

Evaluation of Immunosuppressive Regimens in Kidney Transplanted Patients in Iraq

Dr. Hemen Faik Mohammad¹

¹ hawler medical university

Received: 10 December 2011 Accepted: 3 January 2012 Published: 16 January 2012

6

Abstract

Immunosuppressive regimens with the fewest possible toxic effects are desirable for transplant recipients. This study evaluated the efficacy and relative toxic effects of three immunosuppressive regimens used after kidney transplantation in Kirkuk city. 52 kidney transplanted patients were enrolled in this study and categorized into three treatment groups. The group I patients received standard-dose of CsA, MMF in combinations with prednisolone, and the group II patients received low-dose CsA, Aza in combinations with prednisolone, while the group III patients received low-dose Tac, MMF in combinations with prednisolone. The primary efficacy end point was the renal function; secondary end points were incidence of serious adverse effects and the complication of immunosuppression therapy in transplanted recipient. The mean calculated serum urea and serum creatinine during study were significantly lower in patients receiving low-dose tacrolimus (4.26mmol/L, 112.01?mol/L for urea and creatinine respectively) than in patients receiving standard-dose cyclosporine (6.28 mmol/L, 133.57?mol/L for urea and creatinine respectively). The mean calculated creatinine clearance was significantly higher in patients receiving low-dose tacrolimus (88.50 ml/min) than in patients receiving standard-dose cyclosporine (73.26 ml/min). Whereas there were no significant differences in serum creatinine and creatinine clearance in patients receiving group III (low-dose tacrolimus) and those receiving group II (low-dose cyclosporine). The serum total cholesterol and serum triglyceride concentrations were significantly lower in the group III (low-dose tacrolimus) than in the other two groups. The serum total bilirubin and bilirubin indirect concentrations were significantly elevated in both group I II receiving patients, while in the group III (low-dose tacrolimus) receiving patients there were no significant changes in serum bilirubin and hepatocellular enzyme. Neither group I (standard-dos

30

Index terms— CNI= Calcineurin inhibitor, CsA= Cyclosporine A, MMF= Mycophenolate mofetil, Aza= Azathioprine, Tac= Tacrolimus.

1 INTRODUCTION

Kidney transplant is the treatment of choice in endstage renal disease (ESRD) patients, as it reduces morbidity and mortality rates and improves the quality of life (1). In the absence of the ideal immunosuppressive drug, maintenance immunosuppression is achieved with combinations of immunosuppressive agents at lower doses when the recipient requires less immunosuppression to prevent rejection (2). Standard protocols in use typically involve three immunosuppression drug groups each directed to a site in the T-cell activation or proliferation cascade which are the central to the rejection process: Calcineurin inhibitors (cyclosporine, tacrolimus), antiproliferative agents (azathioprine, mycophenolate mofetil) and steroids (prednisolone) (3). Calcineurin

6 F) COLLECTION OF SAMPLES

41 inhibitors (CNIs) are considered the mainstay of immunosuppression in renal transplantation. Cyclosporine
42 A (CsA) and tacrolimus (Tac) are currently the most widely used baseline immunosuppressant for prevention
43 of acute rejection following kidney transplantation (4). Known adverse effects are similar for both calcineurin
44 inhibitors, which are related to the concentration of the drug, the most prominent of which is nephrotoxicity
45 (5,6); much of this nephrotoxicity is mediated by impairment of renal hemodynamics (7). Tacrolimus has been
46 associated with more diabetes and neurotoxic reactions, but with less hypertension, dyslipidaemia, hirsutism and
47 gingival hyperplasia than cyclosporine (8,9). Recent data suggest that calcineurin inhibitors may shorten graft
48 half-life by their nephrotoxic effects (10). MMF is devoid of any diabetogenic, hyperlipidemic, or hypertensive
49 effects (11). Leucopenia, anemia, and gastrointestinal side effects are common with MMF (12). Dose-limiting
50 adverse effects of azathioprine are often hematologic. Leukopenia, anemia, and thrombocytopenia can occur
51 within the first few weeks of therapy and can be managed by dose reduction or discontinuation of azathioprine
52 (13). Corticosteroids have been an integral component of immunosuppressive regimens in renal transplantation
53 for ? 50 yr. (14). Corticosteroids are associated with myriad complications. These include the development
54 of obesity, hypertension, glucose intolerance, hyperlipidemia, osteoporosis, glaucoma, cataracts, myopathy,
55 Cushingoid habitus, and neuropsychiatric complications after transplantation (15). These distinct adverse effect
56 profiles may impact on individual patient compliance and quality of life differently (16). Therefore when using
57 immunosuppressant agents in renal transplantation, achieving low rejection rates while minimizing long term
58 toxicities (eg, nephrotoxicity and cardiovascular disease) associated with these agents is the primary goal (17).

59 This retrospective study was carried out in Kirkuk governorate between the first of November 2010 to the end
60 of May 2011. Patients were taken from the artificial Kidney Unit in Kirkuk General Hospital in Kirkuk. The
61 study included 52 kidney transplanted patients (41 male and 11 female) with an age range from (17 to 60) year
62 old 38.68 ± 1.6 (mean \pm SE) were divided into three groups according to immunosuppression medication they
63 received. a) Group I (Standard-Dose Cyclosporine) This group included thirty patients (26 male and 4 female)
64 with an age range from 17 to 45 years (37.04 ± 2.1) who underwent kidney transplantation range from 2 months
65 to 24 months (median 8 months) and were received: standard-dose of cyclosporine (microemulsion formulation),
66 oral dose of 3 to 5 mg/kg, mean dose (214.42 ± 7.8) mg twice daily, mycophenolate mofetil at fixed doses (2g)
67 per day and prednisolone in a mean dose (9.03 ± 0.66) mg per day in a single morning dose.

68 2 b) Group II (Low-Dose Cyclosporine)

69 This group included fifteen patients (10 male and 5 female) with an age range from 24 to 60 years ($43.46 \pm$
70 3.2) who underwent kidney transplantation range from 2 years to 5 years (median 3 years) and were received:
71 low-dose of cyclosporine (microemulsion formulation), oral dose of 1 to 2 mg /kg, mean dose (88.46 ± 6.08) mg
72 twice daily, azathioprine at fixed doses (50mg) per day and prednisolone in a mean dose (5.7 ± 0.52) mg per day
73 in a single morning dose.

74 3 c) Group III (Low-Dose Tacrolimus)

75 This group included seven patients (5 male and 2 female) with an age range from 28 to 46 years (32.6 ± 2.1) who
76 underwent kidney transplantation range from 12 months to 24 months (median 14 months) and were received:
77 low-dose of tacrolimus, oral dose of 0.1 mg /kg, mean dose (6.25 ± 0.69) mg twice daily, mycophenolate mofetil
78 at fixed doses (2g) per day and prednisolone at fixed doses (10 mg) per day in a single morning dose.

79 4 d) Control Group

80 The control groups consist of 30 subjects. They were collected from medical staff and relatives who were free
81 from signs and symptoms of renal disease, lipid disorders, diabetes mellitus and hypertension. 22 were males and
82 8 were females, and their ages ranged from 16 to 60 years (34.5 ± 2.1).

83 5 e) Exclusive Criteria

84 The exclusion criteria included patients with: ? Nephrotic syndrome. ? Primary hyperlipidemia. ? Liver
85 dysfunction resulting from hepatitis, biliary obstruction or cirrhosis. ? Severe hypertension ? Diabetic patients
86 ? Gastrointestinal disorder ? Overdose of cyclosporine dosages.

