

# 1 Peribulbar Blocks: The Experience of a Specialized 2 Ophthalmologic Surgery Centre

3 Daniel Rodrigues Alves

4 Received: 13 December 2016 Accepted: 5 January 2017 Published: 15 January 2017

5

---

## 6 **Abstract**

7 Background: Peribulbar blocks have been in clinical use for over half a century, but more  
8 recently the fear of complications has detracted many anaesthesiologists from their use, which  
9 has been decreasing in many countries. In this article we aim to characterize the safety profile  
10 of blocks performed at our Institution, by dedicated staff anaesthesiologists with vast  
11 experience. Methods: We performed a retrospective analysis of the anaesthetic register of  
12 patients undergoing peribulbar blocks for different ophthalmic procedures over a 9 months  
13 period, describing its safety, effectiveness and using logistic regression to identify possible  
14 factors influencing block quality. Results: In a total of 309 blocks there were 9 minor  
15 complications, none of which produced lasting consequences. Variables affecting sensory block  
16 depth were type of sedation during the block procedure, volume of local anaesthetic  
17 administered and type of surgery.

18

---

19 **Index terms**— anesthesia, regional ? nerve block ? eye ? ophthalmologic surgical procedures

## 20 **1 I. Introduction**

21 e've come a long way since the performance of the first invasive treatments for cataracts, dating back to the fifth  
22 century BC in India 1 . Nowadays, a whole range of Ophthalmologic procedures is available to treat many of the  
23 ailments once leading to inevitable blindness, in part boosted by the development of Anaesthesiology.

24 In striking opposition to what happened just a few decades ago, in most centers general anaesthesia is now  
25 seldom performed for ophthalmic surgery in mentally capable adults 2 (Table 1). Local and regional techniques  
26 allow not only avoidance of general anaesthesia in typically elderly patients with multiple comorbidities 2,3 ,  
27 but also to take advantage of the faster recovery time loco-regional techniques allow 4,5 , which is particularly  
28 relevant when we consider the ambulatory setting usually involved. Many different options are available, be  
29 them topical anaesthesia, sub conjunctival anaesthesia, sub-Tenon's blocks, peribulbar blocks or retrobulbar  
30 blocks. Of course not all techniques are adequate for all types of surgery, but unfortunately there is no up-to-  
31 date in each case 2,6 , making practice differ considerably between institutions. In the current era of Medicine,  
32 where litigation is ever-increasing and feared, many professionals have now shifted their preference to topical  
33 anaesthesia with mild sedation whenever possible, as it perverts normal physiology the least and does not appear  
34 to be significantly associated with direct harm. After all, even though ophthalmic block complications (Table 2)  
35 are rare 7 , the risk is real 5,[8][9][10][11][12] , and the severity of potential consequences makes them the most  
36 frequent disabling injuries related to regional anaesthesia reported in the ASA Closed Claims Project database  
37 10,13 , with retrobulbar blocks 14 in particular responsible for 38% of total permanent / disabling injuries in  
38 this part of the register. Unfortunately, this has been hampering the drive for block specialization and training  
39 of ophthalmic anaesthesiologists, representing a failed opportunity for those patients who would benefit the most  
40 from their use. Nowadays, in fact, some authors are so keen on using topical anaesthesia that they even advocate  
41 its adoption in carefully selected patients proposed for vitrectomy 5 -something unthinkable until recently and  
42 with many detractors. This despite concerns regarding patient satisfaction and surgical conditions.

43 Boezaart et al. conducted an interesting study in which patients who had cataract surgery for both eyes in  
44 different moments in time were assigned to receive combined peribulbar-retrobulbar block on one eye and topical

## 4 B) INFERENTIAL ANALYSIS

---

45 anaesthesia on the other. It was shown that patients generally preferred the intervention with the regional  
46 technique, which actually also helped make the surgery easier for the Ophthalmologist 15,16 . Accordingly,  
47 regional techniques remain the preferred anaesthetic approach for cataract surgery in some countries 17,18 , and  
48 are in fact regularly used at our own institution.

49 "Instituto Oftalmológico Dr. Gama Pinto" (IOGP) (Dr Gama Pinto Ophthalmology Center, located in Lisbon,  
50 Portugal) is a specialized stand-alone outpatient Ophthalmology centre whose Anaesthesiology team consists of  
51 3 dedicated staff consultants performing peribulbar blocks on a routine basis since the year 2000, a fact that  
52 has allowed for considerable amount of experience to be gained. Considering the recent trend towards avoiding  
53 blocks in other countries, we decided to institute a register to keep track of all peribulbar blocks performed, so  
54 that an objective assessment of their safety could be made.

