

GLOBAL JOURNAL OF MEDICAL RESEARCH: J DENTISTRY & OTOLARYNGOLOGY

Volume 17 Issue 2 Version 1.0 Year 2017

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN: 2249-4618 & Print ISSN: 0975-5888

Overview of Surgical Treatment for Maxillary Constriction

By Dr. Anthony Kevin Fernandes & Dr. Faizan Ahmed Khan

Yenepoya Dental College

Introduction- The general indications for surgically assisted rapid maxillary expansion (SARME) are skeletal maturity, (extreme) transverse maxillary hypoplasia, either uni- or bilateral, anterior crowding and buccal corridors, the so called black corridors, when smiling. Furthermore the indications for SARME include any case where orthodontic maxillary expansion has failed and resistance of the sutures must be overcome. Transverse maxillary hypoplasia, in adolescents and adults, is frequently seen in non-syndromal and syndromal patients including cleft patients. In skeletally matured patients the uni- or bilateral transverse hypoplasia can be corrected by means of SARME. The treatment is a combination of orthodontics and surgical procedures and provides dental arch space for alignment of teeth. The procedure also causes a substantial enlargement of the maxillary apical base and of the palatal vault, providing space for the tongue for correct swallowing and thus preventing relapse. In addition, a distinct subjective improvement in nasal breathing associated with enlargement of the nasal valve towards normal values is seen with an increase of nasal volume in all compartments.

GJMR-J Classification: NLNC Code: WO 500

Strictly as per the compliance and regulations of:

Overview of Surgical Treatment for Maxillary Constriction

Dr. Anthony Kevin Fernandes ^a & Dr. Faizan Ahmed Khan ^a

I. INTRODUCTION

The general indications for surgically assisted rapid maxillary expansion (SARME) are skeletal maturity, (extreme) transverse maxillary hypoplasia, either uni- or bilateral, anterior crowding and buccal corridors, the so called black corridors, when smiling. Furthermore the indications for SARME include any case where orthodontic maxillary expansion has failed and resistance of the sutures must be overcome. Transverse maxillary hypoplasia, in adolescents and adults, is frequently seen in non-syndromal and syndromal patients including cleft patients. In skeletally matured patients the uni- or bilateral transverse hypoplasia can be corrected by means of SARME. The treatment is a combination of orthodontics and surgical procedures and provides dental arch space for alignment of teeth. The procedure also causes a substantial enlargement of the maxillary apical base and of the palatal vault, providing space for the tongue for correct swallowing and thus preventing relapse. In addition, a distinct subjective improvement in nasal breathing associated with enlargement of the nasal valve towards normal values is seen with an increase of nasal volume in all compartments. Transverse expansion of the maxilla was first done in 1860 by means of an orthodontic appliance. In the following decennia the orthodontic treatment evolved. The theory of distraction was first published in 1905 by Codivilla¹. The combined surgical and orthodontic treatment for maxillary expansion was introduced in 1938 for skeletally matured patients. The first successful use of distraction on the femur of a significant group of patients was published in 1990². In 1999 the first bone-borne distractor was introduced³. Maxillary expansion by means of distraction is a nowadays widely used treatment.

However, there is no consensus in the searched literature regarding the surgical technique, the type of distractor used (tooth-borne or bone-borne), the existence, cause and amount of relapse and whether or not overcorrection is necessary.

II. HISTORY

a) History of orthodontic for maxillary constriction

Growth at the suture occurs through deposition of new bone at the sutural margin by the adjacent cellular layer. Toward the end of fetal life the cellular layers decrease in thickness, indicating that the rate of growth is slowing down, and the number of fibers in the intermediate layer uniting the capsular layers decreases. In a study of human sutures from birth to 18 years, Latham and Burston³³ concluded that after about 2 of 3 years the sutures of the skull in general functioned primarily as sites of union of bones, but localized remodeling is a continuing process.