87 6 f) Collection Of Samples

88 Five milliliters of venous blood were drawn from each fasting patient (8-12 hours fasting). Slow aspiration of
89 the venous blood sample via the needle of syringe to prevent hemolysis with tourniquet applies 15cm above the
90 cubital fossa. The samples were dropped into clean disposable tubes, left at room temperature for 30 minutes for
91 clot formation and then centrifuged for 3 minutes at 3000 run per minute. The serum was separated and used
92 for estimating renal function (urea, creatinine), lipid profile (total cholesterol, triglyceride, HDL-c, LDL-c), liver
93 function (ALP, ALT, AST, total bilirubin and bilirubin direct), fasting blood glucose and electrolyte (Na and K)
94 by Auto analyzer (Flexor-E). Similarly the blood samples were taken from the control group.

95 7 g) Statistical Analysis

96 All data are expressed as mean \pm standard error means ($M \pm SEM$) and statistical analysis was carried out using
97 statistically available software (SPSS Version 18). Statistical analyses were carried out using independent sample
98 t-test to compare between mean values of parameters. Analysis of variance (ANOVA) was used for comparing
99 the mean of different parameters used for evaluation of treatments between the treated groups. P value < 0.05
100 was considered statistically significant.

101 8 III.

102 9 RESULTS

103 10 a) Efficacy Measurements i. Kidney function parameters

104 Significant elevations in the serum urea and serum creatinine were observed, whereas creatinine clearance (Ccl)
105 had decreased significantly compared to the healthy controls in kidney transplanted patients treated with group
106 I treatment regimen (standard-dose CsA/ MMF/ Pred.) measured for three consecutive months as shown in
107 table 3-1. *P < 0.05 significant difference from the control Table 3.2 shows the effect of group II treatment
108 regimen (low -dose CsA/ Aza/ Pred.) on renal function parameters in kidney transplanted patients measured for
109 three consecutive months. Significant elevation was observed only in the serum urea value. Serum creatinine and
110 creatinine clearance level showed no significant differences compared to the healthy controls. * P < 0.05 significant
111 difference from the control Table 3.3 shows the effect of group III treatment regimen (low -dose Tac/ MMF/
112 Pred.) on renal function parameters in kidney transplanted patients measured for three consecutive months. No
113 significant changes were observed in the parameters measured. shows comparison between the effects of the three
114 group's treatment regimen on renal function. There were significant differences between group I (standard-dose
115 CsA) received patients and those on group III (low-dose Tac) at three months followup. The estimated serum
116 urea and serum creatinine were significantly lower in the group III (lowdose Tac) than in group I (standard-dose
117 CsA) and the estimated creatinine clearance was significantly higher in the group III (low-dose Tac) than in
118 group I (standard-dose CsA). Whereas the changes where only significant in serum urea and not significant in
119 serum creatinine and creatinine clearance between group II (low-dose CsA) received patients and those on group
120 III (low-dose Tac). Table 3.5 shows the effect of group I treatment regimen (standard-dose CsA/ MMF/ Pred.)
121 on lipid profile in kidney transplanted patients measured for three consecutive months. Both total cholesterol and
122 triglyceride showed significant elevations compare to healthy control. However there were no significant changes
123 in both serums HDL-c and LDL-c values in patients compared to the healthy control. i. Effect of treatment
124 groups on lipid profile * P < 0.05 significant difference from the control Table 3.7 shows the effect of group III
125 treatment regimen (low -dose Tac/ MMF/ Pred.) on lipid profile in kidney transplanted patients measured for
126 three consecutive months. No significant differences were observed in all values of total cholesterol, triglyceride,
127 HDL-c, and LDL-c of the patients at all intervals compared to healthy controls. shows comparison between the
128 effects of the three group's treatment regimen on lipid profile. There were significant differences in serum total
129 cholesterol and triglyceride between groups I (standarddose CsA) and group II (low-dose CsA) received patients
130 and those on group III (low-dose Tac) at three months follow-up. The estimated serum total cholesterol and
131 serum triglyceride were significantly lower in the group III (low-dose Tac) than in other two groups. Whereas
132 no significant changes in serum total cholesterol and triglyceride were observed between group I (standard-dose
133 CsA) received patients and those on group II (low-dose CsA). Also no significant changes were observed in serum
134 HDL-c and serum LDL-c among all groups treatment regimen. S: significant NS: no significant (P<0.05 for the
135 comparisons between groups) Table 3.9 shows serum liver function parameters in kidney transplanted patients
136 treated with group I treatment regimen (standard -dose CsA/ MMF/ Pred.) for three consecutive months. No
137 significant differences were observed in the serum values of ALP, ALT an d AST of the patients at all intervals
138 compared to the healthy controls. Total bilirubin values were significantly increased compare to the healthy
139 control, this increases in the total bilirubin value properly came from the indirect bilirubin values which were
140 also increases compare to the healthy control. However the direct bilirubin values were not significantly changed.
141 serum ALT and serum AST of the patients at all intervals compare to the healthy controls. And no significant
142 differences were observed in the values of total bilirubin, bilirubin direct and bilirubin indirect of the patients at
143 all intervals compare to the healthy controls.

144 11 Table 3-11:

145 Table 3-12 shows comparison between the effects of the three group's treatment regimen on liver function. There
146 were no significant differences in serum ALP, ALT, AST and total bilirubin among all groups treatment regimen
147 at the three months follow-up.

148 12 Bilirubin(indirect)

149 (μ mol/L) S: significant NS: no significant (P<0.05 for the comparison between groups) Table 3.13 shows fasting
150 blood glucose in kidney transplanted patients treated with different groups treatment regimen measured for three
151 consecutive months. No significant differences were observed in the serum fasting glucose of the patients at all

152 intervals compared to the healthy control. And when comparing among the three treatment groups there were
153 no significant differences in serum fasting glucose among the groups treatment at three months follow-up (Table
154 3-14). iii. Effect Of Treatment Groups On Fasting Blood Glucose Table 3.15 shows serum electrolyte (Na, K)
155 in kidney transplanted patients treated with different groups treatment regimen measured for three consecutive
156 months. No significant differences were observed in the serum electrolyte (Na, K), of the patients at all intervals
157 compared to the healthy controls in all groups. Also when comparing among the three treatment groups there
158 were no significant differences in serum electrolyte (Na, K) among the groups treatment at three months follow-up
159 (Table 3-16) . The primary efficacy end point in this study was renal function. Therefore standard analysis such
160 as serum urea, serum creatinine and creatinine clearance measurement are used to monitor the renal function that
161 changes only after significant kidney injury (18). The glomerular filtration rate (GFR), the underlying indicator
162 of renal function, is inversely proportional to the concentration of creatinine in plasma (19). Creatinine clearance
163 gives an acceptable estimate of the glomerular filtration rate. The most widely used equations for calculation
164 creatinine clearance are the Cockcroft-Gault equations (20).

165 On the basis of our results and literature review it was shown that nephrotoxicity (functional changes) induced
166 by calcineurin inhibitor drug (CsA) is characterized by dose-dependent functional changes of the kidney function,
167 which are reversible with a decrease in the dose or drug withdrawal (21,22,23,24,25).

