

1 Incidence, Clinical Characteristics and Outcome of Unexpected
2 Uterine Sarcoma after Hysterectomy for Uterine Mass: A
3 Retrospective Study of 774 Cases

4 Monika Jindal¹

5 ¹ Chandulal Chandrakar Memorial Medical College

6 *Received: 12 December 2016 Accepted: 3 January 2017 Published: 15 January 2017*

7 **Abstract**

8 Background: Women often require a hysterectomy via laparotomy or laparoscopy.
9 Morcellation is often necessary to perform a laparoscopic surgery. The objective of this study
10 is to determine the incidence of unexpected uterine sarcomas (UUSs) after hysterectomy and
11 to reduce the occurrence and avoid the morcellation of UUSs by analyzing their
12 characteristics. Methods: Women who had a hysterectomy for various reasons in Chandulal
13 Chandrakar Memorial Medical College, Durg, India between January 2014 and September
14 2016 were selected for the study, and their clinical characteristics were analyzed. Results:
15 During the period, 5 UUSs were found in 774 cases, and the overall incidence was 0.65

16

17 **Index terms**— laparoscopy, morcellation, uterine sarcoma, uterine fibroid, hysterectomy.

18 Abstract-Background: Women often require a hysterectomy via laparotomy or laparoscopy. Morcellation is
19 often necessary to perform a laparoscopic surgery. The objective of this study is to determine the incidence of
20 unexpected uterine sarcomas (UUSs) after hysterectomy and to reduce the occurrence and avoid the morcellation
21 of UUSs by analyzing their characteristics.

22 Methods: Women who had a hysterectomy for various reasons in Chandulal Chandrakar Memorial Medical
23 College, Durg, India between January 2014 and September 2016 were selected for the study, and their clinical
24 characteristics were analyzed.

25 **1 I. Introduction**

26 terine fibroids are one of the most common types of pelvic tumors in women. Various treatments are available for
27 the management of uterine fibroids, such as having a hysterectomy or a myomectomy. The surgical route is shifting
28 from an abdominal to a laparoscopic approach, which confers a more rapid recovery and fewer perioperative
29 complications.

30 1 Morcellation of the specimen is often necessary to perform a laparoscopy.

31 Uterine sarcoma is a rare, malignant tumor affecting the female genital system that accounts for only 1%-3%
32 of uterine malignancies. The 5-year survival rate is approximately 30%.

33 **2 2,3**

34 The degree of malignancy is high and the prognosis is poor. Inadvertent morcellation of unexpected uterine
35 sarcomas (UUSs) is a surgical risk of laparoscopic hysterectomies and myomectomies. Evidence suggests that
36 morcellation of UUSs potentially upstages the disease, which portends a poor prognosis.

11 C) LABORATORY TESTS AND IMAGING STUDIES INVOLVING UNEXPECTED UTERINE SARCOMAS

38 3 4,5

39 The lack of specific symptoms, signs, or diagnostic techniques for preoperative differentiation from uterine fibroids
40 results in most patients being diagnosed after surgery. If a uterine sarcoma is mistakenly diagnosed as a uterine
41 fibroid and is morcellated via laparoscopy, serious consequences may arise.

42 The objective of this study is to determine the incidence of UUSs after hysterectomy for uterine fibroids. Until
43 now, few studies have described the characteristics of UUSs in detail. This study is also designed to help reduce
44 the occurrence and avoid the morcellation of UUSs in future by analyzing their characteristics.

45 4 II. Materials and Methods

46 5 a) Case selection

47 This study was approved by the Institutional Review Board at CCM Medical College, Durg, India and all
48 subjects provided informed consent. Women who had a hysterectomy in CCM Medical College, Durg, India
49 between January 2014 and September 2016 were selected for the study. The average patient age was 48.20 ± 7.64
50 years. Among them, patients who were diagnosed with uterine sarcomas based on postoperative pathology
51 were also selected. Their median age was 41 years. Data analysis was performed to determine the incidence of
52 UUSs. Finally, we reviewed the patient's clinical manifestations, laboratory tests, imaging studies, intraoperative
53 findings, surgical pathologic stage, postoperative pathology, and prognosis.

