

1 Overview of Surgical Treatment for Maxillary Constriction

2 Dr. Faizan Ahmed Khan¹ and Dr. Faizan Ahmed Khan²

3 ¹ Yenepoya Dental College

4 Received: 14 December 2016 Accepted: 5 January 2017 Published: 15 January 2017

5 **Abstract**

6 The general indications for surgically assisted rapid maxillary expansion (SARME) are
7 skeletal maturity, (extreme) transverse maxillary hypoplasia, either uni- or bilateral, anterior
8 crowding and buccal corridors, the so called black corridors, when smiling. Furthermore the
9 indications for SARME include any case where orthodontic maxillary expansion has failed and
10 resistance of the sutures must be overcome. Transverse maxillary hypoplasia, in adolescents
11 and adults, is frequently seen in non-syndromal and syndromal patients including cleft
12 patients. In skeletally matured patients the uni- or bilateral transverse hypoplasia can be
13 corrected by means of SARME.

15

16 **Index terms—**

17 **1 I. Introduction**

18 The general indications for surgically assisted rapid maxillary expansion (SARME) are skeletal maturity, (extreme)
19 transverse maxillary hypoplasia, either uni- or bilateral, anterior crowding and buccal corridors, the so called
20 black corridors, when smiling. Furthermore the indications for SARME include any case where orthodontic
21 maxillary expansion has failed and resistance of the sutures must be overcome. Transverse maxillary hypoplasia,
22 in adolescents and adults, is frequently seen in non-syndromal and syndromal patients including cleft patients. In
23 skeletally matured patients the uni- or bilateral transverse hypoplasia can be corrected by means of SARME. The
24 treatment is a combination of orthodontics and surgical procedures and provides dental arch space for alignment
25 of teeth. The procedure also causes a substantial enlargement of the maxillary apical base and of the palatal
26 vault, providing space for the tongue for correct swallowing and thus preventing relapse. In addition, a distinct
27 subjective improvement in nasal breathing associated with enlargement of the nasal valve towards normal values
28 is seen with an increase of nasal volume in all compartments. Transverse expansion of the maxilla was first done
29 in 1860 by means of an orthodontic appliance. In the following decennia the orthodontic treatment evolved.
30 The theory of distraction was first published in 1905 by Codivilla 1 . The combined surgical and orthodontic
31 treatment for maxillary expansion was introduced in 1938 for skeletally matured patients. The first successful
32 use of distraction on the femur of a significant group of patients was published in 1990 2 . In 1999 the first
33 bone-borne distractor was introduced 3 . Maxillary expansion by means of distraction is a nowadays widely used
34 treatment.

35 However, there is no consensus in the searched literature regarding the surgical technique, the type of distractor
36 used (tooth-borne or bone-borne), the existence, cause and amount of relapse and whether or not overcorrection
37 is necessary.

38 **2 II. History a) History of orthodontic for maxillary constriction**

39 Growth at the suture occurs through deposition of new bone at the sutural margin by the adjacent cellular layer.
40 Toward the end of fetal life the cellular layers decrease in thickness, indicating that the rate of growth is slowing
41 down, and the number of fibers in the intermediate layer uniting the capsular layers decreases. In a study of
42 human sutures from birth to 18 years, Latham and Burston³³ concluded that after about 2 of 3 years the sutures
43 of the skull in general functioned primarily as sites of union of bones, but localized remodeling is a continuing
44 process.

3 B) HISTORY OF SURGICAL TREATMENT FOR MAXILLARY CONSTRICTION

45 Cranial sutures are unified before complete eruption of the third molar. Soon after this, facial sutures close,
46 and the sutures connecting the cranial and facial complexes are the last to close 4 . Regarding the facial sutures,
47 Sicher 5 states that the closure of sutures in human beings starts, as a rule, in the middle 30s at the posterior
48 end of the median palatine suture but that some facial sutures, including the frontozygomatic, may remain open
49 even in older age groups. This view is supported by Wright 6 , who claimed the intermaxillary and palatine
50 sutures to be unossified and susceptible to comparatively easy separation at as late an age as 35 years.