168 In this study, table 3.1 showed the effects of group I treatment regimen (standard-dose CsA/ MMF/ Pred.)
169 on renal function in thirty kidney transplanted patients. There were significant increases in serum urea, serum
170 creatinine and significant decreased in creatinine clearance level when compared to the healthy control for three
171 month consecutively. These results are in agreement with results of other studies conducted by ??an Buren et
172 al., 1994 (26); ??assila, 2000 (27); puigmule et al., 2009 (18) who found that there were a significant increases
173 in serum urea and serum creatinine, and a significant decreases in creatinine clearance after standard doses
174 of cyclosporine administered in kidney transplanted patients. Since MMF has favorable safety profile and not
175 adversely affect kidney function (28,29). Therefore we suggested that the standard doses of cyclosporine causes
176 significant changes in renal function (30). Table 3.2 showed the effects of group II treatment regimen (low-dose
177 CsA/ Aza/ Pred.) on renal function in fifteen kidney transplanted patients. Serum urea was only significantly
178 increased, and serum creatinine and creatinine clearance level were slightly increased and decreased respectively
179 compared to the healthy control for three consecutive months (not significant). These results are in agreement
180 with the results of other studies conducted by ??issmann et al., 1996 (22); ??oroni, et al, 2006 (31); ??obadilla
181 and Gamba, 2007 (32) who found that the cyclosporine nephrotoxicity is dose -dependent and the low doses
182 of cyclosporine did not significantly changes renal function. Therefore we suggest that to find a significant
183 association between CsA and changes in renal function may depend on the dosage used in the regimen. The
184 explanation for the only significant increase in serum urea in this group is probably that, serum concentration
185 increase of with a change in serum creatinine (33), and the rate of urea production is not constant, urea can be
186 grossly modified by a high protein intake, critical illness (i.e. sepsis, burns, and trauma), or drug therapy such
187 as use of corticosteroids or tetracycline, and the rate of renal clearance of urea is also not constant, an estimated
188 40-50% of filtered urea is passively reabsorbed by proximal renal tubular cells (33).

189 Table 3.

190 13 February

191 It is obvious from the below table that the group I treatment regimen (standard-dose CsA/ MMF/ Pred.)
192 had the greatest incidence adverse effects including: (83%) of patients had hypertension, (26%) had tremors,
193 (23%) had gastrointestinal upset, (43%) had hirsutism, and (16 %) had gum hyperplasia. While the group II
194 treatment regimen (low -dose CsA/ Aza/ Pred.) had a similar percent of adverse effect regarding hypertension
195 and tremor (80% and 20%) respectively and lower percent of adverse effects regarding hirsutism (33%), GI
196 upset(13%) and gum hyperplasia (13%). However group III treatment regimen (low -dose Tac/ MMF/ Pred.)
197 had the lowest adverse effects with hypertension (71%), tremor (42%) and GI upset (28%) with no other adverse
198 effects. 01 μ mol/L for urea and creatinine respectively) than in patients receiving standard-dose cyclosporine
199 (6.28 mmol/L, 133.57 μ mol/L for urea and creatinine respectively). The mean calculated creatinine clearance
200 was significantly higher in patients receiving low-dose tacrolimus (88.50 ml/min) than in patients receiving
201 standard-dose cyclosporine (73.26 ml/min). Whereas there were no significant differences in serum creatinine
202 and creatinine clearance in patients receiving group III (low-dose tacrolimus) and those receiving group II (lowdose
203 cyclosporine). Therefore the reduced doses of cyclosporine improve renal function, and low-dose tacrolimus based
204 regimen provided better renal function when compared with standard-dose cyclosporine based regimens as shown
205 in (Table 3- 4). The results of this study is in agreement with other studies ??urewicz, 2003 (37); ??kberg et al.,
206 2007 (30); ??obadilla and Gamba, 2007 (32) who found improvement in renal function with reducing dosage, and
207 the uses of dose tacrolimus based regimens in kidney transplanted patients had advantageous for renal function
208 than standard-dose of cyclosporine based regimen.

209 The causes of post transplant dyslipidemia include increased nutrient intake after transplantation (38), and
210 adverse effects of steroids or cyclosporine used for immunosuppression (39,40,41).

211 In this study, Table 3.5 and Table 3-6, there were mild significant elevations of plasma total cholesterol and
212 triglyceride concentrations compared to healthy control. This results is in agreement with other studies conducted
213 by ??lgenli et al., 1999 (42); ??aziri et al., 2000 (43); ??chimaru et al., 2001 (39); ??bramowicz et al.,2005 (28);

214 ??ami et al., 2010 (44) who revealed that long-term administrations of CsA and steroid were significantly raise
215 plasma total cholesterol and triglyceride concentrations in renal transplanted patients. This reported changes in
216 serum lipids has been found to be related with the mechanism of CsA adverse effects, since neither azathioprine
217 (45) nor mycophenolate mofetil ??28 , 46) and corticosteroids (in daily dose of 12.5 mg or less) (42) are known
218 to be associated with changes of serum lipid profile. Although the mechanism of calcineurin inhibitor induced
219 hyperlipidemia is not well understood. Calcineurin inhibitors may decrease the activity of lipoprotein lipase
220 (47). Hypercholesterolemia may be due to downregulation of enzyme cholesterol 7?-hydroxylase. This enzyme
221 is the rate-limiting step in cholesterol conversion to bile acid, which is the principal pathway of cholesterol
222 catabolism (43). Hypertriglyceridemia may be due to lipoprotein lipase and triglyceride hydrolase deficiency
223 (39). Corticosteroids causes decrease in lipoprotein lipase activity, as well as excessive triglyceride production.
224 But a daily dose of 12.5 mg or less of corticosteroid as in cholesterol (42). Also both serum (HDL-c) and (LDL-c)
225 in both groups I & II treatment regimens were slightly increases but not significantly compared to control healthy
226 individual. This finding has been reported only in study of ??aziri et al., 2000 (43) who revealed that the hepatic
227 LDL receptor (play an important role in LDL metabolism) and HDL receptor (which facilitates transport of
228 cholesterol esters from HDL to hepatocytes) expressions were not altered by CsA therapy.

229 Table 3.7 showed the effects of group III treatment regimen on lipid profile. No significant changes were
230 observed on lipid profile when compared to healthy control, since the tacrolimus have less potential to induce
231 hyperlipidemia than cyclosporine (48). These results are in agreement with other studies conducted by Pirsch
232 et al, 1997 (??9 When comparing serum lipid profile among the three group treatment regimens, there were
233 statistically significant differences among groups treatment at three months follow-up (table [3][4][5][6][7][8]. The
234 serum total cholesterol and serum triglyceride concentrations were significantly lower in the group III (low-dose
235 tacrolimus) than in the other two groups. Therefore the use of low dose tacrolimus based immunosuppressive
236 regimen is associated with a more favourable lipid profile than the use of different cyclosporine dosage based
237 immunosuppressive regimens. The results of this study are in agreement with other studies conducted by ??cott
238 et al., 2003 (48); ??ramer, et al., 2005 (4); Becker-Cohen et al., 2006 (38) who found better lipid profile with the
239 use of tacrolimus based regimen than cyclosporine based regimen. Whereas there were no significant differences
240 between group I (standard-dose cyclosporine) and group II (low-dose cyclosporine), thus the reduced doses of
241 cyclosporine did not improve the changes in lipid profile. Therefore replacement of cyclosporine with tacrolimus
242 reduced the high level of total cholesterol and triglyceride in patients taking cyclosporine (50,52).

243 Calcineurin inhibitor (CsA & Tac) hepatotoxicity has been reported in few case reports after organ
244 transplantation (53,54). The exact mechanism of CsA induced hepatotoxicity is not completely understood,

245 14 February

246 patients in this study has only a minimal effect on point among the three groups treatment regimen. The mean
247 calculated serum urea and serum creatinine transplanted patients. This may reflect a lower nephrotoxicity of
248 tacrolimus-based immunosuppressive regimens and also may reflect a lower immunologic damage of the graft
249 (36).