Cranial sutures are unified before complete eruption of the third molar. Soon after this, facial sutures close, and the sutures connecting the cranial and facial complexes are the last to close⁴. Regarding the facial sutures, Sicher⁵ states that the closure of sutures in human beings starts, as a rule, in the middle 30s at the posterior end of the median palatine suture but that some facial sutures, including the frontozygomatic, may remain open even in older age groups. This view is supported by Wright⁶, who claimed the intermaxillary and palatine sutures to be unossified and susceptible to comparatively easy separation at as late an age as 35 years.

A conflicting view is expressed by Persson⁷, who found evidence of bony union at 17 years in the midpalatal suture. Latham and Burston⁸, however, found no evidence of synostosis in the same suture by the age of 18 years. An over-all view is expressed by Scott⁹, who believes that, although most facial sutures appear open on the surface of old skulls, some degree of union may be present in the substance of the suture. It is obvious therefore, that the available literature is inconclusive and conflicting. In clinical practice, skeletal correction of the transverse discrepancy via orthodontics (orthopedics) is successful until the age of approximately 14-15 years depending on the gender of the patient. After this age, orthodontic widening becomes virtually impossible and very painful^{10,11,12}. In general, it is assumed that closure of the midpalatal suture prevents this type of expansion^{10,12}.

In the first part of nineteenth century, Lefoulon^{13,14} and Talma¹⁵ reported on maxillary expansion with a palatal or buccal C-shaped spring. A method, reserved for less severe cases, consisted of

Author ^a: Dept of Orthodontics and Dentofacial Orthopedics, Yenepoya Dental College. e-mails: faizanortho@gmail.com, faizankhan@yenepoya.edu.in

lateral thumb pressure, 'every morning and even many times daily', by the parent or the child itself. The first documented case of orthodontic correction of maxillary width discrepancies was by Angell¹⁶. He performed rapid maxillary expansion with the use of a jackscrew appliance in a 14-year-old girl. He observed that by turning the jackscrew daily, he was able to open the maxillary suture sufficiently in a period of 2 weeks. Angell¹⁶ mentions correction of maxillary width discrepancies by opening the midpalatal suture. In 1913, Schröder-Benseler¹⁷ presented the still-popular all-wire frame with a non-spring-loaded jackscrew, the hygienic appliance. Derichsweiler¹⁶ uses bonds to the premolar and molar, which are embedded into a split acrylic base plate with an incorporated conventional orthodontic expansion screw. In 1961 Haas 'Reintroduced' rapid maxillary expansion (RME) and mentions in 1970 that the use of RME is ideally during the growth spurt^{18,19}. Reichenbach & Brückl²⁰ published an excellent survey on orthodontic treatment of maxillary transverse hypoplasia in 1967.

b) History of surgical treatment for maxillary constriction

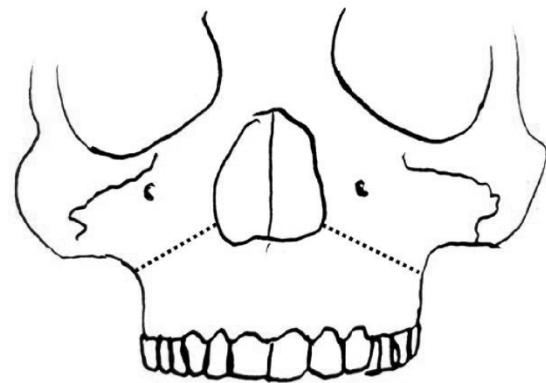
Once skeletal maturity has been reached, orthodontic treatment alone cannot provide a stable widening of the constricted maxilla in cases of deficiencies of more than 5 mm. In general, an orthodontist can camouflage transverse discrepancies less than 5 mm with orthopedic forces alone²¹. The literature mentions several problems accompanied by RME on mature patients, such as failure and/or relapse and periodontal problems with the tooth-borne appliances²². Timms & Vero²³ mention that 33-50% of the expansion has relapsed before stability is achieved. Others report the lack of movement of the maxillary halves; excessive tipping of the anchor teeth; buccal root resorption of the anchor teeth or even periodontal defects as the teeth are pushed through the buccal cortical plate, which lead to bony defects and gingival recession; unequal expansion and unpredictable relapse and the sensation of pain and necrosis of oral mucosa under the appliance. Bell and Starnbach^{24,25,26} report that activation of an appliance against mature sutures can lead to the sensation of pain and necrosis of oral mucosa under the appliance. These forces can also result in periodontal defects as the teeth are pushed through the buccal cortical plate, which lead to bony defects and gingival recession. These complications can be avoided by surgically releasing the osseous structures that resist the expansive forces^{24,26}. Therefore the combination of surgical and orthodontic treatment is advocated for widening of the maxilla in skeletally matured patients. Advantages of SARME include improvement of periodontal health; improved nasal air flow; elimination of the negative space, which results in less visible tooth and gingival structures upon smiling²⁷. There is also a cosmetic