## 55 2 II. Methods

56 After obtaining approval from the local Ethics Committee we performed a retrospective analysis of the Anaesthetic  
57 register containing information from all patients who underwent a peribulbar block for ophthalmologic surgery  
58 at this Institution from December 1 st , 2014 to September 1 st 2015.

59 Throughout the study period no anaesthetic choices were influenced by the creation of the register, rather  
60 reflecting common local practice. Consequently, whenever clinically indicated, in the absence of contraindications  
61 and after the patient had manifested his/her informed consent, patients presenting for different ophthalmic  
62 surgeries were submitted to peribulbar blocks for surgical anaesthesia.

63 The blocks were performed using a doubleinjection technique, with inferolateral and superomedial approaches.  
64 A 27 G, 25 mm long Ophthalmic cannula with bevel (Steriseal TM , from Aspen Medical) was used, and a  
65 total volume of 1% ropivacaine cloridrate (Fresenius-Kabi TM ) ranging from 4,0 to 6,0 mL was administered,  
66 depending on the intended surgery and anaesthesiologist's preference. After injection, external compression was  
67 routinely applied with a Honan balloon inflated to a pressure of 30 mm Hg and kept on for 12 minutes. Following  
68 block installation, its success was classified semi quantitatively on a scale of 1 to 3, 1 being insufficient, 2 sufficient  
69 and 3 very good, both for the sensory and motor aspects of blockade.

70 All these data were inserted into the register and later used to build a database imported into IBM SPSS  
71 Statistics TM version 21, which was used for all statistical calculations. We supplemented this study with data  
72 from anonymous inquiries to the surgeons, so that their views on the blocks performed at the institution could  
73 be assessed.

## 74 3 III. Results

75 During the study period we performed 309 blocks in a total of 267 patients, which means that some patients (34)  
76 were operated on more than once in this timeframe with a peribulbar block. In fact, one patient was actually  
77 intervened 5 times, always with a peribulbar block (repeat vitrectomies, both eyes).

78 To facilitate a prompt understanding of the data obtained we present them graphically, with Tables 3 and  
79 4 summarizing patient characteristics in the sample, Table 5 focusing on the surgeries performed and Table 6  
80 on the peribulbar blocks themselves. As we can see most patients were elderly with comorbidities, the most  
81 common of which involved the cardiovascular system (in 75,7% of blocks). Of note, 77 patients were also  
82 on antiplatelet medications at the time of surgery, and 15 were previously anticoagulated, having stopped the  
83 appropriate medications according to their respective half-lives or, in the case of warfarin and acenocumarol, INR  
84 19 . Surgical procedures were divided into 4 classes for easier statistical treatment, with a clear predominance of  
85 facoemulsification and intraocular lens placement. Accordingly, almost half the interventions were relatively short  
86 (48,5% under 60 minutes). Sensory and motor block depth obtained is summarized in Table 6. a) Complications  
87 There were no complications with lasting sequelae in any of the 309 blocks performed. However, we did find a  
88 2,9% rate of "adverse events", in a total of 9 cases, described on Table ??.

89 Table ??: Adverse events related to block performance in our study ? 2 cases of activation of the oculocardiac  
90 reflex, which responded promptly to atropine administration (one had received 6,0mL of local anaesthetic, the  
91 other 5,5mL); ? 4 accidental vessel punctures (always in the inferolateral approach), solved with reorientation of  
92 the needle; ? 2 palpebral ecchymosis (minor, which reabsorbed in a few days); ? 1 patient proposed for vitrectomy  
93 who became markedly anxious despite previous explanation of the block procedure and mild pre-block sedation  
94 and ultimately had to be induced (conversion to general anaesthesia before the start of the surgery).

## 95 4 b) Inferential analysis

96 We analysed the relations between sensory block success and the different collected variables. The data obtained  
97 did not allow for valid use of Chi-square tests nor multinomial logistic regression due to a markedly dissimilar  
98 distribution between classes. Therefore, we decided to study the set of data by removing the 6 patients with failed  
99 (class 1) sensory block and used binary logistic regression to analyse the remainder (binary outcome: class 3 versus  
100 class 2 sensory block). With this strategy we obtained statistically significant values for the relationship between  
101 the volume of local anaesthetic administered and the degree of sensory block obtained, with similar findings for  
102 the variables "type of surgery" and "use of propofol for sedation" (Table 8), but not for any of the comorbidities  
103 studied. We then built a multivariate logistic regression model, including the variables showing a positive relation

104 to the outcome in the univariate analysis and assessing their significance when considered together. As shown in  
105 Table 9, all of them maintained statistical significance. The resulting model was itself statistically significant, but  
106 there was still much variability not explained by it (Nagelkerke pseudo-R<sup>2</sup> of 0,234, correct classification rate  
107 of 84,8%, close to that of the null model). c) Surgeon questionnaires Table 10 summarizes the results obtained  
108 from anonymous questionnaires answered by Ophthalmologists.

