

# 1 Differences in Contrast-Enhanced CT Features between Clear 2 Cell Renal Carcinoma and Non-Clear Cell Renal Carcinoma

3 Noor Mohammad<sup>1</sup>

4 <sup>1</sup> Qilu Hospital of Shandong University, Jinan, China

5 *Received: 6 December 2016 Accepted: 5 January 2017 Published: 15 January 2017*

6

---

## 7 **Abstract**

8 Different RCC has different behavioral characteristics and their management protocol also  
9 different. Our purpose was to differentiate clear cell renal carcinoma from Non clear cell renal  
10 carcinoma with the help of contrast enhanced CT imaging features, which might help the  
11 clinician to make early decision about the management of renal cell carcinoma. Materials and  
12 methods: We retrospectively analyzed 64 patients (39 clear cell and 25 non clear cell) of renal  
13 cell carcinoma (RCC) from February, 2014 to February, 2016. We excluded 2 cases of  
14 angiomyolipoma and one case of oncocytoma because of their benign characteristics. So, total  
15 number of non-clear cell renal carcinoma was 22. Two radiologists retrospectively reviewed CT  
16 studies in an independent and blinded fashion. We compared Patient age and sex; tumor size;  
17 margin(clear or ill defined); location; presence or absence of hemorrhage, necrosis,  
18 calcification; degree of enhancement (hypodense, isodense or hyperdense); pattern of  
19 enhancement (homogenous or heterogeneous); tumor spreading pattern including presence or  
20 absence of thrombus (inferior vena cava and renal vein), lymphadenopathy, ascites. We  
21 performed statistical analysis with the help of SPSS 17.1 Software.

22

---

23 **Index terms**— contrast enhanced CT; clear cell RCC (ccRCC); non clear cell RCC(Non-ccRCC).

## 24 **1 I. Introduction**

25 renal cell carcinoma(RCC) accounts for more than 2% of cancers in humans worldwide [1,27]. It is the seventh  
26 most common malignancy in male and 12 th most common malignancy in female [2,28]. Many researchers have  
27 stated that renal cell carcinoma (RCC) is not a single disease but rather, a group of several disease entities [3,4,10].  
28 In 2004 WHO classified RCC into different histopathologic types which is showed in table 1: The classification of  
29 renal cell carcinoma into subtypes has become of interest because of the association with prognosis [10]. Different  
30 tumor behavior and aggressiveness related to histologic subtypes and some others well-established parameter  
31 according to Fuhrman grade (tumor size and stage) [6,7,27]. Clear cell carcinoma also known as conventional  
32 renal carcinoma is the most common subtype, accounting for 65% of RCC [8,9]. Papillary and chromophobe  
33 renal carcinoma comprise 25% of RCC [8,9]. Collecting duct is a rare subtype, accounting for less than 1% of  
34 all RCC [5]. Patients with papillary renal carcinoma or with chromophobe renal carcinoma have a higher 5-year  
35 survival rate than those with conventional renal carcinoma of the same stage [2,4,5]. However, collecting duct  
36 carcinoma have the worst prognosis, with a 5-year survival rate less than 5% [5]. CT imaging posing a diagnostic  
37 dilemma for the practicing physician because it can provide detailed information about tumor itself and whether  
38 it has extended into perinephric fat or renal vein [10]. So it can play an important role in treatment planning.