improvement of the buccal hollowing secondary to post-expansion prominence at the site of the lateral wall osteotomy^{24,26}. Tooth extractions for alignment of dental arches are often unnecessary²¹. Brown²⁸ probably first described a technique of SARME with midpalatal splitting in his textbook. Heiss²⁵ probably first inaugurated the midline splitting in the anterior maxilla for the extension of the compressed maxillary arch for orthodontic reasons. In 1961, Haas¹⁹ described the downward and forward movement of the maxilla that occurs during RME because of the location of the Crano Maxillofacial sutures. He believed that the maxillary halves separated from each other rather in a tipping than in a parallel fashion due to the strength of the zygomatic buttresses¹⁹. Isaacson & Ingram²⁹ and Isaacson et al.³⁰ mention that historically, the midpalatal suture was thought to be the area of resistance to expansion, but the facial skeleton increases its resistance to expansion as it ages and matures, and that the major site of resistance is not the midpalatal suture but the remaining maxillary articulations. Wertz³¹ advocated that resistance of the zygomatic arch prevents parallel opening of the midpalatal suture. In 1975, Lines³² and in 1976 Bell & Epker²⁴ demonstrated that the area of increased facial skeletal resistance to expansion was indeed not the midpalatal suture, but the zygomaticotemporal, zygomaticofrontal and zygomaticomaxillary sutures. Identification of these areas of resistance in the craniofacial skeleton stimulated the development of various maxillary osteotomies to expand the maxilla laterally in conjunction with orthodontic RME appliances⁴. The areas of resistance to lateral forces in the midface are the piriform aperture (anterior), the zygomatic buttress (lateral), the pterygoid junction (posterior) and the midpalatal synostosed suture (median). In the early reports all four are transected^{25,33,34,35}. In 1972 Steinhauser³⁶ reports a maxillary expansion osteotomy technique without the use of distraction, a Le Fort I type of osteotomy in combination with the surgical splitting of the palate in the midline, after which a triangular unicortical iliac graft is inserted into the void created by the expansion. More recently, with the emphasis on decreased morbidity and ambulatory surgery, fewer supports are osteotomized; the anterior, lateral and median, the lateral and median, the anterior, posterior and lateral, the anterior and lateral. Most reports note that surgically assisted maxillary expansion is more stable than orthodontic RME alone^{24,34,35,37}.

Glassmann et al.³⁸, Alpern & Yurosko³⁹ and Lehmann & Haas³⁷ reported successful expansion in humans performed with a Hyrax appliance following a lateral osteotomy from the piriform rim to the pterygoid plate without palatal surgery. Their study did not consider the amount of skeletal versus dental expansion and the corresponding relapse following a retention period⁴⁰. In 1984 Glassmann et al. postulates that

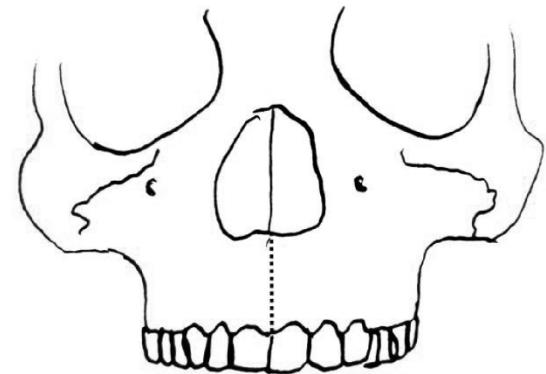
uniform palatal expansion can be achieved without sectioning of either palate or the pterygomaxillary fissure³⁸.

