

Volume XVII Issue 1 Version I

Shahad A Ibraheem¹, Rozi Mahmud² and Suraini Mohamad Saini³

¹ Universiti Putra Malaysia

Received: 8 December 2016 Accepted: 3 January 2017 Published: 15 January 2017

Abstract

Background: A number of factors such as age, hormones, reproductive history, diet and genetics influence the morphology of a woman's breast. A study conducted found age, hormones, reproductive history, genetics and diet (body habitus) to be the major contributors to breast density. The purpose of this study was to assess knowledge and find association of breast morphology with sociodemographic factors, family information and gynecology history by ultrasound. Methods: A self-administration questionnaire that included information of patients and an analytic crosssectional study design was used to determine the morphology of normal breast among all respondents that attending the imaging department of Golden Horses Health Sanctuary, Sri-Kembangan located in Klang Valley, Selangor, Malaysia. All women were subjected to bilateral whole breast ultrasound using ultrasound.

Index terms— breast morphology, ultrasound, age, ethnic, socio-demographic factors, marital status.

I. Introduction

The breast which is primarily influenced by the endocrine system serves as a secondary sex organ in humans and also possesses the ability to produce milk in mammals. With these vital functions of the breast, it is important for the radiologist to understand the normal anatomy and physiology of the breast in order to be able to identify abnormalities which may occur in any breast [1]. The major anatomical structures in the breast include skin, fat, facial layers, Cooper ligaments, fibro glandular tissue, lymphatic, and neurovascular structures, which are all placed over the chest wall. The volume of fibro glandular tissue in women differs with age, with many women having more fat within the breasts after menopause [2]. Breast ultrasound plays a major role in the identification, diagnosis, and staging of breast cancer [3,4]. At present, it is generally assumed that glandular tissue, which is a common site for breast cancer, is the most vulnerable among the tissues (adipose, skin, and areolar tissues) making up the breast [5]. The amount of glandular tissue is linked to breast cancer risk, so an objective quantitative analysis of glandular tissue can aid in risk estimation [6]. Based on the study, the morphology of breast using ultrasound assessment suggesting that in young non lactating breast, the tissue is primarily composed of fibro glandular tissue with little or no subcutaneous fat. With increasing age and parity, fat is deposited in both the subcutaneous and retro mammary layers [7]. The difference in incidence rates between the Malays and Chinese can be explained in terms of the risk factors e.g. Increasing age, geographic location, family history, reproductive factors, oral contraceptives, Hormone replacement therapy and more, known to be associated with breast cancer. There is also a possibility of under-reporting in Malay women because they are more likely to seek alternative therapy and hence not present to the medical practitioner [8]. The main reason for conducting this study is to reduce breast cancer percentage in Malaysia by early detection of abnormalities which may lead to cancer, and that can be done by referencing the diagnosis of normality and its measurements in different age and ethnic groups.

II. Patients and Method a) Study design and population

Analytic cross-sectional research design was conducted from October 2013 to December 2014 on females admitted to the imaging department of Golden Horses Health Sanctuary (GHHS) for breast checking in Seri Kembangan

10 A) FACTORS ASSOCIATED WITH PERFORMING US ON BREAST MORPHOLOGY

44 district located within Klang Valley, Selangor, Malaysia. Respondents were identified and selected using modest
45 random sampling method. Subjects were randomly selected from the list of respondents that went to the Imaging
46 Department in the GHHS using SPSS. This list was used as sample frame. A total of 615 females were selected.

47 3 b) Data collection

48 Data was collected using self -administered questionnaires which was developed and validated especially for this
49 study. All women subjected to bilateral whole breast ultrasound examination using Philips ultrasound iu22. Both
50 breasts were scanned utilizing clockwise, overlapping radial approach. The breast divided into four quadrants.
51 Each quadrant was scanned in a radial fashion to accommodate the arrangement of ducts in the breast with a
52 linear array probe L17-5 (5-17MHz), depth 3.5-4.0 cm and gain 86%-87%. Data are acquired at the region of
53 interest (ROI).

54 4 c) Inclusion Criteria

55 The inclusion criteria for normal breast respondents were females aged 20 to 70 years.

56 5 d) Exclusion Criteria

57 A. Male B. Females < 20 years old because permission was needed from parents C. Females > 70 years old
58 because no obvious changes occurred on breast D. Women that used contraceptive pills or device. E. Women
59 that used hormone replacement therapy. F. Women with history of breast diseases such as: i. Benign breast
60 tumors: fibrosis or cysts and fibroadenoma or intraductal papilloma are abnormal growths which caused a change
61 in the breast tissues.