## 7 III. RESULTS

---

### 39 2 II. Materials and Methods

#### 40 3 a) Patients

41 A computerized search of our institution 's medical records dated between February, 2014 and February,  
42 2016 generated a list of 64 patients who had undergone nephrectomy for renal cell carcinoma. Of these 64  
43 patients, the diagnosis for 39 patients with a pathologic diagnosis of clear cell carcinoma and 25 patients  
44 with non -clear cell carcinoma(6 with papillary cell carcinoma, 3 with chromophobe cell carcinoma, 2 with  
45 pelvicalyceal urothelial carcinoma, 2 with pelvicalyceal urothelial papillary carcinoma, 2 with Wilms' tumor, 2  
46 with sarcomatoid RCC,1 with clear cell papillary carcinoma, 1 with clear cell sarcoma, 1 with malignant rhabdoid  
47 tumor, 1 with leiomyosarcoma, 1 with renal cell carcinoma associated with X11.2 dislocation TF3 fusions, 2 with  
48 angiomyolipoma and 1 with oncocytoma). 2 patients of angiomyolipoma and 1 patient of oncocytoma were  
49 excluded due to their benign characteristics. Therefore, 22 patients of nonclear cell carcinoma were included in  
50 our study. For the clear cell carcinoma (n=39; men 23

#### 51 4 b) CT examination

52 All patients underwent pre-operative plain CT and triphasic DCE-CT examinations using a dual-source CT  
53 scanner (Somatom Definition; Siemens, Germany) and with our standard renal mass protocol tailored to each  
54 scanner. CT images were obtained during patient breath holding with following parameters -gantry rotation  
55 time:0.33s ; tube potential:100kV p ; effective tube current:100mA ; pitch:1.2 ; collimation:32mm x 0.6mm ;  
56 beam collimation:64mm x 0.6mm; slice thickness:5mm and intersection gap:5mm. All patients received oral  
57 contrast materials 30 minutes before CT. Unenhanced images were acquired before the intravenous injection of  
58 contrast media. After administrating contrast agent (Ultravist, 1.5 ml/kg) with a power injector at a flow rate of  
59 3.0ml/sec, corticomedullary, nephrographic and excretory phase images were obtained at 25-45sec, 60-90sec, 240-  
60 300 sec respectively. All images were sent to our enterprise-wide picture archiving and communications system  
61 to be interpreted on workstations.

#### 62 5 c) Image analysis

63 Tow experienced genitourinary radiologists who were aware that patients were being evaluated for renal lesions,  
64 but they were blinded to any other clinical, pathologic or imaging findings. Before, image interpretation, the  
65 readers met and agreed on the CT features to be used to characterize renal masses and a data collection form.  
66 They reviewed the CT scans at picture archiving and communications system. They compared patient age, sex;  
67 size and shape of tumor; margin whether well-defined or ill-defined; location; presence or absence of calcification,  
68 hemorrhage, necrosis or any cystic change; presence or absence of thrombus in renal vein or inferior vena cava,  
69 ascites and lymphadenopathy; pattern (homogeneous or heterogeneous) and degree of enhancement (hyperdense,  
70 hypodense or isodense). For comparison of location ,they described it in three patterns : Location1 (tumor  
71 located either right or left side); Location 2 [tumor involved upper, middle, lower pole or mixed (involvement of  
72 more than one pole)]; Location 3 [involved cortex, medulla ,pelvis or mixed(involvement of more than one layer)].

#### 73 6 d) Statistical analysis

74 Analysis were performed by using SPSS17.1 software. We used the Pearson X 2 test to compare the distribution  
75 of features across the two groups. A P value less than 0.05 indicated a statistically significant difference.

### 76 7 III. Results

77 Of 64 renal lesions included in this study, 39 were clear cell RCC S, 25 were non-clear cell RCC S . 3 of 25  
78 non-clear cell renal carcinoma (2-angiomyolipoma and 1-oncocytoma) were excluded as their benign behavior.  
79 So, total number of non-clear cell carcinoma were 22. Patient presented for CT examination at the CT laboratory  
80 from February, 2014 to February, 2016. The CT images were analyzed retrospectively.

81 Baseline characteristics for each of the groups are presented in table ??:Volume XVII Issue 1 Version I Year  
82 2017 ( D D D D ) D Table 2: Characteristic ccRCC non-ccRCC

83 There were no significant differences, when we compared age; sex; shape of tumor; presence or absence of  
84 (necrosis, hemorrhage) in between two groups.