In the year 1999, Mommaerts⁴⁵ presented the Trans Palatal Distractor (TPD), which is a bone-borne device for SARME. After surgical release of the areas of maxillary support the tooth-borne devices used for SARME cause undesired movements of the abutment teeth during expansion and retention phases that could lead to periodontal problems^{35, 38, 41}. Prolonged retention and overcorrection is advisable to counteract skeletal relapse. The TPD avoids all of these aforementioned problems, since fixation is sought in palatal bone³². Recently, the Magdenburg Palatal Distractor (PD) was presented, also a bone-borne device which claims to have no relapse⁴².

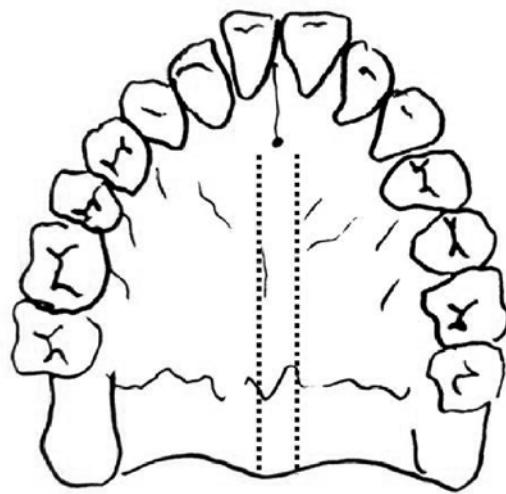

c) History of Distraction

As mentioned before SARME is a form of distraction that was applied before its biological healing principles were known. Codivilla¹ was the first to describe the technique of distraction osteogenesis for the shortened femur in 1905. Ilizarov described the use of distraction osteogenesis in the field of Orthopedics to lengthen the leg bones in a large group of patients in 1990². The technique is based on a 5-day period of rest after corticotomy before the expansion starts. This gives the tissue time to form the first callus but is too short for consolidation. Four phases of new bone formation can be described. The first is a fibrovascular hematoma; between day 5 and 7 collagen fibers are formed that will arrange parallel to the distraction vector. Second, the bone formation follows the collagen fibers through intramembranous ossification; from the outside to the inside. Third, remodeling phase of the new bone. Fourth, formation of solid compact bone with the same texture as the surrounding (old) bones. When the distraction is performed too fast, the collagen fibers might lose contact and there is no in growth of new bone, providing non- or mal-union. In cases of a too slow distraction premature consolidation can occur and the requested elongation cannot be reached.

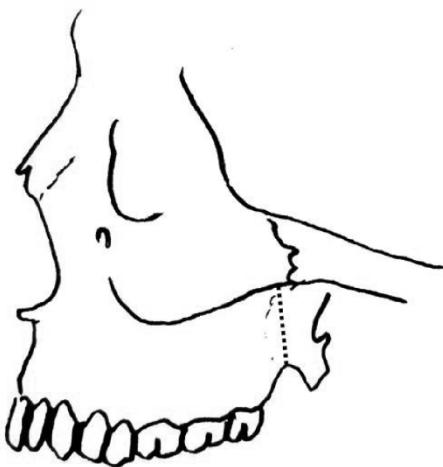
d) Surgical technique


Since early in the 20th century various techniques have been developed for SARME. The main considerations have opposing interests. One side is a more invasive technique with maximal mobility of the maxillary halves for correction over larger distances with less force but with more possible complications. The other side is less invasive with less possible complications but with more relapse, more periodontal problems, and unexpected fractures. The opinions vary about the site of major resistance in transverse distraction in the midface and also about the method of releasing it. Most methods consider the zygomaticomaxillary junction the major site of resistance and perform a corticotomy through the zygomatic