51 A conflicting view is expressed by ??ersson 7 , who found evidence of bony union at 17 years in the midpalatal
52 suture. Latham and Burston 8 , however, found no evidence of synostosis in the same suture by the age of 18
53 years. An over-all view is expressed by Scott 9 , who believes that, although most facial sutures appear open
54 on the surface of old skulls, some degree of union may be present in the substance of the suture. It is obvious
55 therefore, that the available literature is inconclusive and conflicting. In clinical practice, skeletal correction
56 of the transverse discrepancy via orthodontics (orthopedics) is successful until the age of approximately 14-15
57 years depending on the gender of the patient. After this age, orthodontic widening becomes virtually impossible
58 and very painful 10,11,12 . In general, it is assumed that closure of the midpalatal suture prevents this type of
59 expansion 10,12 .

60 In the first part of nineteenth century, Lefoulon 13,14 and Talma 15 reported on maxillary expansion with a
61 palatal or buccal C-shaped spring. A method, reserved for less severe cases, consisted of lateral thumb pressure,
62 'every morning and even many times daily', by the parent or the child itself. The first documented case
63 of orthodontic correction of maxillary width discrepancies was by Angell 16 . He performed rapid maxillary
64 expansion with the use of a jackscrew appliance in a 14-year-old girl. He observed that by turning the jackscrew
65 daily, he was able to open the maxillary suture sufficiently in a period of 2 weeks. Angell 16 mentions correction
66 of maxillary width discrepancies by opening the midpalatal suture. In 1913, Schröder-Benseler 17 presented
67 the still-popular all-wire frame with a non-spring-loaded jackscrew, the hygienic appliance. Derichsweiler16 uses
68 bonds to the premolar and molar, which are embedded into a split acrylic base plate with an incorporated
69 conventional orthodontic expansion screw. In 1961 Haas 'Reintroduced' rapid maxillary expansion (RME) and
70 mentions in 1970 that the use of RME is ideally during the growth spurt 18,19 . Reichenbach & Brückl 20
71 published an excellent survey on orthodontic treatment of maxillary transverse hypoplasia in 1967.