62 ii. Malignant breast tumors: carcinoma, adenocarcinoma, carcinoma in situ, invasive carcinoma and sarcoma
63 are types of breast cancer that grow in glandular tissue and breast duct. iii. Breast infections such as mastitis
64 occurred frequently during breast feeding. iv. Nipple infections, mammary duct ectasia and intraductal papilloma
65 caused nipple discharge.

66 6 e) Ethical consideration

67 Ethical approval to conduct the study was obtained from medical research ethics committee of the Universiti
68 Putra Malaysia. Then approval was obtained from The Medical Research and Ethics Committee, Ministry of
69 Health -Malaysia. A written consent was taken from each respondent before conducting the survey.

70 7 f) Statistical analyses

71 All analyses were performed using SPSS ® software, version 21.0 (SPSS Inc., Chicago, IL, USA). Normality test
72 were done and all of the quantitative data were found to be normally distributed. Descriptive statistical analysis,
73 which included frequency, mean and standard deviation (SD), was used to characterize the data. Parametric
74 test (one-way ANOVA and t-test) and non-parametric test (Kruskal Wallis and Mann-Whitney) employed to
75 determine the association between normal breast morphology and socio-demographic factors, family information
76 and gynecology history. The level of statistical significance was set at ? < 0.05.

77 8 g) Breast image analysis

78 For measuring and analyzing the breast tissues, Philips DICOM Viewer software (R 3.0-SP03) was used. The
79 measuring unit for each tissue is (mm), and the dimensions were obtained. Furthermore, all the measured data
80 were collected by uni-dimensional (length) for subcutaneous fat while two-dimensional (length × width) for
81 glandular tissue and fat lobules, sizing from three different areas for each tissue three readings were taken and
82 average obtained to minimize errors.

83 9 III. Result

84 Total of 700 respondents were selected as sample for this study. However 85 respondents (12.14%) returned
85 questionnaires were omitted due to either incomplete answers or were inaccurately completed. Hence, 615 females
86 participated in this study were counted. The giving response rate in this study was 87.9%.

87 10 a) Factors associated with performing US on breast morphology

88 Table 1 The percentage of participants who performed Ultrasound was 615 (100%). Among those who did
89 ultrasound wide range of breast tissue size founded.

90 As shown on Table 2 and Table 3 the relationship between breast morphology and socio demographic
91 parameter, family information and gynecology history. In each quadrant of the breast, the distribution varied
92 between normal and non-normal. For analyzing normal data one-way ANOVA and t-test was used to find the
93 association between breast morphology and socio demographic factors, marital status and breast cancer history

95 after using homogeneity test of variance, and according to that test plus Levene statistics, variances were equal
96 among age groups, religion, education level, occupation, income and marital status and some tissue in different
97 quadrant for right and left breast i.e subcutaneous fat of left breast in UOQ ($L=0.48$, $p\text{-value}=0.75$), LOQ
98 ($L=1.82$, $p\text{-value}=0.13$) and UIQ ($L=1.27$, $p\text{-value}=0.24$) respectively. For nonnormal data, nonparametric test
99 of Kruskal Wallis and Mann-Whitney was used. At the current study, there was variation and association in
100 tissue with age, ethnic and religion in different quadrants with $p\text{-value} > 0.05$, except in some quadrant of other
101 tissue of right and left breast quadrants, while in education level, occupation, income and marital status there
102 were no association with breast morphology.

103 **11 IV. Discussion**

104 Aging of human breast tissue is often followed by particular structural and functional changes and these changes
105 have been linked by several research findings to the development of aging-related cancer. At the cellular level,
106 morphological and functional changes which may include increased cell size and decreased proliferation may result
107 in aging of human mammary epithelial cells [9]. The development of the breast begins from the stage of fetal
108 development with mammary ridge or milk line which is usually a thickening in the chest region after which the
109 nipples and milk duct system begin to develop when the baby is born, then at puberty stage, child-bearing phase,
110 during menstrual cycle and finally at menopause [10].