54 6 b) Statistical analysis

55 Statistical analysis was performed with SPSS 19.0 software (IBM Corporation, Armonk, NY, USA). All results
56 are expressed as the mean \pm standard deviation. The Pearson's chi-square test was used for comparison of
57 percentages between the groups. Statistical significance was assumed at a $P < 0.05$.

58 7 III. Results

59 8 a) Incidence of unexpected uterine sarcomas

60 During the period, 5 UUSs were found in 774 cases, and the overall incidence was 0.65%. Among the 5 patients,
61 open surgery was performed on 4 patients (80%), accounting for approximately 0.01% of 625 laparotomies. There
62 was one laparoscopy (20%), accounting for approximately 0.01% of 149 laparoscopies. There was no statistical
63 difference ($P=1.05$) regarding the incidence of UUSs between laparotomies and laparoscopies.

64 The details of the UUSs are shown in Table ?? The results showed that 4 patients were between 40 and
65 49 years, comprising the highest proportion (80%) of the 5 UUSs. There was only one patient aged 23 years,
66 accounting for 20%. Thus, it can be seen that UUSs occurred more commonly in women aged 40-49, but patients
67 aged 21-39 and aged 50-59 cannot be ignored.

68 9 b) Clinical manifestations

69 The clinical manifestations of uterine sarcomas are nonspecific. Classically, uterine sarcomas are always present
70 as rapidly growing pelvic masses, which may be accompanied by abnormal uterine bleeding and abdominal or
71 pelvic pain.

72 10 6,7

73 In our study, 3 UUSs (60%) presented with abnormal uterine bleeding (menorrhagia, menostaxis, and irregular
74 uterine bleeding), 1 UUSs (20%) presented with acute abdomen, and one UUS (20%) presented with rapidly
75 growing pelvic masses. Abnormal uterine bleeding was the main clinical manifestation. A rapidly growing pelvic
76 mass may be an indication of uterine sarcoma.

77 11 c) Laboratory tests and imaging studies involving unexpected uterine sarcomas

79 Of the 5 UUSs, laboratory tests for tumor markers, especially CA-125, were performed on 2 (40%). Only one
80 case had high CA-125 values i.e. 51.2 mIU/mL, and in other it was found to be normal i.e. 23.0 mIU/mL. The
81 sensitivity of CA-125 for uterine sarcomas is only 50% and its specificity is poor. We concluded, therefore, that
82 CA-125 contributes minimally to the early diagnosis of uterine sarcoma.

83 The 5 UUS cases all underwent ultrasonic examinations, and the preoperative ultrasound diagnosis was a
84 uterine fibroid in 4 (80%) and ovarian mass in 1 (20%). The diameters of the pelvic mass ranged from 6 to 15
85 cm and the median value was 7 cm. The diameter of the mass in 3 cases (60%) was less than 8 cm, in one case
86 (20%) from 8 to 10 cm, and only one case (20%) was above 10 cm. Among the 5 UUSs, only one case (20%)
87 had irregular margins. The margins of typical uterine sarcomas are mostly nodular, irregular, or ill defined, and
88 the uterus is significantly enlarged, but the size and margins of most UUSs prompted by ultrasonography in this
89 study were atypical, which may cause UUSs to be misdiagnosed as uterine fibroids. Color Doppler flow imaging

90 of one of the 5 (20%) UUSs demonstrated rich blood flow signals, and degeneration of uterine fibroids was found
91 in one of 5 (20%) cases. A rich blood flow signal around a pelvic mass and the degeneration of a uterine fibroid
92 may suggest that more methods are needed to rule out the possibility of a uterine sarcoma.