72 3 b) History of surgical treatment for maxillary constriction

73 Once skeletal maturity has been reached, orthodontic treatment alone cannot provide a stable widening of
74 the constricted maxilla in cases of deficiencies of more than 5 mm. In general, an orthodontist can camouflage
75 transverse discrepancies less than 5 mm with orthopedic forces alone 21 . The literature mentions several problems
76 accompanied by RME on mature patients, such as failure and or relapse and periodontal problems with the tooth-
77 borne appliances 22 . Timms & Vero 23 mention that 33-50% of the expansion has relapsed before stability is
78 achieved. Others report the lack of movement of the maxillary halves; excessive tipping of the anchor teeth;
79 buccal root resorption of the anchor teeth or even periodontal defects as the teeth are pushed through the buccal
80 cortical plate, which lead to bony defects and gingival recession; unequal expansion and unpredictable relapse and
81 the sensation of pain and necrosis of oral mucosa under the appliance. Bell and Starnbach 24,25,26 report that
82 activation of an appliance against mature sutures can lead to the sensation of pain and necrosis of oral mucosa
83 under the appliance. These forces can also result in periodontal defects as the teeth are pushed through the buccal
84 cortical plate, which lead to bony defects and gingival recession. These complications can be avoided by surgically
85 releasing the osseous structures that resist the expansive forces 24,26 . Therefore the combination of surgical and
86 orthodontic treatment is advocated for widening of the maxilla in skeletally matured patients. Advantages of
87 SARME include improvement of periodontal health; improved nasal air flow; elimination of the negative space,
88 which results in less visible tooth and gingival structures upon smiling 27 . There is also a cosmetic improvement
89 of the buccal hollowing secondary to postexpansion prominence at the site of the lateral wall osteotomy 24,26 .
90 Tooth extractions for alignment of dental arches are often unnecessary 21 . Brown 28 probably first described a
91 technique of SARME with midpalatal splitting in his textbook. Heiss25 probably first inaugurated the midline
92 splitting in the anterior maxilla for the extension of the compressed maxillary arch for orthodontic reasons. In
93 1961, Haas 19 described the downward and forward movement of the maxilla that occurs during RME because
94 of the location of the Cranio Maxillofacial sutures. He believed that the maxillary halves separated from each
95 other rather in a tipping than in a parallel fashion due to the strength of the zygomatic buttresses 19 . Isaacson
96 & Ingram 29 and Isaacson et al. 30 mention that historically, the midpalatal suture was thought to be the area of
97 resistance to expansion, but the facial skeleton increases its resistance to expansion as it ages and matures, and
98 that the major site of resistance is not the midpalatal suture but the remaining maxillary articulations. ??ertz 31
99 advocated that resistance of the zygomatic arch prevents parallel opening of the midpalatal suture. In 1975, Lines
100 32 and in 1976 Bell & Epker 24 demonstrated that the area of increased facial skeletal resistance to expansion
101 was indeed not the midpalatal suture, but the zygomaticotemporal, zygomaticofrontal and zygomaticomaxillary
102 sutures. Identification of these areas of resistance in the craniofacial skeleton stimulated the development of
103 various maxillary osteotomies to expand the maxilla laterally in conjunction with orthodontic RME appliances4.
104 The areas of resistance to lateral forces in the midface are the piriform aperture (anterior), the zygomatic buttress
105 (lateral), the pterygoid junction (posterior) and the midpalatal synostosed suture (median). In the early reports
106 all four are transsected 25,33,34,35 . In 1972 Steinhauser 36 reports a maxillary expansion osteotomy technique

107 without the use of distraction, a Le Fort I type of osteotomy in combination with the surgical splitting of the
108 palate in the midline, after which a triangular unicortical iliac graft is inserted into the void created by the
109 expansion. More recently, with the emphasis on decreased morbidity and ambulatory surgery, fewer supports
110 are osteotomized; the anterior, lateral and median, the lateral and median, the anterior, posterior and lateral,
111 the anterior and lateral. Most reports note that surgically assisted maxillary expansion is more stable than
112 orthodontic RME alone 24,34,35,37 .

113 Glassmann et al. ??8 , Alpern & Yurosko 39 and Lehmann & Haas 37 reported successful expansion in
114 humans performed with a Hyrax appliance following a lateral osteotomy from the piriform rim to the pterygoid
115 plate without palatal surgery. Their study did not consider the amount of skeletal versus dental expansion and
116 the corresponding relapse following a retention period 40 uniform palatal expansion can be achieved without
117 sectioning of either palate or the pterygomaxillary fissure ??8 .

118 In the year 1999, Mommaerts45 presented the Trans Palatal Distractor (TPD), which is a bone-borne device
119 for SARME. After surgical release of the areas of maxillary support the tooth-borne devices used for SARME
120 cause undesired movements of the abutment teeth during expansion and retention phases that could lead to
121 periodontal problems 35, ??8,41 . Prolonged retention and overcorrection is advisable to counteract skeletal
122 relapse. The TPD avoids all of these aforementioned problems, since fixation is sought in palatal bone 32 .
123 Recently, the Magdenburg Palatal Distractor (PD) was presented, also a bone-borne device which claims to have
124 no relapse ??2 .