## 109 **5 IV. DISCUSSION**

110 Most patients in this study were elderly, with a mean age of 73,5 and a median of 74 years old -as was to be  
111 expected considering the surgeries performed. Also in line with what is described in the literature 3 , the most  
112 common comorbidities affected the cardiovascular, endocrine and neurologic systems, adding to the complexity  
113 of perioperative management and making the alternative of peribulbar blocks particularly appealing.

## 114 **6 a) Complications and adverse events**

115 We should emphasize the inexistence of major complications in either of the 309 blocks performed, which  
116 is significant. Most likely, as defended by other authors, the fact that there is a dedicated, experienced  
117 anaesthesiology staff 3 routinely performing these blocks had an important influence on this safety profile. Still,  
118 we should mention that serious complications of peribulbar blocks reported in the literature are in the range  
119 of 1:1000 blocks 20 , and that means our study is underpowered to draw strong conclusions as to their overall  
120 safety. The adverse events mentioned in Table ?? were all minor and easily solved.

121 We also find it important to emphasize that in 77 blocks (24,9%) the patients were taking antiplatelet  
122 medications and in a further 15 (4,8%) they had been previously anticoagulated, having stopped the respective  
123 medications according to international guidelines 19 . These guidelines allow for block performance while on  
124 antiplatelet medications (as also defended elsewhere [21][22][23] ), and also suggest appropriate courses of action  
125 for anticoagulation -which were followed. Neither anticoagulated nor antiaggregated patients had significant  
126 haemorrhagic complications, and even in the two cases where a minor palpebral ecchymosis developed post-block  
127 none of them were taking any of these medications. As for patients with accidental vascular puncture, one was  
128 concurrently medicated with aspirin but still did not develop ecchymosis nor signs of intraorbital haemorrhage.  
129 Despite the relatively small sample, these results support international findings concerning safety in this setting.

130 Some authors uphold that the greatest risk factor for haemorrhagic complications is vessel fragility (from  
131 diabetes, prolonged arterial hypertension) and not drug-induced dyscrasia 19 . The same authors also advocate  
132 that the use of small, short needles is instrumental in the prevention of haemorrhagic complications, and we  
133 followed that rule. As for the puncture technique, they do suggest the avoidance of the superonasal injection,  
134 which we actually employed routinely. Interestingly, in our series vessel puncture and ecchymosis formation only  
135 occurred as a result of the inferolateral injection -not the superomedial one. Further studies with a larger sample  
136 size might help clarify the safety profile of this approach.

## 137 **7 b) Effectiveness**

138 Apart from safety, the second most important topic in peribulbar anaesthesia is no doubt its effectiveness rate,  
139 with some authors pointing the lack of predictability in block depth as its main drawback 3 . In some series the  
140 supplementation rate for peribulbar blocks is around 20% 24 , but can reach up to 66% when buckling surgery is  
141 considered 25 . In our study supplementation had to be performed in 6 cases (1,9%), but in an additional 15,9%  
142 the sensory block was not complete (grade 2), though deemed sufficient for surgery allowing adequate patient  
143 comfort and operating conditions with light 26 sedo-analgesia.

144 Regarding motor block, published studies attribute a 19% 20 to 28% 24 rate of poor akinesia to this type of  
145 anaesthetic technique. In our series, we had a total of 10,4% of blocks with insufficient (grade 1) motor block,  
146 and a further 27,2% of incomplete (grade 2) blocks, but such did not significantly impact the surgery.

## 147 **8 c) Clues for improvement**

148 Even though some authors found no correlation between volume of local anaesthetic and degree of block, they  
149 used volumes on average superior to ours 27 .

150 In our study, that relation was clearly present and statistically significant, not only as far as the amount of  
151 local anaesthetic is concerned but also in terms of type of surgery. While patients submitted to predictably  
152 more painful surgeries were already receiving a higher volume of local anaesthetic (at the anaesthesiologist's  
153 discretion), the lack of statistical significance for the interaction term between both in a logistic regression model  
154 evidences that this empirical compensation attempt did not completely succeed. The same is suggested by the  
155 fact that in more aggressive surgeries, even with larger volumes of LA, the percentage of complete sensory block  
156 was found to be smaller (Figures ?? and 2). Therefore, we should consider that patients submitted to vitrectomy  
157 (either alone or with facoemulsification and intraocular lens placement) may benefit from routinely receiving  
158 higher volumes of local anaesthetic than those actually administered in our daily practice. Further insight into  
159 the problem could be brought forth by the use of ultrasound to confirm adequate spread of local anaesthetic 13  
160 , the pattern of which appears to correlate with the efficacy of the block 24 . However, that is not routinely  
161 performed at our institution and corresponding data were thus not available in our series. Another interesting