93 In our study, 2 out of 5 UUSs (40%) were examined by computed tomography (CT). The preoperative
94 CT diagnoses was uterine fibroid in one and ovarian mass in one. CT cannot be used to help distinguish
95 uterine sarcomas from uterine fibroids. This study showed that it is more difficult to distinguish between benign
96 degenerating uterine fibroids and malignant uterine sarcomas. When the pathology reports were available, the CT
97 images were reviewed again by the pathologist, but a preoperative CT diagnosis of a uterine sarcoma still could
98 not be made so easily. In such patients, alternative treatment options should be carefully considered. According
99 to the postoperative pathology report after the first operation, there were three leiomyosarcomas (60%), two
100 low-grade endometrial stromal sarcomas (ESSs, 40%). According to the FIGO (International Federation of
101 Gynecology and Obstetrics) 2009 staging for uterine sarcomas, the number of uterine sarcomas for stages I, II,
102 and III after the first operation was four, zero, and one, respectively, thus accounting for approximately 80%,
103 0%, and 20% of the five UUSs. When postoperative pathology was confirmed, one case (20%) underwent a
104 second operation. Stage I was the first operative stage. This case underwent laparoscopy that was converted to
105 laparotomy during the first surgery. The time interval between the two operations was 15 days.

106 The follow-up percentage was 60%. The followup time was 4-11 months, and the median follow-up time was
107 7 months. All these patients are of Stage 1 sarcoma. One case died after 9 months of diagnosis and was found
108 after a telephonic call as she was lost to follow-up. She took 2 cycles of chemotherapy. One more case lost to
109 follow-up and is not traceable.

110 **12 IV. Discussion**

111 A number of studies 10,14,15 have reported a poor prognosis for uterine sarcomas closely related to the clinical
112 stage and the method used in the primary operation. In this study, the staging of most UUSs (80%) is stage I,
113 which may indicate a good prognosis, but how to make an accurate diagnosis and choose an appropriate treatment
114 is critical. To reduce the occurrence of UUSs and the risk of spreading UUSs by laparoscopic morcellation, the
115 method used for the preoperative diagnosis of a uterine sarcoma is very important. Brohl et al found the risk
116 of UUSs varied significantly across age groups, and the risk of uterine sarcoma ranged from a peak of 10.1 cases
117 per 1,000 for patients aged 75-79 years to, 1 case per 500 for patients aged, 30 years. However, our study found
118 that UUSs occurred more commonly in women aged 40-49. Abnormal uterine bleeding was the main clinical
119 manifestation, and cases with no symptoms cannot be ignored. A rapidly growing pelvic mass may be indicative
120 of a uterine sarcoma. The size and margins of most UUSs as suggested by ultrasonography were atypical, and
121 UUSs can be easily misdiagnosed as uterine fibroids. Attention should be paid to a rich blood flow signal around
122 a pelvic mass and the degeneration of uterine fibroids, and more methods are needed to rule out the possibility
123 of uterine sarcomas. CT may have a role in the evaluation of pelvic masses. In our study, CT was of no use as
124 it was unable to differentiate between fibroids and sarcomas.

125 When the pathology reports were available, the pathologist reviewed the CT images again, but it was still
126 difficult to make a preoperative CT diagnosis of a uterine sarcoma. This told us that it is more difficult to
127 distinguish between benign degenerating uterine fibroids and malignant uterine sarcomas. When the malignant
128 potential of a uterine mass is uncertain, alternative treatment options should be carefully considered.

129 A number of studies [20][21][22][23][24][25] have shown that the incidence of UUSs ranges from 0.09% to
130 0.49% among women undergoing benign hysterectomy or myomectomy. In this, the incidence of UUSs during
131 hysterectomy performed for various reasons was 0.65%, and there was no statistical difference (P=1.04) in the
132 incidence between laparotomy and laparoscopy (0.01% vs 0.01%).

133 V.

134 **13 Conclusion**

135 In conclusion, the incidence of UUSs after hysterectomy and myomectomy was low and their clinical characteristics
136 are atypical. It is critical to make a complete and cautious preoperative evaluation to reduce the occurrence and
137 avoid the morcellation of UUSs. Due to the limitations of sample size, further research should be carried out to
138 assess the impact of morcellation on the prognosis of UUSs and summarize the clinical characteristics of UUSs
139 to avoid the risk in future.

