED: 287±85 ng/g, Figure 1C).

c) MRP expression

Analysis of MRP expression in the LV by Western blotting revealed a significant DOX effect with an up regulation of MRP-1, MRP-2, and MRP-7 (+79%, +107%, and +193%, respectively; p<0.05) as well as a significant exercise effect (+56%, +99%, and +179%, respectively; p<0.05, Figure 2). In addition, MRP-1 and MRP-7 appear to have significant (p<0.05) additive increases in WR-DOX when compared to WR-SAL (MRP-1: +80%; MRP-7: +150%). In contrast to LV MRP expression, no significant main effects were observed in SOL MRP-1, MRP-2, or MRP-7 or EDL MRP-2 or MRP-7 expression (Figures 3 & 4). An interaction was observed in SOL MRP-7 (p=0.0240). No main effects or interactions were observed for MRP-2 or MRP-7 in the EDL (p>0.05). It should be noted that MRP-1 expression was not detected in the EDL.

d) Lipid peroxidation

MDA + 4-HAE was quantified as a marker of oxidative stress-induced cell damage (Fig. 5). With all tissues analyzed, WR reduced lipid peroxidation in DOX-treated tissues (LV, -23%; SOL, -44%; EDL, -34%), suggesting exercise protects against DOX induced lipid peroxidation. Significant drug and activity effects were observed in the LV (p<0.05) while significant drug effects and interactions were observed in SOL and EDL (p<0.05). SED-DOX MDA + 4-HAE was significantly greater than all other groups across in the three tissues examined (p<0.05).

IV. DISCUSSION

Exposure to DOX provokes damage to the structure and function of both cardiac and skeletal muscles16, 17, 33, 34. DOX-induced structural alteration was evident by decreases in heart mass. Exercise as a preventative and complementary treatment, however, has demonstrated increased tolerance to DOX in cardiac and skeletal muscle tissues7, 22, 35, 36. Specifically, reduction of tissue DOX accumulation with exercise pre-conditioning has previously been linked to the maintenance of cardiac function following DOX treatment6. The current experiments provide further evidence in support of a mechanism that may contribute to exercise-induced cardio protection in this setting. It is suggested that an up regulation of MRP expression in the myocardium is associated with a decrease in intracellular DOX accumulation. In addition, these data also suggest that MRP expression contributes to the reduced LV oxidative stress observed in exercised groups. This study observed drug and activity main effects with significantly elevated of MRP-1, -2 and -7 expression in the LV with DOX and prior treadmill training, respectively. Additionally, an interaction was observed in LV expression of MRP-2. No significant changes in skeletal muscle MRP expression with exercise or drug treatments; however, WR groups exhibited less DOX accumulation in the SOL and lower levels of oxidative stress in both the SOL and EDL.

Myocardial alterations of MRP expression and oxidative stress with exercise predicate the examination for a relationship with cell health. Glutathione (GSH) is an antioxidant present in a variety of cells, and DOX has been shown to deplete populations, specifically in the heart37. Kwok and Richardson38 showed DOX-treated
myocardial cells to increase levels of oxidative stress. Lipid peroxidation products (alkenals) react with GSH, reducing levels and have been correlated with apoptosis. Highly oxygen-dependent tissues may be particularly susceptible to reactive oxygen species damaging proteins and lipids, leading to cell dysfunction and death. MRP-1, MRP-2 and MRP-7 are known to extrude anthracyclines, such as DOX, as well as GSH conjugates. Krause et al. reported that 60 minutes of exercise per day for only 1 week induced an up regulation of MRP-1 in rat myocardium (2.4-fold). This resulted in an increase in MRP-1 function and reduced redox imbalance associated with DOX exposure. In the current study, DOX treatment induced elevated levels of MRP-1, -2, and -7 in the LV. Levels of MRP-1 and -7 were highest in WR-DOX groups suggesting an additive effect. Accordingly, levels of DOX accumulation in LV were significantly higher in the DOX-treated SED than WR groups.

The aforementioned study by Krause et al. reported that MRP-1 expression in whole gastrocnemius was absent. This is consistent with our results in the EDL, a muscle of similar fiber type; however, we did detect MRP-1 expression in the SOL, a muscle with greater oxidative capacity. It may be the case that the greater the oxidative muscle fiber content, the more apt the cells are to handling oxidative stress with the expression of MRP-1. Another possible explanation for MRP-1 expression variability is the localization of the protein in the mitochondrial membrane following DOX exposure. It was reported that following DOX treatment, a 2-fold MRP-1 expression aggregated at the mitochondrial membrane of cardiomyocytes versus observations in whole heart homogenate samples. This evidence suggests that MRP-1 may be expressed specifically where greatest redox cycling occurs. Additionally, DOX preferentially accumulating at the mitochondria, due to cardiolipin binding, may drive higher localized MRP expression. Furthermore, the mitochondrial content between muscle fiber types varies greatly (20-30% in cardiomyocytes, 6% in oxidative skeletal muscle, and 2-3% in glycolytic skeletal muscle) which may contribute to the differential expression between muscle types. However, no studies have examined the effect of exercise on MRP-1 expression in the mitochondrial membrane, and thus, this warrants future investigation.