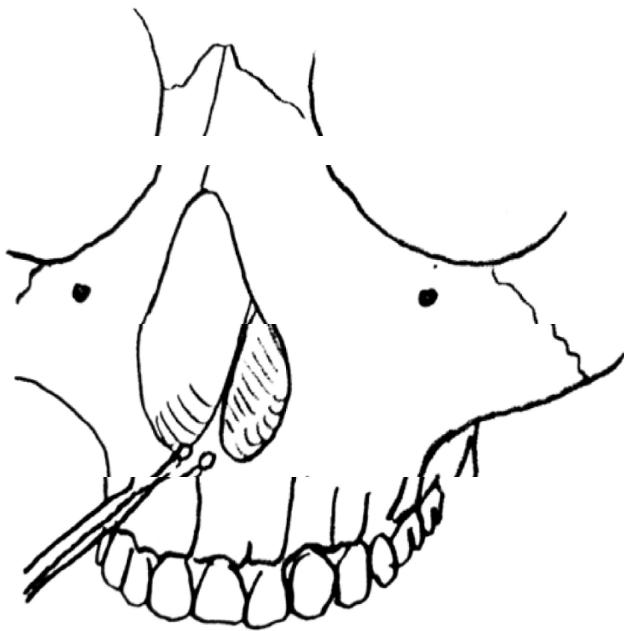
buttress from the piriform rim to the maxillopterygoid junction (fig 1).


Figure 1: Schematic drawing showing the corticotomy from the piriform rim to the maxillopterygoid junction.

The midpalatal suture is historically considered the major place of resistance but this was proven to be untrue by Isaacson & Ingram²⁹, Isaacson et al.³⁰ and Kennedy et al.³⁴ (Fig. 2). Still many, but not all, release the midpalatal suture to improve mobility and to prevent deviation of the nasal septum.


Figure 2: Schematic drawing showing the osteotomy of the midpalatal suture.

Several authors describe two paramedian palatal osteotomies from the posterior nasal spine to a point just posteriorly of the incisive canal (Fig. 3)^{9,11,57}.


Figure 3: Schematic drawing showing the two paramedian palatal osteotomies from the posterior nasal spine to a point just posteriorly of the incisive canal.

The pterygoid plates are also a considerable site of resistance but because of the increased risk of injuring the pterygoid plexus by the osteotomy, some chose not to, without losing much mobility (Fig. 4). By not releasing the pterygoid junction, the pattern of opening of the maxillary halves is more V-shaped with the point of the V dorsally and it might be considered as an individual treatment to achieve more distraction either on the posterior or anterior level.

Figure 4: Schematic drawing showing the osteotomy of the pterygoid plates.

The nasal septum is often released from its palatal base to avoid shifting to either side and thereby causing changes in nasal flow (Fig. 5). A tomographic study by Schwarz showed no significant change in nasal septum position in SARME without sectioning of the nasal septum and an increase nasal airway space⁶⁰.

Figure 5: Schematic drawing showing the release of the nasal septum with the use of a septum osteotome.

Of the studies on SARME mentioned in international literature, the mean age of the patients undergoing SARME varied from 19 to 29 years^{33,35,38,40,41,43,44}. The groups studied were quite small and mostly contained not more than 20 patients. The period of retention after expansion varies from 2 to 12 months. Generally, a period of three month is used. The amount of distraction at the canine level mentioned varies from 3.4 mm to 5.0 mm, in the first premolar region 4.7 mm to 5.9 mm and in the first molar region 3.4 mm to 8.0 mm. SARME is considered a procedure with little risk of serious complications, however several complications are mentioned in literature varying from life threatening epistaxis to a cerebrovascular accident, skullbase fracture with reversible oculomotor nerve pareses and orbital compartment syndrome^{12,35}. Less serious complications reported are postoperative hemorrhage, pain, sinusitis, palatal tissue irritation/ulceration, asymmetrical expansion, nasal septum deviation, periodontal problems and relapse⁴⁶.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Codivilla, A. On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity. *Am J Orthop Surg* 1905; 2: 353.
2. Ilizarov GA. Clinical applications of the tension-stress effect for limb lengthening. *Clin Orthop* 1990; 250: 8-26.
3. Mommaerts MY. Transpalatal distraction as a method of maxillary expansion. *Brit J Oral Maxillofac Surg* 1999; 37: 268-272.