111 In the present study the finding is consistent as in other studies which linked age with breast changes [11,12].
112 Our work confirms that an increase in age is associated with a reduction in glandular tissue. Moreover the
113 increment of fat in the breast and the radiographic appearance of the breast vary among women of the same
114 age because of variations in breast tissue composition [13]. Most of the studies done in Malaysia, focused on
115 the knowledge of breast cancer screening using mammography or breast selfexamination with socio demographic
116 factors such as [14][15][16]. These studies have similar findings of the association of women with ethnicity, religion,
117 occupation, income, marital status, degree level of education. Family history of breast cancer was higher than
118 those with secondary or primary level of education ($p<0.001$). Only a few studies have reported on the variation
119 of breast density by race, however, one study done in Department of Imaging, Country Height Health Sanctuary,
120 Malaysia With the total number of 610 subjects, there were significant associations between breast density
121 and age group and there were no significant association with ethnic groups [17][18][19][20]. This is important,
122 because different racial/ethnic groups have different breast cancer risk and these differences change with age [21].
123 Furthermore, some studies found higher breast cancer risk among women with professional occupations such as
124 nursing [22] and teaching [23][24][25][26]. A study by Rubin et al., (1993) found teachers to be twice at risk
125 of breast cancer mortality compared to other women. Although marital status have been commonly identified
126 by various studies [27][28][29][30] as a positive factor in early cancer diagnosis and better survival, local studies
127 [31,32] to date have not established any significant relationship between marriage and uptake of breast cancer
128 screening. However, there was a study among female secondary school teachers from 20 selected secondary schools
129 in Selangor, Malaysia to determine the knowledge and practices on breast cancer screening and socio demographic
130 but there was no significant knowledge [33]. Yet no studies have been carried out on normal breast morphology
131 related to the socio demographic factors using ultrasound.

132 **12 V. Limitation**

133 As this study was designed to be crosssectional. It may not be possible to conclude that the factors were found to
134 be associated with normal breast morphology predicated onset. Incidentally all the respondents that were selected
135 from GHHS which is located in urban area; hence, the result cannot be generalized to both urban and rural. ¹
136 ² ³

¹© 2017 Global Journals Inc. (US)

²Volume XVII Issue 1 Version I © 2017 Global Journals Inc. (US) Year 2017

³*significance value at level $p<0.005$ © 2017 Global Journals Inc. (US)

12 V. LIMITATION

1

shows the distribution of respondents according socio-demographic factors (age, race, religion, education level, occupation, and income), family information (marital status), and gynecology history (menarche age, menopause age and family history of breast cancer). Overall, the majority of mean age were 45.92 (SD= 12.94), Chinese 326(51.4%), Buddhism 282(45.9%), having degree 114 (18.5%), most of them working 209(60%), having income rang 1001-3000RM, married 538(87.5%), the mean of first menstrual cycle was 12.1(SD0.64), the mean of menopausal of premenopausal age was 43.00(SD5.54),

Figure 1: Table 1 :

2

Effect of Socio-Demographic Factors, Family Information and Gynecology History on Ultrasound Breast Morphology in Different Age Groups

Breast morphology	Age	
	F	P-value ? ²
Subcutaneous fat		
Year	Upper outer	Lower outer
2017	23.62	0.000*
	Lower inner	Upper inner
	25.46	0.000*
		24.40
		0.000*

Glandular tissue

Volum	Upper outer	Lower outer	Lower inner	Upper inner	Upper inner	Fat lobules	Upper outer	Lower outer	Lower inner	U
XVII										
Is-										
sue										
1										
Ver-										
sion										
I										
D										
D										
D)										
D										
(

Figure 2: Table 2 :

3

Educa	F-value	0.000*	3.68	0.000*	0.003*	4.05	3.07	10.08	3.59	0.93	4.01	
level	F	? ²	3.85	0.013*	3.09	2.92	0.008*	0.029*	0.018*	0.014*	0.430	0.008*
	P-value		0.010*		0.028*	0.035*						
	P-value											
	? ²		19.14		30.87	14.03						
non-Socio	Religio	? ²	7.61	17.95	33.91	15.22	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*
norma	l	P-	0.001*	0.000*	0.000*	0.000*	19.43	14.08	11.64	17.56	17.22	19.79
dis-	mo-	Eth-	F	P-	6.69		0.000*	0.000*	0.000*	0.000*	0.000*	0.000*
tri-	graphic	value	F		0.000*		28.04	22.12	16.05	24.90	27.36	31.78
bu-	fa-	P-value										
tion	tors											
	? ²		7.33				68.41	31.84	26.61	47.37	24.85	40.27
	P-value		0.000*				0.000*	0.000*	0.000*	0.000*	0.000*	0.000*
Age	F	P-	8.66	5.51		4.19						
	value		0.000*	0.000*		0.002*						
Breast	morpho	Size	gutane	Up-	Lower	Lower	Upper	Glandu	Up-	Lower	Upper	Fat
				outer	outer	inner	in-	l	inner	inner	inner	lob-
						ner	ner		outer	inner	inner	ules
							sue					