125 **4 c) History of Distraction**

126 As mentioned before SARME is a form of distraction that was applied before its biological healing principles were
127 known. Codivilla 1 was the first to describe the technique of distraction osteogenesis for the shortened femur in
128 1905. Ilizarov described the use of distraction osteogenesis in the field of Orthopedics to lengthen the leg bones
129 in a large group of patients in 1990 2 . The technique is based on a 5-day period of rest after corticotomy before
130 the expansion starts. This gives the tissue time to form the first callus but is too short for consolidation. Four
131 phases of new bone formation can be described. The first is a fibrovascular hematoma; between day 5 and 7
132 collagen fibers are formed that will arrange parallel to the distraction vector. Second, the bone formation follows
133 the collagen fibers through intramembranous ossification; from the outside to the inside. Third, remodeling phase
134 of the new bone. Fourth, formation of solid compact bone with the same texture as the surrounding (old) bones.
135 When the distraction is performed too fast, the collagen fibers might lose contact and there is no in growth of
136 new bone, providing non-or mal-union. In cases of a too slow distraction premature consolidation can occur and
137 the requested elongation cannot be reached.

138 **5 d) Surgical technique**

139 Since early in the 20th century various techniques have been developed for SARME. The main considerations
140 have opposing interests. One side is a more invasive technique with maximal mobility of the maxillary halves for
141 correction over larger distances with less force but with more possible complications. The other side is less invasive
142 with less possible complications but with more relapse, more periodontal problems, and unexpected fractures.
143 The opinions vary about the site of major resistance in transverse distraction in the midface and also about the
144 method of releasing it. Most methods consider the zygomaticomaxillary junction the major site of resistance and
145 perform a corticotomy through the zygomatic buttress from the piriform rim to the maxillopterygoid junction
146 (fig 1). The midpalatal suture is historically considered the major place of resistance but this was proven to be
147 untrue by Isaacson & Ingram 29 , Isaacson et al. 30 and Kennedy et al. 34 (Fig. ??). Still many, but not all,
148 release the midpalatal suture to improve mobility and to prevent deviation of the nasal septum. The pterygoid
149 plates are also a considerable site of resistance but because of the increased risk of injuring the pterygoid plexus
150 by the osteotomy, some chose not to, without losing much mobility (Fig. 4). By not releasing the pterygoid
151 junction, the pattern of opening of the maxillary halves is more V-shaped with the point of the V dorsally and
152 it might be considered as an individual treatment to achieve more distraction either on the posterior or anterior
153 level. The nasal septum is often released from its palatal base to avoid shifting to either side and thereby causing
154 changes in nasal flow (Fig. 5). A tomographic study by Schwarz showed no significant change in nasal septum
155 position in SARME without sectioning of the nasal septum and an increase nasal airway space60. Of the studies
156 on SARME mentioned in international literature, the mean age of the patients undergoing SARME varied from
157 19 to 29 years ??3,35,38,40,41, 43,44, . The groups studied were quite small and mostly contained not more than
158 20 patients. The period of retention after expansion varies from 2 to 12 months. Generally, a period of three
159 month is used. The amount of distraction at the canine level mentioned varies from 3.4 mm to 5.0 mm, in the
160 first premolar region 4.7 mm to 5.9 mm and in the first molar region 3.4 mm to 8.0 mm. SARME is considered
161 a procedure with little risk of serious complications , however several complications are mentioned in literature
162 varying from life threatening epistaxis to a cerebrovascular accident, skullbase fracture with reversible oculomotor
163 nerve pareses and orbital compartment syndrome ??2,35, . Less serious complications reported are postoperative