85 But, when we analyzed the degree of enhancement (hyperdensity, isodensity, hypodensity) in arterial  
86 (corticomedullary) and venous (nephrographic) phases showed significant difference. In arterial phase, most  
87 of clear cell RCC (21 of 39, 53.8%) showed hyperdensity, whereas none of non -ccRCC (0 of 22,0%) showed  
88 hyperdensity. The P value was 0 (P<0.05). In venous phase, ccRCC showed more hyperdensity or isodensity (9  
89 and 4 Of 39, 23.1% and 10.3% respectively) than non-ccRCC (0 and 1 of 22, 0% and 4.5% respectively). Almost  
90 all of the non-clear cell RCC ( 21 However, we did not get any significant difference, when compared degree of  
91 enhancement in delayed phase (excretory phase). Table 3: shows the comparison of degree of enhancement in  
92 different phases in between ccRCC and non-ccRCC. The pattern of enhancement (homogeneous or heterogeneous)  
93 showed significant difference. Nonclear cell carcinoma (19 of 22, 86%) showed more heterogeneous enhancement  
94 pattern than that of clear cell carcinoma (21 of 39,53%). The P value was 0.012 (p<0.05).

95 When, compared location of tumor (whether it involved upper, middle or lower pole of kidney), we found that  
96 15 of 39 (38.5%) ccRCC were located in middle pole; but most of non-clear RCC (15 of 22,68%) did not show  
97 any specific polarity predilection. They involved two or all of 3 poles. The P value was 0.001( $p<0.05$ ) Most of  
98 the clear cell RCC (33 of 39,84.6%) showed involvement of medulla, whereas most of the non clear cell RCC (20  
99 of 22,90%) did not show such predilection for a specific layer. They involved more than one layer. the P value  
100 was significant ( $p =0$ ). But when, we compared involvement of pelvis, we found that non-ccRCC (2 of 22,9%)  
101 showed more pelvis involvement than ccRCC (0 of 39,0%).

102 Calcification is more common in non-clear cell RCC 27% (6 of 22) than clear cell RCC 7% (3 of 39).The p  
103 value was significant ( $p=0.038$ ). In our study, we also made comparison in between non-clear cell RCC and clear  
104 cell RCC with hypovascular tumor. We found significant p values when we compared size, location, pattern of  
105 enhancement and presence or absence of necrosis in between these two types.

106 The mean size of hypovascular ccRCC was  $(3.92\pm 1.89)$ cm, whereas mean size of non-ccRCC was  
107  $(6.18\pm 2.89)$ cm. The P value was 0.023( $P<0.05$ ).

108 Non-clear cell carcinoma (19 of 22, 86.4%) showed more heterogeneous enhancement pattern than hypovascular  
109 clear cell RCC (2 of 8, 25%). P value was 0.003 ( $p<0.05$ ).

110 When, we compared presence or absence of necrosis, we found that, necrosis was more common in non-clear  
111 cell RCC (18 of 22, 81.8%) than ccRCC with hypovascular tumor (2 of 8, 25%). The P value was significant  
112 ( $P=0.007$ ).

113 In our study, we also found that most of nonclear cell RCC layers (20 of 22, 90.9%) showed mixed involvement  
114 of different layer of kidney (cortex, medulla and pelvis) that means no specific predilection for any layer, whereas  
115 most of hypovascular ccRCC (4 of 8, 50%) showed involvement of medulla. The p was 0 ( $<0.05$ ).

116 Table ???: Summaries difference in between hypovascular ccRCC and non-ccRCC:

117 However, there were no significant differences in between hypovascular ccRCC and non -ccRCC, when we  
118 made comparison for shape (round or lobulated), rim (clear or unclear), presence or absence of (hemorrhage,  
119 calcification and metastasis). The P values were ( $>0.05$ ).