Our lab has observed a significant decline in skeletal muscle function 24 hours following DOX treatment with increasing loss of function 5 days following treatment. While skeletal muscle did not show significant changes in MRP expression, there was a significant decrease in SOL DOX accumulation and a trend toward a decrease in EDL DOX accumulation. One possible explanation for this may be the increase in mitochondrial function with chronic endurance training regardless of mitochondrial quantity. Exercise induces an improvement in skeletal muscle metabolic capacity, which enhances the function and efficiency of the mitochondria. This could be achieved through a process whereby increased mitochondrial biogenesis replaces mitochondria damaged by DOX exposure resulting in an overall healthier mitochondrial population within the cell without an increase in mitochondrial density per se. DOX has been shown to acutely (2 hours-post) reduce mitochondrial function by inhibiting complex-I and II and increasing H$_2$O$_2$ production as well as disrupting membrane potential and compromising respiratory capacity 72 hours following exposure. Prior exercise may contribute to reducing this dysfunction by improved mitochondrial function at the onset of treatment thereby better maintaining function and possibly improving mitochondrial turnover following DOX-induced damage. Further studies are necessary to elucidate these mechanisms.

It should be noted that the xenobiotic function of MRP-1 in rodent species exhibits lesser DOX export capacity than that of human cells; however, MRP-1 maintains its ability to transport oxidized glutathione, which may contribute to the protection against DOX-induced oxidative stress with exercise preconditioning. Additionally, Hopper-Borge et al. characterized MRP-7's DOX resistance as significantly lower activity levels than MRP-1 and -2. In spite of lesser transport activity, greater expression of MRP-1 and -7 seen in this study may have contributed to lesser DOX accumulation in the LV in WR animals. Of additional interest, elevated MRP expression has been linked to vincristine resistance and increased release of GSH disulfides thereby reducing oxidative stress. To our knowledge, this is the first study examining striated muscle expression of MRP-2 and MRP-7 with exercise.

V. Conclusion

The current report examined the role of MRP expression as a possible mechanism of protection against DOX-induced striated muscle toxicities. Exercise promoted an up regulation of MRPs, decreased DOX accumulation and decreased lipid peroxidation in the LV. However, no modulation of MRP expression was observed in either the SOL or EDL, but a decrease in DOX accumulation was observed in the SOL. Additionally, a reduction in lipid peroxidation was observed with WR in both skeletal muscles analyzed. These findings suggest that cardioprotection may be induced by an up regulation of MRPs, which may reduce DOX accumulation and increase the ability of the heart to withstand oxidative stress, but MRP changes do not explain the observed exercise-induced reductions in lipid peroxidation in skeletal muscle with DOX treatment. These findings also further contribute to the notion that chronic exercise training plays an important and applicable role in reducing DOX-induced oxidative stress.
side-effects which may improve quality of life, but more work needs to be done exploring tissue-specific mechanisms.

References Références Referencias

11. Hydock DS, Lien CY, Jensen BT, Schneider CM, Hayward R. Exercise preconditioning provides long-
Effects of Exercise on Doxorubicin Accumulation and Multidrug Resistance Protein Expression in Striated Muscle

Figure Captions

Figure 1: DOX accumulation in LV (A), SOL (B), & EDL (C)

Data are mean ± SD. LV, left ventricle; SOL, soleus; EDL, extensor digitorum longus; SED, sedentary; WR, wheel-run; DOX, doxorubicin-treated.
Figure 2: MRP expression as a percentage of SED-SAL in LV.

Data are mean ± SD. LV, left ventricle; SOL, soleus; EDL, extensor digitorum longus; SED, sedentary; WR, wheel-run; SAL, saline-treated; DOX, doxorubicin-treated.

Main activity effect in MRP-1, -2, and -7 ($p<0.05$).
Main drug effect in MRP-1, -2, and -7 ($p<0.05$).
Interaction in MRP-2 ($p<0.05$).

* Significantly different as compared to SED-SAL group ($p<0.05$).
† Significantly different as compared to WR-SAL group ($p<0.05$).
Figure 3: MRP expression as a percentage of SED-SAL in SOL.

Data are mean ± SD. SOL, soleus; SED, sedentary; WR, wheel-run; SAL, saline-treated; DOX, doxorubicin-treated. Interaction in MRP-7 ($p < 0.05$).
Figure 4: MRP expression as a percentage of SED-SAL in EDL. MRP-1 was undetectable in the EDL.

Data are mean ± SD. EDL, extensor digitorum longus; SED, sedentary; WR, wheel-run; SAL, saline-treated; DOX, doxorubicin-treated.
Figure 5: MDA+4-HAE in LV (A), SOL (B), & EDL (C).

Data are mean ± SD. LV, left ventricle; SOL, soleus; EDL, extensor digitorum longus; MDA+4-HAE, malondialdehyde and 4-hydroxalkenals; SED, sedentary; WR, wheel-run; SAL, saline-treated; DOX, doxorubicin-treated.

* Significantly different than all other groups (p<0.05).
Table 1: Animal Characteristics

<table>
<thead>
<tr>
<th></th>
<th>SED-SAL</th>
<th>SED-DOX</th>
<th>WR-SAL</th>
<th>WR-DOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Mass (g) †</td>
<td>1.515 ± 0.227</td>
<td>1.397 ± 0.081</td>
<td>1.438 ± 0.119</td>
<td>1.290 ± 0.117*</td>
</tr>
<tr>
<td>SOL Mass (mg)</td>
<td>0.154 ± 0.016</td>
<td>0.144 ± 0.016</td>
<td>0.163 ± 0.014</td>
<td>0.158 ± 0.031</td>
</tr>
<tr>
<td>EDL Mass (mg)</td>
<td>0.147 ± 0.013</td>
<td>0.145 ± 0.018</td>
<td>0.150 ± 0.014</td>
<td>0.162 ± 0.021</td>
</tr>
</tbody>
</table>

Data are mean ± SD. LV, left ventricle; SOL, soleus; EDL, extensor digitorum longus; SED, sedentary; WR, wheel-run; SAL, saline-treated; DOX, doxorubicin-treated.
* Significantly different as compared to SED-SAL group (p < 0.05).
† Main drug effect (p < 0.05).