140 **14 Global**

Figure 1:

S.no	Age (year)	Clinical Presentation	Associated Co- morbidity	Type Stage	Treatment Received
1	49	Lump (24 weeks)	Hypertension ¹	Leiomyosarcoma ²	Abdominal Hysterectomy with With regional Lymphadenectomy ³
2	41	AUB	Sickle Cell disease	3	
3	23	AUB Dysmen- orrhoa	Anemia	Endometrial Stromal Sarcoma	First Surgery -Myomectomy Hysterectomy Second Surgery -W
4	40	Acute Ab- domen	Nil	Carcinosarcoma ¹	Radical Bilateral retroperitoneal pelvic Hysterectomy with lymphadenectomy ²
5	45	AUB	Nil	Leiomyosarcoma ¹	Total Abdominal Hysterectomy with Bilateral Salpingio- oophorectomy

Figure 2:

142 [Brohl et al. ()] 'Age-stratified risk of unexpected uterine sarcoma following surgery for presumed benign
143 leiomyoma'. A S Brohl , L Li , V Andikyan . *Oncologist* 2015. 20 (4) p. .

144 [Zhang et al. ()] 'Clinical characteristics and management experience of unexpected uterine sarcoma after
145 myomectomy'. J Zhang , J Zhang , Y Dai , L Zhu , J Lang , J Leng . *Int J Gynaecol Obstet* 2015. 130
146 (2) p. .

147 [Wu et al. ()] 'Clinical presentation and diagnosis of uterine sarcoma, including imaging'. T I Wu , T C Yen , C
148 H Lai . *Best Pract Res Clin Obstet Gynaecol* 2011. 25 (6) p. .

149 [Sehnal et al. ()] 'Current classification of malignant tumours in gynecological oncology -part I'. B Sehnal , D
150 Driak , E Kmonickova . *Ceska Gynekol* 2011. 76 (4) p. . (Czech)

151 [Sehnal et al. ()] 'Current classification of malignant tumours in gynecological oncology -part II'. B Sehnal , D
152 Driak , E Kmonickova . *Ceska Gynekol* 2011. 76 (5) p. . (Czech)

153 [Thomassin-Naggara et al. ()] 'How to differentiate benign from malignant myometrial tumours using MR
154 imaging'. I Thomassin-Naggara , S Dechoux , C Bonneau . *Eur Radiol* 2013. 23 (8) p. .

155 [Cusido et al. ()] 'Impact of surgery on the evolution of uterine sarcomas'. M Cusido , F Fargas , S Baulies . *J
156 Minim Invasive Gynecol* 2015. 22 (6) p. .

157 [Graebe et al. ()] 'Incidental power morcellation of malignancy: a retrospective cohort study'. K Graebe , A
158 Garcia-Soto , M Aziz . *Gynecol Oncol* 2015. 136 (2) p. .

159 [Einstein et al. ()] 'Management of uterine malignancy found incidentally after supracervical hysterectomy or
160 uterine morcellation for presumed benign disease'. M H Einstein , R R Barakat , D S Chi . *Int J Gynecol
161 Cancer* 2008. 18 (5) p. .

162 [Cholkeri-Singh and Miller ()] 'Power morcellation in a specimen bag'. A Cholkeri-Singh , C E Miller . *J Minim
163 Invasive Gynecol* 2015. 22 (2) p. 160.

164 [Takeuchi et al. ()] 'Preliminary observations and clinical value of lipid peak in highgrade uterine sarcomas using
165 in vivo proton MR spectroscopy'. M Takeuchi , K Matsuzaki , M Harada . *Eur Radiol* 2013. 23 (9) p. .

166 [Morice et al. ()] 'Prognostic value of initial surgical procedure for patients with uterine sarcoma: analysis of 123
167 patients'. P Morice , A Rodriguez , A Rey . *Eur J Gynaecol Oncol* 2003. 24 (3-4) p. .