250 When comparing renal function as efficacy end inhibitor nephrotoxicity with the use tacrolimus in kidney
251 numerous current findings suggest that oxidative stress mechanism playing an important role in its pathology.
252 results of other studies conducted by ??chade et al., 1983 (56); ??ahan, 1987 (21); ??adranel, et al, 1992
253 (57); ??ecking, et al, 2008 (58) who revealed that there is a significant elevations in total bilirubin after
254 cyclosporine treatment. This elevation of total bilirubin seen after cyclosporine treatment is most probably
255 related to a cholestasis (59). This could be due to the toxic metabolite of cyclosporine (AM19 and AM1A) (60),
256 and since the bilirubin and cyclosporine metabolites are eliminated by the same transport system through the
257 biliary membrane, therefore the elevated total bilirubin level suggested impaired cyclosporine elimination (61).
258 Hepatocellular enzymes ALP, ALT and AST in this study in both group I and group II showed no significant
259 differences compared to control healthy individual for three consecutive months. The explanation for that could
260 be attributed to the doses of CsA used. Also many other articles and case reports conducted by ??orber et al,
261 1987 (62); ??ulbis, et al, 1988 (63); ??anai et al, 2008 (54); Oto et al, 2010 (53) revealed that the reduction
262 of the cyclosporine doses was sufficient to resolve the presumed hepatotoxicity (elevated level of hepatocellular
263 enzymes).

264 Table 3.11 showed the effects of group III on liver function, no significant changes in hepatocellular enzymes
265 ALP, ALT and AST and in total bilirubin and (bilirubin direct & bilirubin indirect) were observed in any of the
266 patients in the group compared to control healthy individual. Such results were also reported in case reports
267 conducted by ??anai, et al, 2008 (54); Oto, et al, 2010 (53) who found that the tacrolimus hepatotoxicity is
268 seemed to be dose-dependent and low doses of tacrolimus did not significantly changes liver function as this study
269 shows.

270 When comparing liver function among the three group treatment regimens, there were no statistically
271 significant differences among groups treatment at three months follow-up (table [3][4][5][6][7][8][9][10][11][12].
272 Also patients receiving group II (low-dose cyclosporine) had a mean serum total bilirubin and bilirubin indirect
273 close to those of patients receiving group I (standard-dose cyclosporine). Therefore we suggest the reduced doses
274 of cyclosporine did not resolved the mild elevated values of total bilirubin and bilirubin indirect, and group III
275 (lowdose tacrolimus) regimen has favorable liver function.

276 New-onset diabetes after renal transplantation (NODAT) represents a serious metabolic complication with a
 277 negative impact on graft and patient survival, as well as on cardiovascular morbidity and mortality (64).

278 Among immunosuppressant, there are no alterations in glucose metabolism due to the use of MMF (65). The
 279 use of steroids causes in dose-dependent an increase in peripheral insulin resistance and increasing hepatic glucose
 280 production (66,67). However, daily prednisone doses (5 mg/day) may not influence insulin sensitivity at all (68).
 281 Calcineurin inhibitors contribute to the development of (NODAT) by directly inhibiting insulin secretion from the
 282 pancreatic islet cell. This effect is dose-dependent, reversible and more pronounced for patients who are treated
 283 with tacrolimus than cyclosporine (69,52). Consistent with this, a meta-analysis of randomized controlled trials
 284 of cyclosporine versus tacrolimus after renal transplantation found a higher incidence of diabetes among those
 285 treated with tacrolimus suggesting that the use of cyclosporine rather than tacrolimus may be an effective strategy
 286 to prevent NODAT (70). However, tacrolimus has been reported to be diabetogenic, this risk is predominantly
 287 present in the initial period after transplantation and in patients who already had an impaired glucose tolerance
 288 before treatment (34).

289 In this study, table 3.13 showed the effects of all groups' treatment regimen (I & II & III) on fasting blood
 290 glucose in kidney transplanted patients. No significant changes in blood glucose level in either group were observed
 291 compared to control healthy individual, and also there were no statistically significant differences among groups
 292 treatment at three months follow-up (table [3][4][5][6][7][8][9][10][11][12][13][14]. This results is not in parallel
 293 with other studies results conducted by ??iller et al., 2000 (71); ??incenti et al., 2007 (72); ??ohnston et al.,
 294 2008 (73); ??ornum et al., 2010 (74) who revealed a highest incidence of new-onset post transplantation diabetes
 295 mellitus in patients treated with CsA in combination with MMF or Aza and steroid, and in patients treated with
 296 tacrolimus in combination with MMF/steroid. The probable explanation is that cyclosporine and tacrolimus
 297 influences glucose metabolism by reducing pancreatic insulin secretion in a dose-dependent manner ??65, 75, and
 298 69) and patients in this study predominantly received low doses of these drugs. Also other studies conducted by
 299 ??igtenberg et al., 2001 (51); ??ooda et al., 2007 (76) suggested that low dose tacrolimus significantly reduces
 300 incidence of new-onset post transplantation diabetes mellitus and do not impair glycemic control.

301 In this study, table 3.15 showed the effects of all groups' treatment regimen (I & II & III) on serum electrolyte
 302 (Na & K) in kidney transplanted patients. No significant changes in either group compared to control healthy
 303 individual were observed, and also there were no statistically significant differences among groups treatment at
 304 three months follow-up (table [3][4][5][6][7][8][9][10][11][12][13][14] ??15)[16]. This could indicate no significant
 305 effects of the three group's treatment regimen on serum Na and serum K.

306 15 Volume XII Issue I Version I

307 16 February

308 In this study, Table 3.9 and Table 3-10, significant mild elevations were observed only in total bilirubin and
 309 bilirubin indirect levels compared to control healthy individual. These results (elevations of total bilirubin and
 310 bilirubin indirect) are in agreement with CsA therapy induces overproduction of reactive oxygen species (ROS)
 311 in hepatocytes and lowers their antioxidant capacity) 55).

312 In this study, among patients receiving calcineurin inhibitor, those receiving cyclosporine A based regimen were
 313 more prone to develop hypertension (83%) & (80%) in group I & II respectively than those receiving tacrolimus
 314 based regimen (71%) in group III. This adverse hypertension effects was also reported by others studies conducted
 315 by ??assila, 2000 (27); Castillo-Lugo and Vergne-Marini, 2005 (79); ??atarsi et al., 2005 (80). Therefore the use
 316 of tacrolimus may lead to less risk for hypertension when compared with treatment with CsA and conversion from
 317 treatment with CsA to treatment with tacrolimus may leads to a slight decline in blood pressure (51). Although
 318 there were no significant difference in blood pressure between groups treatment regimen (4) .

319 In this study the blood pressure remained unchanged in the CsA receiving groups; although the low doses of
 320 CsA in group II treatment regimens had been received during the study period. Similar results also reported by
 321 ??chnuelle et al., 2002 (81); ??ose, 2007 (52) who found continued treatment with CsA even at reduced doses
 322 frequently results in sustained hypertension.