4. Krogman WM. Studies in growth changes in the skull and face of anthropoids: Ectocranial and endocranial suture closure in anthropoids and old world apes. *Am J Phys Anthropol* 1930; 46: 315-353.
5. Sicher H. Oral anatomy. ed. 4, St. Louis, 1965, the C.V. Mosby Company: 71-75.
6. Zahl Chr, Gerlach KL. Palataldistraktor Ein innovativer ansatz für die gaumennahterweiterung. *Mund Kiefer Gesichts Chir* 2002; 6: 446 -449.
7. Persson M. Structure and growth of facial sutures. *Odontol Revy* 1973; 24(6).
8. Latham RA, Burston WR. The postnatal pattern of growth at sutures of the human skull. *Dent Pract* 1966; 17: 61-67.
9. Scott JH. Dentofacial development and growth. oxford, 1967, Pergamon Press: 89-93.
10. Melsen B. Palatal growth studied on human autopsy material. *Am J Orthod* 1975; 68: 42-54.
11. Öztürk M, Doruk C, Özeç I, Polat S, Babacan H, Biçakci A. Pulpal bloodflow: effects of corticotomy and midline osteotomy in surgically assisted rapid palatal expansion. *J Crano- Maxillofacial Surg* 2003; 31: 97-100.
12. Pogrel MA, Kaban LB, Vargervik K, Baumrind S. Surgically assisted rapid maxillary expansion in adults. *Int J Adult Orthodon Orthognath Surg.* 1992; 7: 37-41.
13. Lefoulon PJ. Orthopédie dentaire. *Gazette de l'hôpital*. 1839; 111-119.
14. Lefoulon PJ. Nouveau traité Théorique et pratique de l'art dentaire du dentiste. Pairs: fortin, Masson. 1841: 198.
15. Talma AF. Mémoires sur quelques points fondamentaux de la medicine dentaire. Bruxelles: Tircher. 1852.
16. Angell EH. Treatment of irregularity of the permanent or adult teeth. *Dental Cosmos* 1860; 1: 540-544, 599-600.
17. Schröder-Benseler. Die kiefererweiterung. *Erg ges Zahnhk.* 1913: 629.
18. Haas AJ. Rapid Palatal expansion of the maxillary dental arch and nasal cavity by opening the midpalatal suture. *Angle Orthod* 1961; 31: 73-90.
19. Haas AJ, Palatal expansion: Just the beginning of dentofacial expansion. *Am J Orthod* 1970; 57: 219-255.
20. Reichenbach E, Brückl H. *Zahnärztliche fortbildung* heft 7; Kieferorthopädische klinik und therapie. Johann Ambrosius Barth, Verlag, Leipzig. P. 101.
21. Silverstein K, Quinn PD. Surgically-assisted rapid palatal expansion for management of transverse maxillary deficiency. *J Oral Maxillofac Surg* 1997; 55: 725-727.
22. Pinto PX, Mommaerts MY, Wreakes G, Jacobs WVGJA. Immediate postexpansion changes following the use of the transpalatal distractor. *J Oral Maxillofac Surg* 2001; 59: 994-1000.
23. Timms DJ, Vero D. The relationship of rapid maxillary expansion to surgery with special reference to midpalatal synostosis. *Br J Oral Surg* 1981; 19: 180-196.
24. Bell WH, Epker BN. Surgical orthodontic expansion of the maxilla. 1976; 70: 517-528.
25. Bell RA. A review of maxillary expansion in relation to rate of expansion and patients age. *Am J Orthod* 1982; 81: 32-37.
26. Starnbach H, Bayne D, Cleall J, Subtelny JD. Facioskeletal and dental changes resulting from rapid maxillary expansion. *Angle Orthod* 1966; 36: 152-164
27. Swennen G, Schliephake H, Dempf R, Schierle H, Malevez C. Craniofacial distraction osteogenesis: a review of the literature. Part I: clinical studies. *Int J Oral Maxillofac Surg* 2001; 30: 89-103
28. Brown GVI. The surgery of oral and facial diseases and malformation. 1938. 4th Ed., London; Kimpton: p. 507.
29. Isaacson RJ, Ingram AH. Forces produced by rapid maxillary expansion I: Forces present during treatment. *Angle Orthod* 1964; 34: 256-260.
30. Isaacson RJ, Wood JL, Ingram AH. Forces produced by rapid maxillary expansion II. *Angle Orthod* 1964; 34: 261.
31. Wertz RA. Skeletal and dental changes accompanying rapid midpalatal suture opening. *Am J Orthod* 1970; 58: 41-66.
32. Lines PA. Adult rapid maxillary expansion with corticotomy. *Am J Orthod* 1975; 67: 44-56.
33. Bell WH, Jacobs JD. Surgical-orthodontic correction of horizontal maxillary deficiency. *J Oral Surg.* 1979; 37: 897-902.
34. Kennedy JW, Bell WH, Kimbrough OL, James WB. Osteotomy as an adjunct to rapid maxillary expansion. *Am J Orthod* 1976; 70: 123-137.
35. Kraut RA. Surgically assisted rapid maxillary expansion by opening the midpalatal suture. *J Oral Maxillofac Surg* 1984; 42: 651-655.
36. Steinhauser EW. Midline splitting of the maxilla for correction of malocclusion. *J Oral Surgery* 1972; 30: 413-422.
37. Lehman JA, Haas AJ. Surgical-orthodontic correction of transverse maxillary deficiency. *Clin Plast Surg* 1989; 16: 749-755.
38. Glassman AS, Nahigian SJ, Medway JM, Aronowitz HI. Conservative surgical orthodontic adult rapid palatal expansion: sixteen cases. *Am J Orthod* 1984; 86: 207-213.
39. Alpern MC, Yurosko JJ. Rapid palatal expansion in adults. *Angle Orthod* 1987; 57: 245-263.
40. Mossaz CF, Byloff FK, Richter M. Unilateral and bilateral corticotomies for correction of maxillary