## 11 V. CONCLUSION

---

162 point showing promise to improve our practice was the fact that propofol administration prior to the block  
163 procedure (on average 20mg) showed an OR of 2,462 (confidence interval: 1,215-4,991) in obtaining a class 3 as  
164 opposed to class 2 sensory block when compared to its absence (sedation with diazepam alone or no sedation).  
165 This suggests that patient conditions during block performance (anxiolysis, immobility and probably peribulbar  
166 muscle tone) are likely more favourable when propofol is used, suggesting we should rethink our practice in order  
167 to employ it more often. Clearly, future studies should assess whether such change could improve overall results.  
168 In the available literature some authors have suggested routinely including propofol in the sedation regimen for  
169 these patients, as a combination of midazolam, propofol and fentanyl in small doses 28 -though to our knowledge  
170 there was no proof of better block results consequent to its adoption.

### 171 9 d) Thoughts on using the Honan balloon

172 We have previously mentioned that at our institution ocular compression devices are routinely used after local  
173 anaesthetic injection, even though there is controversy in the literature concerning its efficacy. Some authors  
174 argue that compression has not been shown to enhance the quality of the block 3 and consequently elect not  
175 to use it routinely 27 . One study found no statistically significant changes in analgesia and/or akinesia with  
176 or without Honan balloon compression 29,30 , but it should be emphasized that the minimum amount of local  
177 anaesthetic used was 7 mLnot 4 mL like in ours. Other authors 8 (though not all 29 ) also mention that intraocular  
178 pressure (IOP) values before and after a period of balloon compression following injection of small volumes of local  
179 anaesthetic are similar. Though this fact has not been specifically addressed in our work, we believe compression  
180 may be particularly important when small volumes of local anaesthetic are used, probably not so much from the  
181 point of view of lowering IOP after injection into a confined space (as the volume used was relatively small) but  
182 mainly to facilitate appropriate diffusion of the local anaesthetic. Still, our data cannot confirm or refute this  
183 reasoning, which is also doubtful in the literature. Should higher volumes of local anaesthetic start to be used  
184 routinely, as suggested by our data analysis, clearly this matter should be readdressed.

### 185 10 e) Patient and surgeon satisfaction

186 While we do not have objective data concerning patient satisfaction with peribulbar blocks, we asked  
187 ophthalmologists in anonymous questionnaires what was their take on the subject, given that they routinely  
188 follow patients early in the postoperative period. Analysing the data from the 25 inquiries returned to us we  
189 found that only one of those surgeons thought patients were dissatisfied with the technique, with 20 (80%)  
190 considering their patient's satisfaction level was good or very good. The fact that 34 patients during the study  
191 period were operated on twice or more with peribulbar blocks also attests to their acceptance and satisfaction  
192 with the blocks, especially considering that their opinion is always taken into account at the time of choosing the  
193 anaesthetic technique.

194 One surgeon considered sensory-motor block to be usually inadequate with this technique, whereas the  
195 remaining 96% stated that it was usually adequate. 84% mentioned that their own degree of satisfaction with the  
196 technique was either good or very good, but none of those inquired would elect a peribulbar block as a first choice  
197 for an uncomplicated facoemulsification procedure with intraocular lens implantation (Figure 3). It is interesting  
198 to note that if the surgeon's themselves were to be intervened on, a significant proportion would rather receive  
199 a general anaesthetic (Figure 4), in frank opposition to what they chose for their patients. f) Limitations to the  
200 study Some limitations to the present study should be mentioned. To begin with, it was a retrospective study,  
201 drawing on previously collected data on the register, and such clearly limits the analysis to existing information.  
202 As an example, the grading system used for assessment of block depth was qualitative, and it would be interesting  
203 to use existing validated scores such as OASS (Ocular Anaesthetic Scoring System 31 ). Given its retrospective  
204 nature, however, with pre-existing data coded differently, such was not possible. It would also be interesting to  
205 analyse different aspects such as interference of block procedure on case turnover time, comparison of PONV and  
206 pain scores in patients submitted to peribulbar blocks versus general anaesthesia versus topical anaesthesia, but  
207 once again such data were not available for analysis.

208 Additionally, the fact that there was some variability in local anaesthetic volume administration, which was  
209 not protocolled but rather decided upon by the anaesthesiologist in normal daily practice taking into account  
210 the type of intended surgery, harboured a strong potential to become a confounding factor. However, statistical  
211 significance in the results obtained and testing for an interaction term minimized its influence.