323 The other adverse-effects (tremor, GI upset, hirsutism & gum hyperplasia) have been also recorded in other
 324 studies ??asiske et al, 2000 (16); ??iavarella et al., 2007 (82); ??ebster et al., 2009 (3). In this study apart from
 325 hypertension, these adverse-effects are considered mild. The incidences of these cosmetic conditions (hirsutism
 326 and gingival hyperplasia) were predominant in patients taking cyclosporine, hirsutism (43% in group I & 33% in
 327 group II) and gum hyperplasia (16% in group I & 13% in group II), than in patients taking tacrolimus (no case
 328 reported). Similar results are also reported in other studies ??ose, 2007 (52); ??han et al., 2008 (9). CsA induced
 329 gingival hyperplasia is connected with increased collagen levels due to the CsA mediated inhibition of collagen
 330 phagocytosis (83). Neurological effects (tremor) and gastrointestinal effects (diarrhea, vomiting and dyspepsia)
 331 were more frequent in tacrolimus-treated recipients, tremor (42% in group III than 26% & 20% in group I & II
 332 respectively) and gastrointestinal effects (28% in group III than 23% & 13% in group I & II respectively). Similar
 333 results are also reported in other study ??orales et al., 2001 (24). These reported gastrointestinal effects were being
 334 due to concurrent mycophenolate mofetil use more than to the calcineurin inhibitor associated gastrointestinal
 335 effects (84).

336 V. ? Cyclosporine nephrotoxicity is dose-dependent and reduce the dose of cyclosporine lead to less

337 nephrotoxicity and improvement in renal function. ⁷ The use of cyclosporine based immunosuppressive regimen
338 is associated with elevations in serums total cholesterol, triglyceride and total bilirubin in dose-independent
339 manner, compared with the use of tacrolimus based immunosuppressive regimen which show no changes in post
340 renal transplant. ⁷ The most prominent adverse-effects associated with the all immunosuppressive regimens were
341 hypertension. Whereas the use of cyclosporine is associated with a higher incidence of cosmetic adverse-effects
342 (hirsutism & gum hyperplasia), and neurological (tremor) adverse-effects are more common in tacrolimus-treated
343 recipients than in cyclosporine-treated recipients.

344 **17 CONCLUSION**

Figure 1:

31

Figure 2: Table 3 - 1 :

32

Figure 3: Table 3 - 2 :

345 1 2 3

¹Volume XII Issue I Version I © 2012 Global Journals Inc. (US) February

²Volume XII Issue I Version I © 2012 Global Journals Inc. (US) February

³© 2012 Global Journals Inc. (US)

17 CONCLUSION

3

5 :

Figure 4: Table 3 -

Group I	Group II	0.842 NS	Group I	Group 2	0.483 NS	Group I	Group II	0.822 NS
	Group III	0.040 S		Group III	0.004 S		Group III	0.005 S
Group II	Group III	0.037 S	Group II	Group III	0.002 S	Group II	Group III	0.003 S
Serum creatinine								
Group I	Group II	0.255 NS	Group I	Group II	0.252 NS	Group I	Group II	0.260 NS
	Group III	0.037 S		Group III	0.046 S		Group III	0.046 S
Group II	Group III	0.413 NS	Group II	Group III	0.586 NS	Group II	Group III	0.599 NS
Creatinine clearance								
Group I	Group II	0.147 NS	Group I	Group II	0.108 NS	Group I	Group II	0.142 NS
	Group III	0.027 S		Group III	0.015 S		Group III	0.019 S
Group II	Group III	0.525 NS	Group II	Group III	0.499 NS	Group II	Group III	0.502 NS
II								

Figure 5: February Serum urea at first month P value at 2 nd month P value at 3 rd month P value

T. (mmol/L)	Cholesterol	5.15 ± 0.25*	5.47 ± 0.27*	5.52 ± 0.28*	4.34 ± 0.13
Triglyceride (mmol/L)		2.17 ± 0.21*	2.29 ± 0.24*	2.31 ± 0.23*	1.33 ± 0.13
HDL-c (mmol/L)		1.13 ± 0.08	1.12 ± 0.07	1.14 ± 0.08	0.97 ± 0.03
LDL-c (mmol/L)		3.46 ± 0.25	3.22 ± 0.27	3.46 ± 0.26	2.87 ± 0.16

Figure 6: Healthy control at 3 rd month at 2 nd month at first month Serum lipid

3

4 :

Figure 7: Table 3 -

Serum lipid T.	at first month	at 2 nd month	at 3 rd month	Healthy control
Cholesterol (mmol/L)	5.31 ± 0.32*	5.20 ± 0.31*	5.17 ± 0.26*	4.34 ± 0.13
Triglyceride (mmol/L)	2.55 ± 0.36*	2.50 ± 0.35*	2.57 ± 0.35*	1.33 ± 0.13
HDL-c (mmol/L)	1.16 ± 0.11	1.10 ± 0.08	1.10 ± 0.08	0.97 ± 0.03
LDL-c (mmol/L)	3.08 ± 0.24	3.37 ± 0.39	3.37 ± 0.39	2.87 ± 0.16
				2012
Serum lipid T.	at first month	at 2 nd month	at 3 rd month	Healthy control
Cholesterol (mmol/L)	4.48 ± 0.31	4.51 ± 0.27	4.46 ± 0.27	4.34 ± 0.13
Triglyceride (mmol/L)	1.51 ± 0.22	1.58 ± 0.27	1.53 ± 0.28	1.33 ± 0.13
HDL-c (mmol/L)	0.84 ± 0.13	0.90 ± 0.11	0.90 ± 0.11	0.97 ± 0.03
	2.71 ± 0.23	2.97 ± 0.21	2.97 ± 0.21	2.87 ± 0.16
				Medical Research Global Journal of

[Note: *LDL-c (mmol/L)*]

Figure 8:

3637

Figure 9: Table 3 - 6 :Table 3 - 7 :

39

Medical Research
Global Journal of

[Note: * $P < 0.05$ significant difference from the control © 2012 Global Journals Inc. (US)]

Figure 10: Table 3 - 9 :

3

8 :
Figure 11: Table 3 -
3
Medical Research
Global Journal of

Figure 12: Table 3 .

313

Medical Research
Global Journal of

Figure 13: Table 3 - 13 :

3

		Serum alkaline phosphatase						
		at 2 nd month		P value		at 3 rd month		P value
		Group I	Group II	Group III	Group II	Group I	Group II	Group III
Group I	Group II	0.264	NS	0.405				0.222
	Group III	NS			Group III	0.283	NS	NS
					Group III	0.414	NS	0.425
Group II	Group III	0.929	NS		Group II	0.922	NS	0.931
				Group III	Group II	Group III	Group II	NS
					Group III	0.922	NS	
Serum alanine aminotransferase								
Group I	Group II	0.203	NS	0.708				0.250
	Group III	NS			Group III	0.252	NS	NS
				Group II	Group III	0.747	NS	0.734
Group II	Group III	0.652	NS		Group II	0.622	NS	0.616
				Group III	Group II	Group III	Group II	NS
					Group II	0.622	NS	
Serum aspartate aminotransferase								
Group I	Group II	0.829	NS	0.969				0.842
	Group III	NS			Group III	0.848	NS	NS
				Group II	Group III	0.942	NS	0.922
Group II	Group III	0.920	NS		Group II	0.984	NS	0.940
				Group III	Group II	Group III	Group II	NS
					Group II	0.984	NS	
Serum total bilirubin								
Group I	Group II	0.804			Group II	0.812		Group II
	Group III	NS	0.783		Group III	NS	0.715	Group III
				Group I	Group III	NS	Group II	NS
Group II	Group III	0.604	NS		Group III	0.635	NS	0.689
				Group II	Group III	Group II	Group III	NS
					Group III	0.635	NS	
Glucose		at first month		at 2 nd month		at 3 rd month		Healthy control
Group I	n = 30	5.32 ± 0.23		5.31 \pm 0.27		5.30 ± 0.27		
Group II	n = 15	5.66 ± 0.49		5.77 \pm 0.70		5.92 ± 0.68		4.80 ± 0.19
Group III	n = 7	4.86 ± 0.27		5.02 \pm 0.51		5.10 ± 0.50		