## 120 8 IV. Discussion

121 Now-a-days, the incidence of renal cell carcinoma is increasing due to increasing risk factors (obesity, smoking) and  
122 utilization of modern imaging techniques [11][12][13][29]. A majority of renal tumors are incidentally diagnosed on  
123 medical imaging, that's why most of them are asymptomatic, small in size and present at an earlier stage [14,27].  
124 It is important to discriminate clear cell RCC from non-clear cell RCC because of ccRCC is generally considered  
125 to have a worse prognosis and is treated differently than other subtypes [15][16][17][18][27]. Several study has been  
126 done previously to differentiate clear cell RCC from non-clear cell RCC by using imaging modalities. The most  
127 consistent finding was that, degree of enhancement was the most valuable parameter for differentiation of renal  
128 cell carcinoma subtypes. Clear cell RCC S enhance to a greater degree than other subtypes of malignant lesions  
129 [8,10,[19][20][21][22]. Some researchers stated that the strong enhancement of conventional renal carcinoma is  
130 caused by it , s rich vascularity and alveolar architecture at histologic examination [4,10,23]. Our study consistent  
131 with these study. In this study, we found ccRCC (53.8%) showed more hyperdensity than that of non-ccRCC(0%).  
132 Most of non-ccRCC (95.5%) had hypodensity in all phases.

133 However, when we compared pattern of enhancement, most of clear cell RCC (53.5%) showed heterogeneity,  
134 which agree with other studies related with pattern of enhancement of ccRCC [8,10]. But, when we made  
135 comparison of heterogeneity in between ccRCC and non-ccRCC, we found that, non-ccRCC were more  
136 heterogeneous than ccRCC. This may be because of larger size of non-ccRCC S which tended to show heterogeneity  
137 due to propensity of hemorrhage, necrosis and calcification [24][25][26]. At microscopic examination, all tumors  
138 with homogeneous enhancement were mainly composed of solid elements, whereas all tumors with heterogeneous  
139 enhancement had solid elements, necrosis, hemorrhage and calcifications.

140 When, we made comparison in between clear cell RCC S and non-clear cell RCC S for the presence of  
141 calcification, we found that calcification was significantly more in non-ccRCC (27%) than that of ccRCC S  
142 (7%). Calcification suggests a higher 5-years survival rate [3,10].

143 To our knowledge, it is the first study which made comparison in between two groups for the predilection of  
144 pole(upper ,middle,lower) and for the involvement different layer(cortex, medulla, pelvis). We found that ccRCC  
145 showed more middle pole predilection (84%) than that of non-ccRCC(27.3%), whereas majority of non-ccRCC  
146 showed mixed polarity means involvement of more than one pole (68.2%). ccRCC (84.6%) had predilection for  
147 involvement of medulla, whereas most of the non-ccRCC(90%) had no specific predilection for any layer, they  
148 involved more than one layer. In case of pelvis involvement, non-ccRCC (9%) showed more pelvis involvement  
149 than that of ccRCC(0%).

150 In this study, we also made comparison in between ccRCC which showed hypovascularity and non-ccRCC. The  
151 number of ccRCC with hypovascularity was 8. Non-ccRCC (86.4%) were more heterogeneous than hypovascular  
152 ccRCC(25%). We also found that, necrosis was more common in non-ccRCC (81.8%) than hypovascular  
153 ccRCC(25%) and involvement of pelvis was more common in non-ccRCC(9.15%) than hypovascular ccRCC(0%).  
154 Hypovascular ccRCC (50%) showed predilection for involvement of medulla and most of non-ccRCC(90.9%)  
155 did not show any specific predilection for involvement of cortex, medulla and pelvis, rather than they showed  
156 involvement of more than one layer(mixed involvement).

## 8 IV. DISCUSSION

---

157 Our study had few potential limitations. First, our study was retrospective study. Second, we did not measure  
158 CT value of different kinds of tumor. did not compare clear cell renal carcinoma with any other specific type  
159 of non-clear cell renal carcinoma. We compared ccRCC with as a whole others non-ccRCC. So, it may be a  
limitation. The study population of nonclear cell renal carcinoma was small in number.<sup>1 2 3 4</sup>



Figure 1: R



Figure 2: Figure 1 :

160

---

<sup>1</sup>© 2017 Global Journals Inc. (US)

<sup>2</sup>Differences in Contrast-Enhanced CT Features between Clear Cell Renal Carcinoma and Non-Clear Cell Renal Carcinoma