212 Finally, we should realize that the rarity of complications advises larger studies to draw firm conclusions as  
213 to their incidence, and would also help create a logistic or even a multiple linear regression model with a higher  
214 discriminant value.

## 215 11 V. Conclusion

216 Despite the existence of risks, the present work suggests a favourable safety profile for peribulbar blocks, even in  
217 antiaggregated/anticoagulated patients -at least when performed by experienced, dedicated anaesthesiologists.

218 However, larger, adequately powered studies are advised to correctly define the incidence of complications.

219 Sample size limitations aside, some factors do appear to be positively related to the degree of intraoperative  
220 sensation, namely aggressiveness of surgery (naturally), amount of local anaesthetic administered and sedation

---

221 with propofol versus diazepam for the block procedure. Because the latter two variables can easily be manipulated,  
222 they present an opportunity to improve local practice increasing block effectiveness rates and, ultimately, patient  
223 care.

224 **12 Competing Interests**

The authors received no external funding for this work and have no competing interests to declare.

<sup>1</sup>



Figure 1: F



Figure 2: F



Figure 3: F

225



Figure 4: F



Figure 5: Figure 1 :FFigure 2 :



Figure 6: F



Figure 7: Figure 3 :



Figure 8: Figure 4 :



Figure 9: F

1

- ? Children
- ? Patients unable to cooperate either psychologically or due to communication problems
- ? Intense tremor or nystagmus
- ? Perforating eye injury
- ? Blindness in the non-operated eye (relative)
- ? Persistent cough
- ? Inability to tolerate the recumbent position
- ? Contraindication to other techniques, such as allergy to local anaesthetics
- ? Cases of block failure despite adequate supplementation

Figure 10: Table 1 :

---

**2**

Figure 11: Table 2 :

**3**

|                | Feature           | Frequency | Percentage |
|----------------|-------------------|-----------|------------|
| Age<br>(years) | <40 years old     | 1         | 0,3%       |
|                | [40;50[ years old | 4         | 1,3%       |
|                | [50;60[ years old | 26        | 8,4%       |
|                | [60;70[ years old | 71        | 23,0%      |
|                | [70;80[ years old | 123       | 39,8%      |
| Sex            | [80;90[ years old | 77        | 24,9%      |
|                | ?90 years old     | 7         | 2,3%       |
|                | Female            | 149       | 48,2%      |
| ASA<br>Class   | Male              | 160       | 51,8%      |
|                | I                 | 7         | 2,3%       |
|                | II                | 218       | 70,6%      |
|                | III               | 84        | 27,2%      |

Figure 12: Table 3 :

## 12 COMPETING INTERESTS

---

4

| System                                              | Disease                                               | Frequency | Percentage        |
|-----------------------------------------------------|-------------------------------------------------------|-----------|-------------------|
| Cardiovascular system                               | Coronary artery disease                               | 12        | 3,88%             |
|                                                     | Previous myocardial infarction in the last 6 months   | 9         | 2,91%             |
|                                                     | Aortic valve implantation                             | 2         | 0,65%             |
|                                                     | Heart failure                                         | 5         | 1,62%             |
|                                                     | Arterial Hypertension                                 | 218       | 70,55%            |
| Treatment with antiaggregant or anticoagulant drugs | Atrial Fibrillation                                   | 15        | 4,85%             |
|                                                     | Pacemaker                                             | 6         | 1,94%             |
|                                                     | Other dysrhythmia                                     | 16        | 5,18%             |
|                                                     | Aspirin                                               | 62        | 20,06%            |
|                                                     | Clopidogrel Warfarin Dabigatran                       | 15 9 4    | 4,85% 2,91% 1,29% |
| Endocrine system                                    | Rivaroxaban                                           | 2         | 0,65%             |
|                                                     | Type 2 DM                                             | 85        | 27,51%            |
|                                                     | Thyroid pathology                                     | 15        | 4,85%             |
| Psychiatric disturbances                            | Obesity                                               | 10        | 3,24%             |
|                                                     | Depression                                            | 16        | 5,18%             |
|                                                     | Generalized anxiety disorder                          | 20        | 6,47%             |
| Neurologic system                                   | Cerebrovascular Transient ischaemic attack / accident | 18        | 5,83%             |
|                                                     | Epilepsy                                              | 3         | 0,97%             |
|                                                     | Dementia                                              | 2         | 0,65%             |
| Respiratory system                                  | Parkinson's disease                                   | 4         | 1,29%             |
|                                                     | Hypoacusia                                            | 5         | 1,62%             |
|                                                     | COPD                                                  | 12        | 3,88%             |
| Miscellaneous                                       | Emphysema                                             | 3         | 0,97%             |
|                                                     | Asthma                                                | 5         | 1,62%             |
|                                                     | Rheumatoid arthritis                                  | 5         | 1,62%             |
| Miscellaneous                                       | Chronic kidney disease Hepatic dysfunction            | 6 3       | 1,94% 0,97%       |
|                                                     | Others                                                | 8         | 2,59%             |