Figure 14: Table 3 -

3

Figure 15: Table 3 -

3

Medical Research
Global Journal of

*[Note: S: significant NS: no significant ($P < 0.05$ for the comparisons between groups) © 2012 Global Journals Inc.
(US) February]*

Figure 16: Table 3 -

17 CONCLUSION

3

at first month			P value	Serum fasting glucose at 2 nd month		
Group I	Group II	Group III	0.400	Group I	Group II	Group III
		NS				
		0.567				
		NS				
Group II	Group III	0.182		Group II	Group III	
		NS				

iv. Effect Of Treatment Groups On Serum Electrolyte (Na, K)

Na (mmol/L)	at first month	at 2 nd month
Group I n = 30	139.84 ± 0.52	139.74 ± 0.59
Group II n = 15	140.83 ± 0.60	141.05 ± 0.58
Group III n = 7	139.75 ± 1.65	139.60 ± 1.55

K (mmol/L)	at first month	at 2 nd month
Group I n = 30	4.37 ± 0.10	4.36 ± 0.07
Group II n = 15	4.37 ± 0.12	4.48 ± 0.09
Group III n = 7	4.33 ± 0.23	4.36 ± 0.17

at first month	P value	at 2 nd month
Group I	Group II	Group III
Group II	0.997	0.139
	NS	NS
	Group III	0.389
	NS	

Group I	Group II	Group III	Group I	Group II	Group III
		NS			
		0.968			
		NS			
		0.600			
		NS			

Figure 17: Table 3 -

3

Figure 18: Table 3 -

346 [Transpl Int] , *Transpl Int* 21 (3) p. .

347 [Pirsch et al. ()] 'A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric
348 renal transplantation: FK506 kidney transplant study group'. J D Pirsch , J Miller , M H Deierhoi , F Vincenti
349 , R S Filo . *Transplantation* 1997. 63 (7) p. .

350 [Moroni et al. ()] 'A randomized pilot trial comparing cyclosporine and azathioprine for maintenance therapy in
351 diffuse Lupus Nephritis over four years'. G Moroni , A Doria , M Mosca . *Clin J Am Soc Nephrol* 2006. 1 p. .

352 [Takemoto et al. ()] 'A Retrospective analysis of immunosuppression compliance, dose reduction and discontin-
353 uation in kidney transplant recipients'. S K Takemoto , B W Pinsky , M A Schnitzler . *American Journal of
354 Transplantation* 2007. 7 p. .

355 [Wanner and Quaschning ()] 'Abnormal lipid metabolism after renal transplantation'. C Wanner , T Quaschning
356 . *Annals of Transplantation* 2001. 6 (1) .

357 [Wissmann et al. ()] 'Acute cyclosporine -induced nephrotoxicity in renal transplant recipients: the role of the
358 transplanted kidney'. C Wissmann , J Felix , P Ferrari , D Uehlinger . *Journal of the American Society of
359 Nephrology* 1996. 7 p. .

360 [Karamehic et al. ()] 'Adverse reactions of cyclosporine in patients after kidney transplantation'. J Karamehic ,
361 M Asceric , S Rakic . *Acta Medica Saliniana* 1997. 26 (2) p. .

362 [Christians and Sewing ()] 'Alternative cyclosporine metabolic pathways and toxicity'. U Christians , K F Sewing
363 . *Clin Biochem* 1995. 28 (6) p. .

364 [Hecking et al. ()] *Analysis of liver function in renal transplant recipients undergoing C2-monitoring for February*,
365 M Hecking , A Kainz , M Schillinger , C Posch . 2008.

366 [Catarsi et al. ()] 'Angiotensin-converting enzyme (ACE) haplotypes and cyclosporine A (CsA) response: a
367 model of the complex relationship between ACE quantitative trait locus and pathological phenotypes'. P
368 Catarsi , R Ravazzolo , F Emma , D Fruci . *Human Molecular Genetics* 2005. 14 (16) p. .

369 [Shakiba et al. ()] 'Application of garlic organosulfur compounds in prevention of cyclosporine A-induced
370 hepatotoxicity'. Y Shakiba , A Mostafaie , D Arshadi , B Sabayan . *Iranian Journal of Medical Hypotheses
371 and Ideas* 2009. 3 p. 3.

372 [Naesens et al. ()] 'Calcineurin Inhibitor Nephrotoxicity'. M Naesens , D Kuypers , M Sarwal . *Clinical Journal
373 of the American Society of Nephrology* 2009. 4 p. .

374 [Oto et al. ()] 'Calcineurin inhibitor-related cholestasis complicating lung transplantation'. T Oto , M Okazaki ,
375 K Takata , M Egi , M Yamane . *Ann Thorac Surg* 2010. 89 p. .

376 [Moore et al. ()] 'Calcineurin inhibitors and post transplant hyperlipidemias'. R Moore , D Hernandez , H
377 Valantine . *Drug Saf* 2001. 24 p. .

378 [Jose ()] 'Calcineurin inhibitors in renal transplantation: Adverse effects'. M Jose . *NEPHROLOGY* 2007. 12 p.
379 .

380 [Ligtenberg et al. ()] 'Cardiovascular risk factors in renal transplant patients: cyclosporin A versus tacrolimus'.
381 G Ligtenberg , R J Hene , P J Blankestijn , H A Koomans . *J Am Soc Nephrol* 2001. 12 (2) p. .

382 [Ichimaru et al. ()] 'Changes in lipid metabolism and effect of simvastatin in renal transplant recipients induced
383 by cyclosporine or tacrolimus'. N Ichimaru , S Takahara , Y Kokado , J Wang , M Hatori , H Kameoka ,
384 Inouet , A Okuyama . *Atherosclerosis* 2001. 158 p. .

385 [Schade et al. ()] 'Cholestasis in heart transplant recipient treated with cyclosporine'. R Schade , A Guglielmi ,
386 Van Thiel , DH . *Transplan. Proc* 1983. 4 p. .

387 [Cadranel et al. ()] 'Chronic administration of cyclosporine A induces a decrease in hepatic excretory function
388 in man'. J F Cadranel , J Swindle , G Machnicki . *Digestive Diseases and Sciences* 1992. 37 (16) p. .

389 [Bennett et al. ()] 'Chronic cyclosporine nephropathy in renal transplantation'. W M Bennett , De Mattos , A
390 Meyer , M M Andoh , T Barry , JM . *Transplant Proc* 1996. 28 p. .

391 [Bauer et al. ()] 'Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate'. J H
392 Bauer , C S Brooks , R N Burch . *Am J Kidney Dis* 1982. 2 p. .

393 [Kasiske et al. ()] 'Clinical practice guidelines for managing dyslipidemias in kidney transplant patients: A report
394 from the managing dyslipidemias in chronic kidney disease work group of the national kidney foundation
395 kidney disease outcomes quality initiative'. B L Kasiske , F G Cosio , J Beto . *Am J Transplant* 2004. 4
396 (Suppl7) p. .

397 [Trull et al. ()] 'Crosscorrelation of cyclosporine concentration and biochemical measures of kidney and liver
398 function in heart and heart-lung transplant recipients'. A Trull , K Hue , K Tan , S Gore . *Clinical Chemistry*
399 1990. 36 (8) p. .

400 [Khurana and Brennan ()] 'Current concept of immunosuppression and side effect'. A Khurana , D C Brennan .
401 *Pathology of Solid Organ Transplantation* 2011. 6 (6) p. .