168 [George et al. ()] 'Retrospective cohort study evaluating the impact of intraperitoneal morcellation on outcomes
169 of localized uterine leiomyosarcoma'. S George , C Barysauskas , C Serrano . *Cancer* 2014. 120 (20) p. .

170 [Takamizawa et al. ()] 'Risk of complications and uterine malignancies in women undergoing hysterectomy for
171 presumed benign leiomyomas'. S Takamizawa , H Minakami , R Usui . *Gynecol Obstet Invest* 1999. 48 (3) p. .

172 [Nieboer et al. ()] 'Surgical approach to hysterectomy for benign gynaecological disease'. T E Nieboer , N Johnson
173 , A Lethaby . *Cochrane Database Syst Rev* 2009. (3) p. D003677.

174 [Park et al. ()] 'The impact of morcellation during surgery on the outcomes of patients with apparently early
175 lowgrade endometrial stromal sarcoma of the uterus'. J Y Park , D Y Kim , J H Kim , Y M Kim , Y T Kim
176 , J H Nam . *Ann Surg Oncol* 2011. 18 (12) p. .

177 [Park et al. ()] 'The impact of tumor morcellation during surgery on the prognosis of patients with apparently
178 early uterine leiomyosarcoma'. J Y Park , S K Park , D Y Kim . *Gynecol Oncol* 2011. 122 (2) p. .

179 [Gadducci et al. ()] 'The management of patients with uterine sarcoma: a debated clinical challenge'. A Gadducci
180 , S Cosio , A Romanini , A R Genazzani . *Crit Rev Oncol Hematol* 2008. 65 (2) p. .

181 [Mckenna et al. ()] 'The Sydney contained in bag morcellation technique'. J B Mckenna , T Kanade , S Choi . *J
182 Minim Invasive Gynecol* 2014. 21 (6) p. .

183 [Oduyebo et al. ()] 'The value of re-exploration in patients with inadvertently morcellated uterine sarcoma'. T
184 Oduyebo , A J Rauh-Hain , E E Meserve . *Gynecol Oncol* 2014. 132 (2) p. .

185 [Theben et al. ()] 'Unexpected malignancies after laparoscopic-assisted supracervical hysterectomies (LASH): an
186 analysis of 1,584 LASH cases'. J U Theben , A R Schellong , C Altgassen , K Kelling , S Schneider , D
187 Grosse-Drieling . *Arch Gynecol Obstet* 2013. 287 (3) p. .

188 [Wright et al. ()] 'Use of electric power morcellation and prevalence of underlying cancer in women who undergo
189 myomectomy'. J D Wright , A I Tergas , R Cui . *JAMA Oncol* 2015. 1 (1) p. .

190 [Perri et al. ()] 'Uterine leiomyosarcoma: does the primary surgical procedure matter?'. T Perri , J Korach , S
191 Sadetzki , B Oberman , E Fridman , G Ben-Baruch . *Int J Gynecol Cancer* 2009. 19 (2) p. .

192 [Fda and Laparoscopic (2014)] *Uterine Power Morcellation in Hysterectomy and Myomectomy: FDA
193 Safety Communication*, Fda , Laparoscopic . [http://www.fda.gov/MedicalDevices/Safety/](http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm393576.htm)
194 *AlertsandNotices/ucm393576.htm*. Accessed April 17. 2014.

195 [Parker et al. ()] 'Uterine sarcoma in patients operated on for presumed leiomyoma and rapidly growing
196 leiomyoma'. W H Parker , Y S Fu , J S Berek . *Obstet Gynecol* 1994. 83 (3) p. .

197 [Seddon and Davda ()] 'Uterine sarcomas -recent progress and future challenges'. B M Seddon , R Davda . *Eur*
198 *J Radiol* 2011. 78 (1) p. .

199 [Santos and Cunha ()] 'Uterine sarcomas: clinical presentation and MRI features'. P Santos , T M Cunha . *Diagn*
200 *Interv Radiol* 2015. 21 (1) p. .