[Note: Peribulbar Blocks: The Experience of a Specialized Ophthalmologic Surgery Centre]

Figure 13: Table 4 :

---

5

|                     |                                                                      |     |       |
|---------------------|----------------------------------------------------------------------|-----|-------|
| Type of Surgery     | Facoemulsification + intraocular lens implantation                   | 147 | 47,6% |
|                     | Vitrectomy via pars plana / cerclage / endolaser                     | 79  | 25,6% |
|                     | Vitrectomy via pars plana / cerclage / endolaser + IOL implantation  | 57  | 18,4% |
|                     | Trabeculectomy / ExPRESS TM valve placement / Cyclophoto-coagulation | 26  | 8,4%  |
|                     | < 30 min                                                             | 29  | 9,4%  |
|                     | [30;60[ min                                                          | 121 | 39,1% |
| Duration of surgery | [60;120[ min                                                         | 110 | 35,6% |
|                     | [120;180[ min                                                        | 42  | 13,6% |
|                     | ? 180 min                                                            | 7   | 2,3%  |

Figure 14: Table 5 :

6

|                                          |                        |           |                   |
|------------------------------------------|------------------------|-----------|-------------------|
| Type of sedation for block               | Propofol               | 134       | 43,4%             |
|                                          | No propofol (diazepam) | 166       | 53,7%             |
|                                          | No sedation            | 9         | 2,9%              |
|                                          | 4,0 mL                 | 16        | 5,2%              |
| Volume of local anaesthetic administered | 4,5 mL 5,0 mL 5,5 mL   | 37 124 73 | 12,0% 40,1% 23,6% |
|                                          | 6,0 mL                 | 59        | 19,1%             |
| Degree of sensory block attained         | 1 2 3                  | 6 49 254  | 1,9% 15,9% 82,2%  |
| Degree of motor block attained           | 1 2 3                  | 32 84 193 | 10,4% 27,2% 62,4% |

Figure 15: Table 6 :

8

| Independent variable     | Omnibus test | Wald statistic | Hosmer-Lemeshow |
|--------------------------|--------------|----------------|-----------------|
| Volume local anaesthetic | p<0,001      | p<0,001        | p>0,05          |
| Type of surgery          | p=0,003      | p=0,005        | p>0,05          |
| Propofol use             | p=0,001      | p=0,002        | p>0,05          |

Figure 16: Table 8 :

**9**

| Model characteristics in general      |                |                                                             |
|---------------------------------------|----------------|-------------------------------------------------------------|
| Omnibus test                          | p<0,001        | Statistically significant (differs from the null model)     |
| Hosmer-Lemeshow test                  | p=0,965        | Adequate fit of the model to the data                       |
| Nagelkerke's pseudo-R <sup>2</sup>    | 0,234          | Poor predictive value of the model                          |
| Correct classification rate           | 84,8%          | Close to the null model's -poor discrimination of the model |
| Variable characteristics in the model |                |                                                             |
| Independent variable                  | Wald statistic | p-value                                                     |
| Volume local anaesthetic              | 19,961         | P=0,001                                                     |
| Type of surgery                       | 8,299          | p>0,040                                                     |
| Propofol use                          | 6,248          | P=0,012                                                     |

Figure 17: Table 9 :

---

**10**

| Question                                                                                                        | Possible options                                                    | Frequency |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------|
| Professional experience                                                                                         | Resident                                                            | 7         |
|                                                                                                                 | Fellow for less than 5 years                                        | 0         |
|                                                                                                                 | Fellow for 5-9 years                                                | 2         |
|                                                                                                                 | Fellow for 10 or more years                                         | 16        |
| If you could choose the anaesthetic technique for your patient, what would you prefer if he/she were to be seen |                                                                     |           |
| Facoemulsification + intraocular lens placement                                                                 | Topical anaesthesia                                                 | 19        |
|                                                                                                                 | Topical anaesthesia + intracameral injection of LA Peribulbar block | 5 0       |
|                                                                                                                 | General anaesthesia                                                 | 1         |
|                                                                                                                 | No response                                                         | 0         |
|                                                                                                                 | Topical anaesthesia                                                 | 1         |
| Extracapsular cataract extraction                                                                               | Topical anaesthesia + intracameral injection of LA Peribulbar block | 4         |
|                                                                                                                 | General anaesthesia                                                 | 17        |
|                                                                                                                 | No response                                                         | 2         |
|                                                                                                                 | Peribulbar block                                                    | 10        |
| Vitrectomy                                                                                                      | General anaesthesia                                                 | 8         |
|                                                                                                                 | No response                                                         | 7         |
|                                                                                                                 | Topical anaesthesia                                                 | 0         |
| Cyclophotocoagulation / cryoapplication                                                                         | Topical anaesthesia + intracameral injection of LA Peribulbar block | 0         |
|                                                                                                                 | General anaesthesia                                                 | 24        |
|                                                                                                                 | No response                                                         | 0         |
| If you were Facoemulsification + intraocular lens placement                                                     | Topical anaesthesia + intracameral injection of LA Peribulbar block | 9 4       |
|                                                                                                                 | General anaesthesia                                                 | 0         |
|                                                                                                                 | No response                                                         | 12        |
| Extracapsular cataract extraction                                                                               | Topical anaesthesia                                                 | 0 4       |