[Note: DVOLUME XVII Issue 1 Version I]

Figure 3: Table 3 :

- 137 [García et al. ()] , C J García , A Espinoza , V Dinamarca , O Navarro , A Daneman , H García , A Cattani .
138 *Breast US in Children and Adolescents* 2000. 1 (6) p. . (Radiographics)
- 139 [Abramson et al. (2007)] , R G Abramson , A Mavi , T Cermik , S Basu , N E Wehrli , M Houseni , A Andalavi
140 . 2007. May.
- 141 [Kaufhold et al. ()] 'A calibration approach to glandular tissue composition estimation in digital mammography'.
142 J Kaufhold , J A Thomas , J W Eberhard , C E Galbo , D E Trotter . *Med Phys* 2002. 29 p. .
- 143 [Hart et al. ()] 'Age and race related changes in mammographic parenchymal patterns'. B L Hart , R T Steinbock
144 , F A Mettler , D R Pathak , S A Andbartow . *Cancer* 1989. 63 (12) p. .
- 145 [Milanese et al. ()] 'Age-related lobular involution and risk of breast cancer'. T R Milanese , L C Hartmann ,
146 T A Sellers , M H Frost , R A Vierkant , S D Maloney , D W Visscher . *Journal of the National Cancer
147 Institute* 2006. 98 (22) p. .
- 148 [Age-related structural and functional changes in the breast: multimodality correlation with digital mammography, computed tomography, magnetic resonance imaging, and positron emission tomography].
149 'Age-related structural and functional changes in the breast: multimodality correlation with digital
150 mammography, computed tomography, magnetic resonance imaging, and positron emission tomography'.
151 *Seminars in nuclear medicine*, WB Saunders. 37 p. .
- 152 [Kalimuthu et al. ()] 'Anatomy of the breast, axilla, and chest wall'. R Kalimuthu , S S Yegiyants , C Brenzek .
153 *Breast disease: comprehensive management*, A Riker (ed.) (New York) 2013. Springer. p. .
- 154 [Al-Dubai et al. ()] 'Awareness and knowledge of breast cancer and mammography among a group of Malaysian
155 women in Shah Alam'. S A Al-Dubai , A M Qureshi , R Saif-Ali , K Ganasegeran , M R Alwan , J I Hadi .
156 *Asian Pac J Cancer Prev* 2011. 12 (10) p. .
- 157 [Bartow et al. ()] 'Breast mammographic pattern: a concatenation of confounding and breast cancer risk factors'.
158 S A Bartow , D R Pathak , F A Mettler , C R Key , M C Pike . *American journal of epidemiology* 1995. 142
159 (8) p. .
- 160 [Candelaria ()] *Breast ultrasound: current concepts*. *Seminars in Ultrasound*, Rosalind P Candelaria . 2013. p. .
- 161 [Lim GCC, Halimah Y (ed.) ()] *Cancer Incidence in Malaysia*, Lim GCC, Halimah Y (ed.) 2004. 2003. National
162 Cancer Registry Kuala Lumpur
- 163 [Klein et al. ()] 'Determination of average glandular dose with modern mammography units for two large groups
164 of patients'. R Klein , H Aichinger , J Dierker . *Phys Med Biol* 1997. 42 p. .
- 165 [Chaturvedi and Hass ()] 'Extracellular signals in young and aging breast epithelial cells and possible connections
166 to age-associated breast cancer development'. Sukhada Chaturvedi , Ralf Hass . *Mechanisms of ageing and
167 development* 2011. 132 p. .
- 168 [Grove et al. ()] 'Factors associated with mammographic pattern'. J S Grove , M J Goodman , F I GilbertJr , M
169 P Mi . *The British journal of radiology* 1985. 58 (685) p. .
- 170 [Bernstein et al. ()] 'High breast cancer incidence rates among California teachers: results from the California
171 Teachers Study (United States)'. L Bernstein , M Allen , H Anton-Culver , D Deapen , P L Horn-Ross , D
172 Peel , R K Ross . *Cancer Causes and Control* 2002. 13 (7) p. .
- 173 [Bernstein et al. ()] 'High breast cancer incidence rates among California teachers: results from the California
174 Teachers Study (United States)'. L Bernstein , M Allen , H Anton-Culver , D Deapen , P L Horn-Ross , D
175 Peel , R K Ross . *Cancer Causes and Control* 2002. 13 (7) p. .
- 176 [Parsa et al. ()] 'Knowledge and behavior regarding breast cancer screening among female teachers in Selangor'.
177 P Parsa , M Kandiah , N A Mohd Zulkifli , H A Rahman . *Malaysia. Asian Pac J Cancer Prev* 2008. 9 (2)
178 p. .
- 179 [Akhtari-Zavare et al. ()] 'Knowledge on breast cancer and practice of breast self examination among selected
180 female university students in Malaysia'. M Akhtari-Zavare , M H Juni , R A Manaf , I Z Ismail , S M Said .
181 *Medical and Health Science Journal* 2011. 7 (3) .
- 182 [Rosmawati ()] 'Knowledge, attitudes and practice of breast self-examination among women in a suburban area
183 in Terengganu'. N H Rosmawati . *Malaysia. Asian Pac J Cancer Prev* 2010. 11 (6) p. .
- 184 [Ginsburg et al. ()] 'Mammographic density, lobular involution, and risk of breast cancer'. O M Ginsburg , L J
185 Martin , N F Boyd . *British journal of cancer* 2008. 99 (9) p. .
- 186 [Rubin et al. ()] 'Occupation as a risk identifier for breast cancer'. C H Rubin , C A Burnett , W E Halperin , P
187 J Seligman . *American journal of public health* 1993. 83 (9) p. .
- 188 [Goldberg and Labrèche ()] 'Occupational risk factors for female breast cancer: a review'. M S Goldberg , F
189 Labrèche . *Occupational and Environmental Medicine* 1996. 53 (3) p. .
- 190 [Latham ()] 'Pediatric breast deformity'. Kerry Latham . *Journal of Craniofacial Surgery* 2006. 17 (3) p. .
- 191 [Madjar and Mendelson ()] *Practice of breast ultrasound: techniques, Findings, Differential Diagnosis*, Helmut
192 Madjar , Ellen B Mendelson . 2008. New York: Thieme.