17 CONCLUSION

402 [Lassila ()] 'Cyclosporine A-induced hypertension and nephrotoxicity in spontaneously hypertensive rats on high-
403 sodium diet'. M Lassila . *Transplantation* 2000. 45 p. .

404 [cyclosporine metabolites and bilirubin in liver graft recipients Therapeutic Drug Monitoring] 'cyclosporine
405 metabolites and bilirubin in liver graft recipients'. *Therapeutic Drug Monitoring* 17 p. .

406 [Hami et al. ()] 'Cyclosporine trough levels and its side effects in kidney transplant recipients'. M Hami , M
407 Mojahedi , M Naghibi , M Shakeri , F Sharifipour . *Iranian Journal of Kidney Diseases* 2010. 4 (2) .

408 [Abramowicz et al. ()] 'Cyclosporine withdrawal from a mycophenolate mofetil-containing immunosuppressive
409 regimen: Results of a five-year, prospective, randomized study'. D Abramowicz , M Rial , S Vitko . *J Am Soc
410 Nephrol* 2005. 16 p. .

411 [Taler et al. ()] 'Cyclosporine-induced hypertension: incidence, pathogenesis and management'. S J Taler , S C
412 Textor , V J Canzanello , L Schwartz . *Drug Saf* 1999. 20 p. .

413 [Ponticelli ()] 'Cyclosporine: from renal transplantation to autoimmune diseases'. C Ponticelli . *Ann. N. Y. Acad.
414 Sci* 2005. 1051 p. .

415 [Puigmule et al. ()] 'Differential proteomic analysis of cyclosporine A -induced toxicity in renal proximal tubule
416 cells'. M Puigmule , J Lopez-Hellin , G Sune , O Tornavaca . *Nephrol Dial Transplant* 2009. 24 p. .

417 [Saracino et al. ()] 'Early assessment of renal resistance index after kidney transplant can help predict long-term
418 renal function'. A Saracino , G Santarsia , A Latorraca , V Gaudiano . *Nephrol Dial Transplant* 2006. 21 p.
419 2920.

420 [Vaziri et al. ()] 'Effect of Cyclosporine on HMG-CoA Reductase, Cholesterol 7?-Hydroxylase, LDL Receptor,
421 HDL Receptor, VLDL Receptor, and Lipoprotein Lipase Expressions'. N Vaziri , K Liang , H Azad . *The
422 journal of Pharmacology and Experimental Therapeutics* 2000. 294 p. .

423 [Mccune et al. ()] 'Effects of tacrolimus on hyperlipidemia after successful renal transplantation'. T Mccune , L
424 Thacker , T Peters . *Transplantation* 1998. 65 p. .

425 [Kramer et al. ()] 'Efficacy and safety of tacrolimus compared with cyclosporine A microemulsion in renal
426 transplantation: 2 year follow-up results'. B K Kramer , G Montagnino , D Castillo , R Margreiter . *Nephrol
427 Dial Transplant* 2005. 20 p. .

428 [Van Hooff et al. ()] 'Evaluating mechanisms of post-transplant diabetes mellitus'. J P Van Hooff , M H
429 Christiaans , E M Van Duijnhoven . *Nephrol Dial Transplant* 2004. 19 p. .

430 [Stephen et al. ()] 'Evolving strategies for immunosuppression in renal transplantation: A review of recent clinical
431 trials'. J Stephen , T Pearson , L Gallon . *Adv Stud Med* 2007. 7 (9) p. .

432 [Boots et al. ()] 'Glucose metabolism in renal transplant recipients on tacrolimus: The effect of steroid
433 withdrawal and tacrolimus trough level reduction'. J M Boots , E M Van Duijnhoven , M H Christiaans
434 , B H Wolffenbuttel , J P Van Hooff . *J Am Soc Nephrol* 2002. 13 p. .

435 [Teutonico et al. ()] 'Glucose metabolism in renal transplant recipients: Effect of Calcineurin Inhibitor with-
436 drawal and conversion to sirolimus'. A Teutonico , P Schena , Di Paolo , S . *J Am Soc Nephrol* 2005. 16 p.
437 .

438 [Lorber et al. ()] 'Hepatobiliary and pancreatic complication of cyclosporine therapy in 466 renal transplant
439 recipients'. M I Lorber , J Cambar , A Wolf . *Transplantation* 1987. 43 p. .

440 [Taniai et al. ()] 'Hepatotoxicity caused by tacrolimus and cyclosporine after living donor liver transplantation'.
441 N Taniai , K Akimaru , Y Ishikawa , T Kanada . *J Nippon Med Sch* 2008. 75 (3) .

442 [Castillo-Lugo and Vergne-Marini ()] 'Hypertension in Kidney Transplantation'. J Castillo-Lugo , P Vergne-
443 Marini . *Seminars in Nephrology* 2005. 25 p. .

444 [Chan et al. ()] 'Immunosuppression in clinical practice: approaches to individualized therapy'. A Chan , O Stüve
445 , N Von Ahsen . *J Neurol* 2008. 255 (Suppl6) p. .

446 [Rainienė ()] 'Immunosuppression in the past and today'. T Rainienė . *ACTA Medica Lituanica* 2005. 12 (3) p. .

447 [Halloran ()] 'Immunosuppressive drugs for kidney transplantation'. P F Halloran . *N Engl J Med* 2004. 351 p. .

448 [Denton et al. ()] 'Immunosuppressive strategies in transplantation'. M D Denton , C C Magee , M H Sayegh .
449 *Lancet* 1999. 353 p. .

450 [Kahan ()] 'Immunosuppressive therapy with cyclosporine for cardiac transplantation'. B D Kahan . *Circulation*
451 1987. 75 p. .

452 [Morales ()] 'Impact of tacrolimus and mycophenolate mofetil combination on cardiovascular risk profile after
453 kidney transplantation'. J M Morales , Dom?nguez-Gil B . *J Am Soc Nephrol* 2006. 17 p. .

454 [Artz et al. ()] 'Improved cardiovascular risk profile and renal function in renal transplant patients after
455 randomized conversion from cyclosporine to tacrolimus'. M A Artz , J M Boots , G Ligtenberg . *J. Am.
456 Soc. Nephrol* 2003. 14 p. .

457 [Wahba and Bennett ()] 'Increased vascular resistance and not salt retention characterizes cyclosporine A-
458 induced hypertension: report in an anuric patient'. I M Wahba , W M Bennett . *Am J Transplant* 2007.
459 7 (8) p. .

460 [Morales et al. ()] 'Influence of cyclosporine, tacrolimus and rapamycin on renal function and arterial hypertension
461 after renal transplantation'. J M Morales , A Andres , M Rengel , J L Rodicio . *Nephrol Dial Transplant*
462 2001. 16 (suppl1) p. .

463 [Burroughs et al. ()] 'Influence of early Post transplantation Prednisone and Calcineurin Inhibitor dosages on
464 the incidence of New-Onset Diabetes'. T Burroughs , K Lentine , S Takemoto . *Clin J Am Soc Nephrol* 2007.
465 2 p. .

466 [Gulbis et al. ()] 'Liver function studies in heart-transplant recipients treated with cyclosporine'. B Gulbis , M
467 Adler , H Ooms . *Clinical Chemistry* 1988. 34 (9) p. .

468 [Hamdy et al. ()] 'Long-term efficacy and safety of a Calcineurin Inhibitor-free regimen in live-donor renal
469 transplant recipients'. A Hamdy , M Bakr , M Ghoneim . *J Am Soc Nephrol* 2008. 19 p. .