[Note: © 2017 Global Journals Inc. (US)]

Figure 18: Table 10 :



226 [ Saudi Med J ()] , *Saudi Med J* 2007. 28 p. .

227 [ Oman J Ophthalmol ()] , *Oman J Ophthalmol* 2010. 3 p. .

228 [Cehajic-Kapetanovic et al. ()] 'A novel Ocular Anaesthetic Scoring System, OASS, tool to measure both motor  
229 and sensory function following local anaesthesia'. J Cehajic-Kapetanovic , P N Bishop , S Liyanage , T King  
230 , M Muldoon , I M Wearne . *Br J Ophthalmol* 2010. 94 p. .

231 [Kallio and Rosenberg ()] 'Advances in ophthalmic regional anaesthesia'. H Kallio , P H Rosenberg . *Best practice*  
232 *& Research Clinical Anaesthesiology* 2005. 19 p. .

233 [Clarke and Plummer ()] 'Adverse events associated with regional ophthalmic anaesthesia in an Australian  
234 teaching hospital'. J P Clarke , J Plummer . *Anaesth Intensive Care* 2011. 39 p. .

235 [Nouvellon et al. ()] 'Anaesthesia for Cataract Surgery'. E Nouvellon , P Cuvillon , J Ripart , E J Viel . *Drugs*  
236 *Aging* 2010. 27 p. .

237 [Eichel and Goldberg ()] 'Anaesthesia techniques for cataract surgery: a survey of delegates to the Congress of  
238 the International Council of Ophthalmology'. R Eichel , I Goldberg . *Clin Experiment Ophthalmol* 2002. 2005.  
239 33 p. .

240 [Clausel et al. ()] 'Anesthésie péribulbaire: efficacité d'une seule injection et d'un volume d'anesthésiques locaux  
241 limité'. H Clausel , L Touffet , M Havaux , M Lamard , J Savean , B Cochener , C Arvieux , G Gueret . *J Fr*  
242 *Ophthalmol* 2008. 31 p. .

243 [Mavrakanas et al. ()] 'Are ocular injection anesthetic blocks obsolete? Indications and guidelines'. N A  
244 Mavrakanas , C Stathopoulos , J S Schutz . *Curr Opin Ophthalmol* 2011. 22 p. .

245 [Celiker et al.] *Comparison of midazolam, propofol and fentanyl combinations for sedation and hemodynamic*  
246 *parameters in cataract extraction*, V Celiker , E Basgul , A Sahin , S Uzun , B Bahadir , U Aypar .

247 [Mahajan et al. ()] 'Comparison of topical anesthesia and peribulbar anesthesia for 23-gauge vitrectomy without  
248 sedation'. D Mahajan , S Sain , S Azad , T Arora , R Azad . *Retina* 2013. 33 p. .

249 [Lee et al. ()] 'Complications associated with peripheral nerve blocks: lessons from the ASA Closed Claims  
250 Project'. L A Lee , K L Posner , C D Kent , K B Domino . *Int Anesthesiol Clin* 2011. 49 p. .

251 [Adekoya et al. ()] 'Current practice of ophthalmic anesthesia in Nigeria'. B J Adekoya , A O Onakoya , B G  
252 Balogun , O Oworu . *Middle East Afr J Ophthalmol* 2013. 20 p. .

253 [Ling et al. ()] 'Effect of Honan balloon compression on peribulbar anesthesia adequacy in cataract surgery'. R  
254 Ling , B Beigi , A Quinn , J Jacob , B Foot , T Eke . *J Cataract Refract Surg* 2002. 28 p. .

255 [Riad ()] 'Effect of pressure-reducing devices on the quality of anterior orbit anesthesia'. W Riad . *J Anesth* 2011.  
256 25 p. .

257 [Hendrick et al. ()] 'Efficacy and safety of single injection peribulbar block performed by anesthesiologists prior  
258 to cataract surgery'. S W Hendrick , M K Rosenberg , M H Lebendom-Mansour . *J Clin Anesth* 1997. 9 p. .