<sup>3</sup>Volume XVII Issue 1 Version I © 2017 Global Journals Inc. (US) Year 2017

<sup>4</sup>Volume XVII Issue 1 Version I © 2017 Global Journals Inc. (US)



Figure 3: Figure 2 :



Figure 4: Figure 3 :D



Figure 5: Figure 4 :

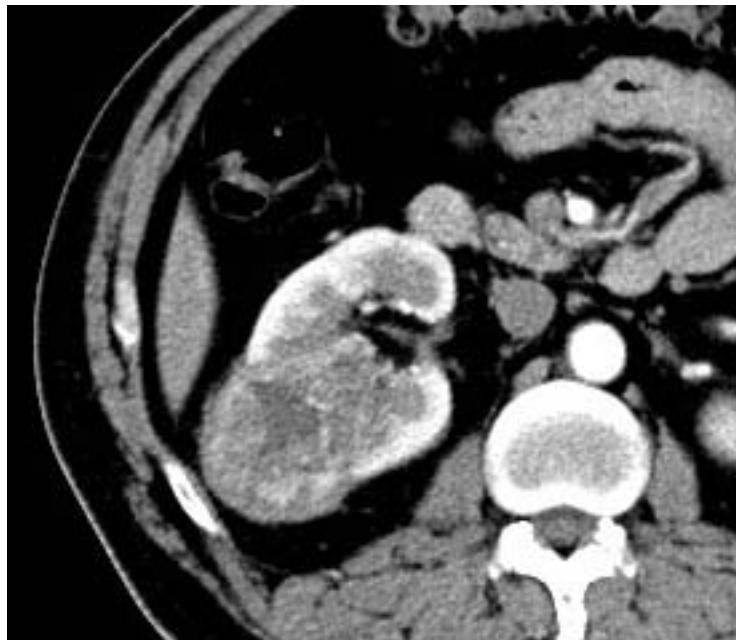



Figure 6: D

1

Clear cell (conventional)RCC  
Multi locular clear cell RCC  
Papillary RCC  
Chromophobe RCC  
Carcinoma of collecting ducts of Bellini  
Renal medullary carcinoma  
X P 11 translocation carcinoma  
Carcinoma associated with neuroblastoma  
Mucinous tubular spindle cell carcinoma  
Unclassified RCC  
Source-Reference 30

Figure 7: Table 1 :

Differences in Contrast-Enhanced CT Features between Clear Cell Renal Carcinoma and Non-Clear Cell Renal Carcinoma

| Characteristic  | ccRCC         | non-ccRCC       |
|-----------------|---------------|-----------------|
| Sex             |               |                 |
| male            | 23            | 16              |
| female          | 16            | 06              |
| Mean age(years) | 54.59+/-11.05 | 43.82+/-23.7    |
| Mean size(cm)   | 5.08+/-3.57   | 6.18<br>+/-2.89 |
| Hemorrhage      | 03            | 02              |
| Necrosis        | 24            | 18              |
| Calcification   | 03            | 06              |
| Rim             |               |                 |
| clear           | 12            | 10              |
| Unclear         | 27            | 12              |
| Shape           |               |                 |
| round           | 34            | 17              |
| irregular       | 05            | 05              |
| Homogeneous     | 18            | 03              |
| Heterogeneous   | 21            | 19              |
| Hyperdense      | 21            | 00              |
| Hypodense       | 08            | 21              |
| Isodense        | 10            | 01              |
| Location1       |               |                 |
| Right           | 21            | 13              |
| Left            | 18            | 09              |
| Location-2      |               |                 |
| Upper           | 07            | 01              |
| Middle          | 15            | 06              |
| Lower           | 09            | 00              |
| Mixed           | 08            | 15              |
| Location-3      |               |                 |
| Cortex Medulla  | 02 33         | 00 00           |
| Pelvis          | 00            | 02              |
| Mixed           | 04            | 20              |
| Metastases      | 04            |                 |

Figure 8:

3

Figure 9: Table 3 :

## 8 IV. DISCUSSION

---

4

| Types     | Pattern of enhancement |        | Location 2 |         |    |         | Location 3 |    |     |    | Calcification<br>Yes |
|-----------|------------------------|--------|------------|---------|----|---------|------------|----|-----|----|----------------------|
|           | Homo                   | Hetero | 1          | 2 "     | 3" | 4"      | 1"         | 2" | 3"  | 4" |                      |
| ccRCC     | 18                     | 21     | 7          | 15      | 9  | 8       | 2          | 33 | 0   | 4  | 3                    |
| Non-ccRCC | 03                     | 19     | 1          | 6       | 0  | 15      | 0          | 0  | 2   | 20 | 6                    |
| P value   |                        |        |            | P=0.012 |    | P=0.001 |            |    | P=0 |    | P=0.038              |

NOTE:

[Note: ccRCC=Clear cell renal carcinoma ;Non-ccRCC=Non clear cell renal carcinoma ; Homo=Homogeneous ; Hetero=Heterogeneous Location 2 (1"=upper pole, 2"=middle pole, 3"=lower pole, 4" =mixed ) Location 3 (1"=cortex, 2"= medulla, 3"= pelvis, 4"=mixed )]

Figure 10: Table 4 :

|                                                                                                                                        | Pattern of enhancement                                 |        | Necrosis |     | Location |       |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------|----------|-----|----------|-------|
|                                                                                                                                        | Homo                                                   | Hetero | No       | Yes | 1"       | 2"    |
| Hypo ccRCC (n=8)                                                                                                                       | 06                                                     | 02     | 06       | 02  | 02       | 04    |
| Non-ccRCC (n=22)                                                                                                                       | 03                                                     | 19     | 04       | 18  | 00       | 00    |
| P value                                                                                                                                |                                                        |        | P=0.003  |     | P=0.007  | P=0.0 |
| Note:                                                                                                                                  |                                                        |        |          |     |          |       |
| Hypo ccRCC=Hypovascular clear cell renal carcinoma ,Non-ccRCC=Non-clear cell renal carcinoma<br>Homo=Homogeneous, Hetero=Heterogeneous |                                                        |        |          |     |          |       |
| Year 2017                                                                                                                              | Location 3 (1"=Cortex, 2"=Medulla, 3"=Pelvis,4"=Mixed) |        |          |     |          |       |
| Volume                                                                                                                                 |                                                        |        |          |     |          |       |
| XVII                                                                                                                                   |                                                        |        |          |     |          |       |
| Issue 1                                                                                                                                |                                                        |        |          |     |          |       |
| Version I                                                                                                                              |                                                        |        |          |     |          |       |
| D D D D )                                                                                                                              |                                                        |        |          |     |          |       |
| D                                                                                                                                      |                                                        |        |          |     |          |       |
| (                                                                                                                                      |                                                        |        |          |     |          |       |

Figure 11:

161 The authors indicated no financial relationships.

### 162 .1 V. Acknowledgements

163 This study was supported by the Fundamental Research Funds of Shandong University (No.2014QL-KY01)

164 [ BioMed Research Int] , *BioMed Research Int* p. .

165 [ Uro Oncol] , *Uro Oncol* 21 (1) p. .

166 [ Eur Urol] , *Eur Urol* 51 (5) p. .

167 [ J Clin Oncol] , *J Clin Oncol* 26 p. .

168 [ Ther Adv Med Oncol] , *Ther Adv Med Oncol* 2 (1) p. .

169 [ Ann Oncol] , *Ann Oncol* 24 (7) p. .

170 [ J Urol] , *J Urol* 174 p. .

171 [ Jpn J Clin Oncol] , *Jpn J Clin Oncol* 29 p. .

172 [ Radiol Brus] , *Radiol Brus* 48 (3) p. .

173 [ BMC Urology] , *BMC Urology* 14 p. 102.