transverse discrepancies. *Eur J Orthod* 1992; 14: 110-116.

41. Bays RA, Greco JM. Surgically assisted rapid palatal expansion: an outpatient technique with long-term stability. *J Oral Maxillofac Surg* 1992; 50: 110-113.
42. Gerlach KL, Zahl C. Transversal palatal expansion using a palatal distractor. *J Orofac Orthop* 2003; 64: 443-449.
43. Chung CH, Woo A, Zagarinsky J, Vanarsdall RL, Fonseca RJ. Maxillary sagittal and vertical displacement induced by surgically assisted rapid palatal expansion. *Am J Orthod Dentofacial Orthop* 2001; 120: 144-148.
44. Neubert J, Somsiri S, Howaldt HP, Bitter K. Die operative gaumennahterweiterung durch eine modifizierte Le-Fort-I-osteotomie. *Dtsch Z Mund Kiefer Gesichts Chir* 1989; 13: 57-64.
45. Strömberg C, Holm J. Surgically assisted, rapid maxillary expansion in adults. A retrospective long-term follow-up study. *J Cranio Maxillofacial Surg* 1995; 23: 222-227.
46. Mehra P, Cottrell DA, Caiazzo A, Lincoln R. Life-threatening, delayed epistaxis after surgically assisted rapid palatal expansion: a case report. *J Oral Maxillofac Surg*. 1999; 57: 201-204.