259 [Kallio et al. ()] 'Haemorrhage and risk factors associated with retrobulbar / peribulbar block: a prospective  
260 study in 1383 patients'. H Kallio , M Paloheimo , E-L Maunuksela . *Br J Anaesth* 2000. 85 p. .

261 [Katz et al. ()] 'Injectable versus topical anesthesia for cataract surgery -Patient perceptions of pain and side  
262 effects'. J Katz , M A Feldman , E B Bass , L H Lubomski , J M Tielsch , B G Petty , L A Fleisher , O D  
263 Schein . *Ophthalmology* 2000. 107 p. .

264 [Newsom et al. ()] 'Local anaesthesia for 1221 vitreoretinal procedures'. Rsb Newsom , A C Wainwright , C R  
265 Canning . *Br J Ophthalmol* 2001. 85 p. .

266 [Bonhomme et al. ()] 'Management of antithrombotic therapies in patients scheduled for eye surgery'. F Bon-  
267 homme , F Hafezi , F Boehlen , W Habre . *Eur J Anaesthesiol* 2013. 30 p. .

268 [Jaichandran ()] 'Ophthalmic regional anaesthesia: A review and update'. V V Jaichandran . *Indian J Anaesth*  
269 2013. 57 p. .

270 [Rizzo et al. ()] 'Peribulbar anesthesia: a percutaneous single injection technique with a small volume of  
271 anesthetic'. L Rizzo , M Marini , C Rosati , I Calamai , M Nesi , R Salvini , C Mazzini , F Campana ,  
272 E Brizzi . *Anesth Analg* 2005. 100 p. .

273 [Calenda et al. ()] 'Peribulbar block in 500 patients scheduled for eye procedures and treated with acetyl salicylic  
274 acid'. E Calenda , A Cardon-Guiton , O Genevois , J Gueudry , M Muraine . *Acta Anaesthesiol Taiwan* 2011.  
275 49 p. .

276 [Calenda et al. ()] 'Peribulbar block in patients scheduled for eye procedures and treated with clopidogrel'. E  
277 Calenda , L Lamothe , O Genevois , A Cardon , M Muraine . *J Anesth* 2012. 26 p. .

278 [Riad ()] 'Peribulbar blockade with a short needle for phacoemulsification surgery'. W Riad . *Acta Anaesthesiol*  
279 *Scand* 2009. 53 p. .

## 12 COMPETING INTERESTS

---

280 [Peribulbar Blocks: The Experience of a Specialized Ophthalmologic Surgery Centre] *Peribulbar Blocks: The*  
281 *Experience of a Specialized Ophthalmologic Surgery Centre*,

282 [Alhassan et al. ()] *Peribulbar versus retrobulbar anaesthesia for cataract surgery (Review)*. *The Cochrane*  
283 *Library*, M B Alhassan , F Kyari , Hod Ejere . 2011. 4 p. .

284 [Luyet et al. ()] 'Real-time evaluation of diffusion of the local anesthetic solution during peribulbar block using  
285 ultrasound imaging and clinical correlates of diffusion'. C Luyet , K T Eng , P J Kertes , A Avila , R H Muni  
286 , P McHardy . *Reg Anesth Pain Med* 2012. 37 p. .

287 [Chandradeva et al. ()] 'Role of the anaesthetist during cataract surgery under local anaesthesia in the UK: a  
288 national survey'. K Chandradeva , V Nangalia , C E Hugkulstone . *Br J Anaesth* 2010. 104 p. .

289 [Ahmad et al. ()] 'Satisfaction level with topical versus peribulbar anesthesia experienced by same patient for  
290 phacoemulsification'. N Ahmad , A Zahoor , S A Motowa , S Jastaneiah , W Riad . *Saudi J Anaesth* 2012. 6  
291 p. .

292 [Frow et al. ()] 'Single injection peribulbar anaesthesia'. M W Frow , J I Miranda-Caraballo , T M Akhtar , C E  
293 Hugkulstone . *Anaesthesia* 2000. 55 p. .

294 [Friedman et al. ()] 'Synthesis of the literature on the effectiveness of regional anesthesia for cataract surgery'. D  
295 S Friedman , E B Bass , L H Lubomski , L A Fleisher , J H Kempen , J Magaziner , M Sprintz , K Robinson  
296 , O D Schein . *Ophthalmology* 2001. 108 p. .

297 [Boezaart et al. ()] 'Topical anesthesia versus retrobulbar block for cataract surgery: the patient's perspective'.  
298 A Boezaart , R Berry , M Nell . *J Clin Anesth* 2000. 12 p. .