174 [Kim et al. ()] , J K Kim , T K Kim , H J Ahn , K R Kim , K S Cho . *Differentiation of Subtypes of Renal Cell Carcinoma on Helical CT Scans* 2002. p. . (AJR)

176 [Fujimoto et al. ()] *Alveolar architecture of clear cell renal carcinomas (< or = 5.0 cm) show high attenuation on dynamic CT scanning*, H Fujimoto , F Wakao , N Mariyama , K Tobisu , M Sakamoto , T Kakizoe . 1999.

178 [Young et al. ()] 'Clear Cell Renal Cell Carcinoma : Discrimination from Other Renal Cell Carcinoma Subtypes and Oncocytoma at Multiphasic Multidetector CT'. J R Young , D Margolis , S Sauk , A J Pantuck , J Sayre , S S Raman . *Radiology* 2013. 267 p. .

181 [Prasad et al. ()] 'Common and Uncommon Histologic Subtypes of Renal Cell Carcinoma : Imaging Spectrum with Pathologic Correlation'. S R Prasad , P A Humphrey , J R Catena , V R Narra , J R Srigley , A D Cortez , N C Dalrymple , K N Chintapalli . *RG* 2006. 26 p. .

184 [Reater and Presti ()] 'Contemporary approach to the classification of epithelial tumors'. V E Reater , J C PrestiJr . *Semin Oncol* 2000. 27 p. .

186 [Mazzei et al. ()] *CT Perfusions in the characterization of Renal Lesions : An Added Value to Multiphasic CT*, F G Mazzei , M A Mazzei , N C Squitieri , C Pozzessere , L Righi , A Cirigliano , S Guerrini , D ' Elia , D Ambrosio , M R Barone , A Vecchio , M T Volterrani , L . 2014.

189 [Ruppert-Kohlmayr et al. ()] *Differentiation of renal clear cell carcinoma and renal papillary carcinoma using quantitative CT enhancement parameters*, A J Ruppert-Kohlmayr , M Uggowitz , T Meissnitzer , G Ruppert . 2004. 183 p. .

192 [Sheir et al. ()] *Differntiation of renal cell carcinoma subtypes by multi slice computerized tomography*, K Z Sheir , M Ei-Azab , A Mosbah , M Ei-Baz , A A Shaaban . 2005.

194 [Jinzaki et al. ()] 'Double -phase helical CT of small renal parenchymal neoplasms: Correlation with pathologic findings and tumor angiogenesis'. M Jinzaki , A Tanimoto , M Mukai . *J Compat Assisst Tomogr* 2000. 24 p. .

197 [Choueiri et al. ()] *Efficacy of sunitinib sorafenib in metastatic papillary and chromophobe renal cell carcinoma*, T K Choueiri , A Plantade , P Elson , S Negrier , A Ravaud , Oudard S , M Zhou , B I Rini , R M Bukowski , B Escudier . 2008.

200 [Hets et al. ()] 'Enhancement characteristics of papillary renal neoplasms revealed on triphasic helical CT of the kidneys'. B R Hets , D M Coll , A C Novick . *AJR Am J Roentgenol* 2002. 178 p. .

202 [Cho et al. ()] 'Epidemiology of renal cell cancer'. E Cho , H O Adami , P Lindblad . *Hematol Oncol Cli North Am* 2011. 74 (2) p. .

204 [Hock et al. ()] 'Increasing incidence of all stages of kidney cancer in United States : an analysis of surveillance, epidemiology and end results program data'. L M Hock , J Lynch , K C Balaji . *J Urol* 2002. 167 p. .

206 [Alanee et al. ()] *Low enhancing papillary renal cell carcinoma diagnosed by using dual energy computerized tomography : a case report and review of literature*, S Alanee , D I Dynda , P Hemmer , B Schwartz . 2014.

208 [Schrader et al. ()] 'Metastatic non-clear cell renal cell carcinoma : current therapeutic options'. A J Schrader , P J Olbert , A Hegele , Varga Z , R Hofmann . *BJU Int* 2008. 101 p. .