470 [Levy ()] 'Long-term immunosuppression and drug interactions'. G L Levy . *Liver Transplantation* 2001. 11 p. .

471 [Tr and Hu ()] 'Minimizing immunosuppression, an alternative approach to reducing side effects: objectives
472 and interim result'. Srinivas Tr , Meier-Kriesche Hu . *S101-S116. 15. Danovitch GM*, (Philadelphia,
473 Lippincott, Williams) 2008. 2005. 3 p. . (Immunosuppressive medications and protocols: Handbook of Kidney
474 Transplantation)

475 [Sollinger ()] 'Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft
476 recipients: U.S. Renal Transplant Mycophenolate Mofetil Study Group'. H W Sollinger . *Transplantation*
477 1995. 60 (3) p. .

478 [Ko et al. ()] 'Mycophenolate mofetil in liver transplant patients with calcineurin-inhibitor-induced renal impairment'. H H Ko , E Greanya , T K Lee . *Annals of Hepatology* 2008. 7 (4) p. .

480 [Srinivas et al. ()] 'Mycophenolate mofetil in solid-organ transplantation'. T R Srinivas , B Kaplan , Meier-
481 Kriesche Hu . *Expert Opin Pharmacother* 2003. 4 p. .

482 [Bobadilla and Gamba ()] *New insights into the pathophysiology of cyclosporine*, N A Bobadilla , G Gamba .
483 2007.

484 [Chadban ()] 'New-onset diabetes after transplantation-should it be a factor in choosing an immunosuppressant
485 regimen for kidney transplant recipients'. S Chadban . *Nephrol Dial Transplant* 2008. 23 p. .

486 [Hornum et al. ()] 'New-Onset Diabetes Mellitus after kidney transplantation in Denmark'. M Hornum , K
487 Jørgensen , J Hansen , F Nielsen , K Christensen , E Mathiesen , B Feldt-Rasmussen . *Clin J Am Soc
488 Nephrol* 2010. 5 p. .

489 [Schnuelle et al. ()] 'Open randomized trial comparing early withdrawal of either Cyclosporine or Mycophenolate
490 Mofetil in stable renal transplant recipients initially treated with a triple drug regimen'. P Schnuelle , J Van
491 Der Heide , A Tegzess . *J Am Soc Nephrol* 2002. 13 p. .

492 [Kasiske et al. ()] 'Recommendations for the Outpatient Surveillance of Renal Transplant Recipients'. B L
493 Kasiske , M A Vazques , W E Harmon . *J Am Soc Nephrol* 2000. 11 p. .

494 [Ekberg et al. ()] 'Reduced exposure to calcineurin inhibitors in renal transplantation'. H Ekberg , H Tedesco-
495 Silva , A Demirbas , S Vitko , B Nashan . *N Engl J Med* 2007. 357 p. .

496 [Van Buren et al. ()] 'Renal function in patients receiving long-term cyclosporine therapy'. D H Van Buren , J
497 F Burke , R M Lewis . *J Am Soc Nephrol* 1994. 4 p. .

498 [Vincenti et al. ()] 'Results of an international randomized trial comparing glucose metabolism disorders and
499 outcome with cyclosporine versus tacrolimus'. F Vincenti , S Friman , E Scheuermann , L Rostaing . *Am J
500 Transplant* 2007. 7 p. .

501 [Becker-Cohen et al. ()] 'Risk factors for cardiovascular disease in children and young adults after renal
502 transplantation'. R Becker-Cohen , A Nir , C Rinat , S Feinstein , N Algur . *Clin J Am Soc Nephrol* 2006. 1
503 p. .

504 [Johnston et al. ()] 'Sirolimus Is Associated with New-Onset Diabetes in Kidney Transplant Recipients'. O
505 Johnston , C Rose , A Webster , J Gill . *J Am Soc Nephrol* 2008. 19 p. .

506 [Hooda et al. ()] 'Tacrolimus dose in renal transplantation -do we have an answer'. A Hooda , A Kumar , P
507 Varma . *Indian Journal of Nephrology* 2007. 17 p. 3.

508 [Filler et al. ()] 'Tacrolimus reversibly reduces insulin secretion in paediatric renal transplant recipients'. G Filler
509 , I Neuschulz , I Vollmer . *Nephrol Dial Transplant* 2000. 15 p. .

510 [Webster et al. ()] *Tacrolimus versus cyclosporine as primary immunosuppression for kidney transplant recipients*
511 REFERENCES RÉFÉRENCES REFERENCIAS (Review), A C Webster , R R Taylor , J R Chapman , J C
512 Craig . 2009. (The Cochrane Library. Issue 1)

17 CONCLUSION

513 [Webster et al. ()] 'Tacrolimus versus cyclosporine as primary immunosuppression for kidney transplant recipi-
514 ents: meta-analysis and meta-regression of randomized trial data'. A C Webster , R C Woodroffe , R S Taylor
515 . *BMJ* 2005. 331 p. .

516 [Jurewicz ()] 'Tacrolimus versus cyclosporine immunosuppression: long-term outcome in renal transplantation'.
517 A W Jurewicz . *Nephrol Dial Transplant* 2003. 18 (Suppl1) p. .

518 [Scott et al. ()] 'Tacrolimus: A further update of its use in the management of organ transplantation'. L J Scott
519 , K McKeage , S J Keam , G L Plosker . *Drugs* 2003. 63 p. .

520 [Hilbrands et al. ()] 'The effects of cyclosporine and prednisolone on serum lipid and (Apo) lipoprotein level in
521 renal transplant recipients'. L Hilbrands , P Demacker , A Holtsma . *J Am Soc Nephrol* 1995. 5 p. .

522 [Nankivell et al. ()] 'The natural history of chronic allograft nephropathy'. B J Nankivell , J Richard , R Borrows
523 , Cl-S Fung . *N Engl J Med* 2003. 349 p. .

524 [Erdmann et al. ()] *The Novel Calcineurin Inhibitor CN585 has potent immunosuppressive properties in stimu-
525 lated human T Cells. The journal of biological chemistry*, F Erdmann , M Weiwig , S Kilka , M Karanik .
526 2010. 285 p. .

527 [Ilgenli et al. ()] 'The role of serum lipids on Cyclosporine-induced gingival overgrowth in renal transplant
528 patients'. T Ilgenli , G Atilla , M Cirit , N Azmak . *Tr. J. of Medical Sciences* 1999. 29 p. .

529 [Crutchlow and Bloom ()] 'Transplant-associated hyperglycemia: A new look at an old problem'. M F Crutchlow
530 , D R Bloom . *Clin J Am Soc Nephrol* 2007. 2 p. .

531 [Delgado et al. ()] 'Unmasking Glucose metabolism alterations in stable renal transplant recipients: A multicen-
532 ter study'. P Delgado , J Diaz , I Silva , J Osorio . *Clin J Am Soc Nephrol* 2008. 3 p. .

533 [Ciavarella et al. ()] 'Update on gingival overgrowth by cyclosporine A in renal transplants'. D Ciavarella , R
534 Guiglia , G Campisi , Di Cosola , M . *Med Oral Patol Oral Cir Bucal* 2007. 12 p. .

535 [Finn and Porter ()] 'Urinary biomarkers and nephrotoxicity: Clinical Nephrotoxins: Renal Injury from Drugs
536 and Chemicals 3th Edition'. W F Finn , G A Porter . *Am J Physiol Renal Physiol* 2008. Springer Science.
537 293 p. . (nephrotoxicity: A role of aldosterone)