12 V. LIMITATION

- 193 [Parsa and Kandiah ()] 'Predictors of adherence to clinical breast examination and mammography screening
194 among Malaysian women'. P Parsa , M Kandiah . *Asian Pac J Cancer Prev* 2010. 11 (3) p. .
- 195 [Dahlui et al. ()] 'Predictors of breast cancer screening uptake: a pre intervention community survey in Malaysia'.
196 M Dahlui , D E H Gan , N A Taib , R Pritam , J Lim . *Asian Pacific Journal of Cancer Prevention* 2012.
197 13 (7) p. .
- 198 [Kolonel (ed.) ()] *Racial/ethnic patterns of cancer in the United States*, L N Kolonel . B. A. Miller (ed.) 1996.
199 1988-1992. DIANE Publishing.
- 200 [Zaharuddin et al. ()] 'Relation of Breast Density with Age and Ethnicity in Malaysia'. A R B Zaharuddin , T
201 Qin Le , I R B Muhamad , R Mahmud , S Hamid , S Saini , M Langarizadeh . *Iranian Journal of Medical
202 Informatics* 2013. 2 (1) .
- 203 [Threlfall et al. ()] 'Reproductive variables as possible confounders in occupational studies of breast and ovarian
204 cancer in females'. W J Threlfall , R P Gallagher , J J Spinelli , P R Band . *Journal of Occupational and
205 Environmental Medicine* 1985. 27 (6) p. .
- 206 [Petralia et al. ()] 'Risk of premenopausal breast cancer and patterns of established breast cancer risk factors
207 among teachers and nurses'. S A Petralia , J E Vena , J L Freudenheim , A Michalek , M S Goldberg , A
208 Blair , Graham , S . *American journal of industrial medicine* 1999. 35 (2) p. .
- 209 [Goodwin et al. ()] 'The effect of marital status on stage, treatment, and survival of cancer patients'. J S Goodwin
210 , W C Hunt , C R Key , J M Andsamet . *Jama* 1987. 258 (21) p. .
- 211 [Osborne et al. ()] 'The influence of marital status on the stage at diagnosis, treatment, and survival of older
212 women with breast cancer'. C Osborne , G V Ostir , X Du , M K Peek , J S Goodwin . *Breast cancer research
213 and treatment* 2005. 93 (1) p. .
- 214 [Izranov ()] 'Ultrasound breast morphotypes in adolescent girls'. V A Izranov . *Polish Annals of Medicine/
215 Rocznik Medyczny* 2008. 15 p. 1.
- 216 [Coogan et al. ()] 'Variation in female breast cancer risk by occupation'. P F Coogan , R W Clapp , P A Newcomb
217 , R Mittendorf , G Bogdan , J A Baron , M P Longnecker . *American journal of industrial medicine* 1996. 30
218 (4) p. .