210 [Ficarr et al. ()] 'Multi -institutional European Validation of the 2012 TNM staging system in conventional and papillary localized renal cell carcinoma'. V Ficarr , L Schips , F Guille , G Li , A De La Taille , T P Galetti . *Cancer* 2005. 104 p. 968.

## 8 IV. DISCUSSION

---

213 [Taccon et al. ()] 'Oncology Committee of the Association Francaise d 'urologie : Renal cell carcinoma in adults  
214 40 years old or less : young age is an independent prognostic factor for cancer-specific survival'. X Taccon , A  
215 Valeri , J L Descotes , V Morin , E Stindel , L Doucet , V Joulin , F Bocqueraz , C Coulange , J J Rambeaud  
216 , G Fournier , A Mejean . *Eur Urol* 2007. 51 (4) p. .

217 [Fuhrman et al. ()] 'Prognostic significance of morphologic parameters in renal cell carcinoma'. S A Fuhrman , L  
218 C Lasky , C Limas . *Am J Surg Pathol* 1982. 6 p. 655.

219 [Cohen and Mc Govern ()] 'Renal -cellcarcinoma'. H T Cohen , F J Mc Govern . *N Engl J Med* 2005. 353 (23)  
220 p. .

221 [Muglia and Prando ()] *Renal cell carcinoma: histological classification and correlation with imaging findings*, V  
222 F Muglia , A Prando . 2015.

223 [Bosnib ()] 'Risk and prognosis in renal neoplasm: a pathologist , s prospective'. S M Bosnib . *Urol Clin North  
224 Am* 1999. 26 p. .

225 [Leslie et al. ()] *Serendipitous renal cell carcinoma in the post-CT era: continued evidence in improved outcomes*,  
226 J A Leslie , T Prihoda , I M Thompson . 2003.

227 [Ji et al. ()] 'Solid Renal Cortical Tumors: Differentiation with CT'. Zhang Ji , R A Lefkowitz , N M Ishill , L  
228 Wang , C S Moskowitz , P Russo , H Eiseberg , H Hricak . *Radiology* 2007. 244 p. .

229 [Heng et al. ()] *Targated therapy for metastatic renal cell carcinoma: current treatment and future directions*, D  
230 Y Heng , C Kollmannsberger , K N Chi . 2010.

231 [Bullmunt and Dutcher ()] *Targeted therapies and the treatment of non-clear cell renal cell carcinoma*, J Bullmunt  
232 , J Dutcher . 2013.

233 [Mc Clennan and Deyoe ()] 'The imaging evaluation of renal cell carcinoma : diagnosis and staging'. B L Mc  
234 Clennan , L A Deyoe . *Radiol Clin North Am* 1994. 32 p. .

235 [Lopez-Beltran et al. ()] 'Update on the classification of renal epithelial tumors in adults'. A Lopez-Beltran ,  
236 Carrus Co , J C Cheng , L . *Int. J Urol* 2009. 16 p. .

237 [Verhoest et al. ()] G Verhoest , D Veillard , F Guill? , A De La Taille , L Salomon , C C Abbou , A Val?ri ,  
238 E Lechevallier , J L Descotes , H Lang , D Jacqmin , J Tostain , L Cindolo , R Zigeuner , P F Mulders ,  
239 A Mejean , J J Patard . *Relationship between age at diagnosis and clinicopathological features of renal cell  
240 carcinoma*, 2007.

241 [Eble et al. ()] 'WHO classification of tumors: pathology and genetics of tumors of the urinary system and male  
242 genital organs'. J N Eble , G Sauter , J I Epstein , I A Sesterhenn . *Int. Agency for Research on Cancer* 2004.  
243 2004.

244 [Chen et al. ()] *Whole lesion quantitative CT evaluation of renal cell carcinoma : differentiation of clear cell  
245 from papillary renal cell carcinoma*, F Chen , H Huhdanpaa , B Desai , D Hwang , S Cen , A Sherrod , J C  
246 Bernhard , M Desai , I Gill , V Duddalwar . 2015. Springer Plus. p. 66.