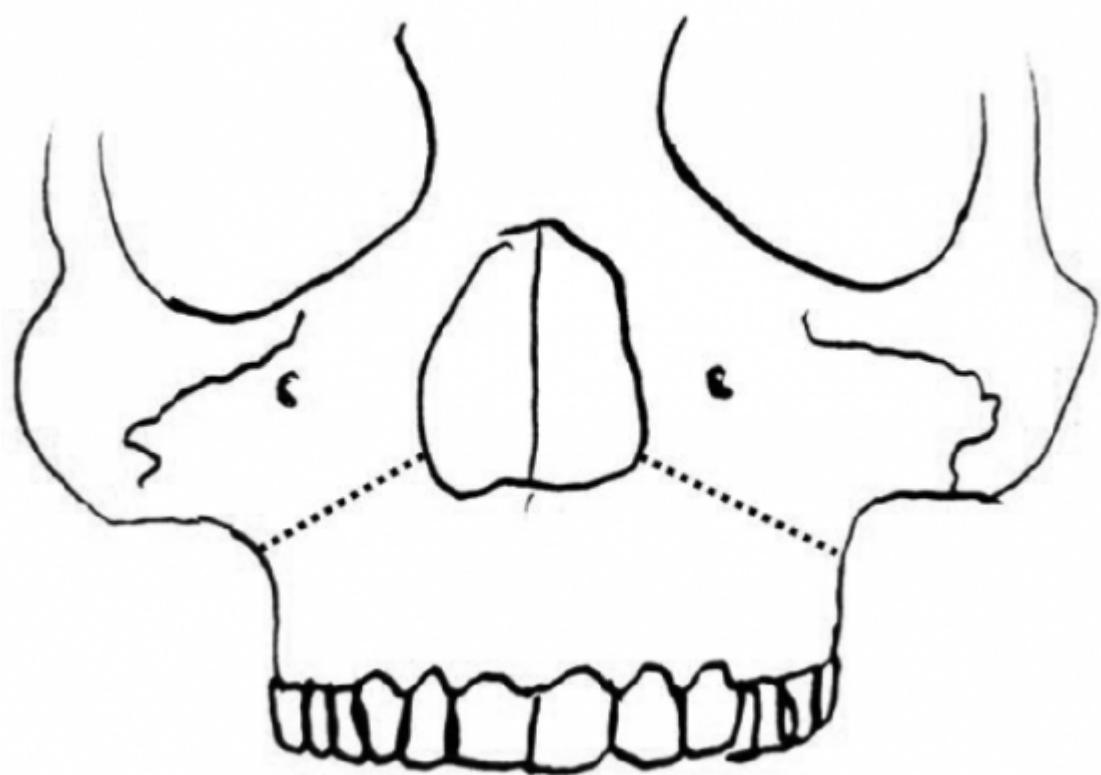


Figure 1: T

Figure 2:

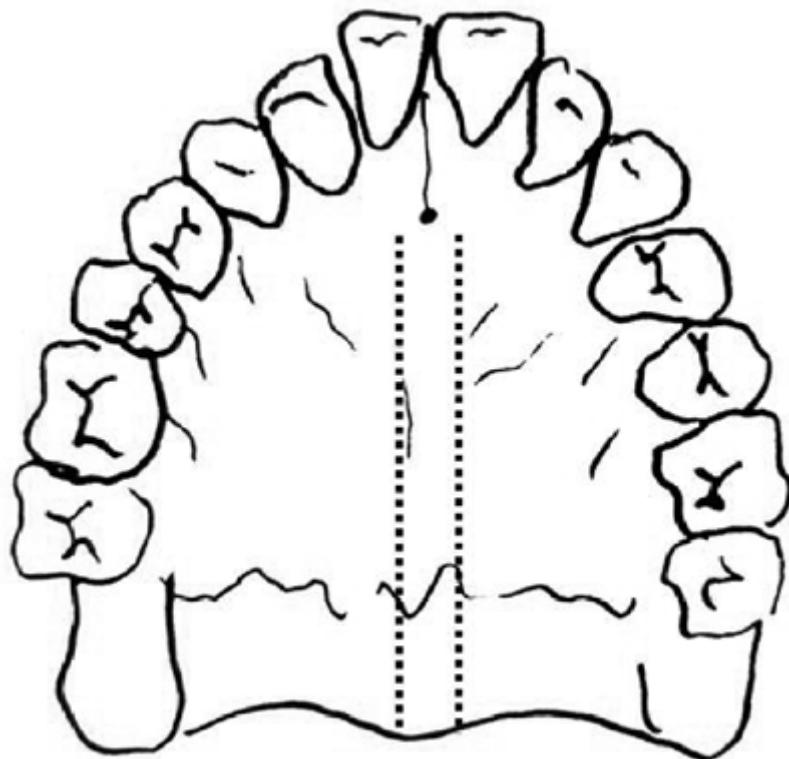
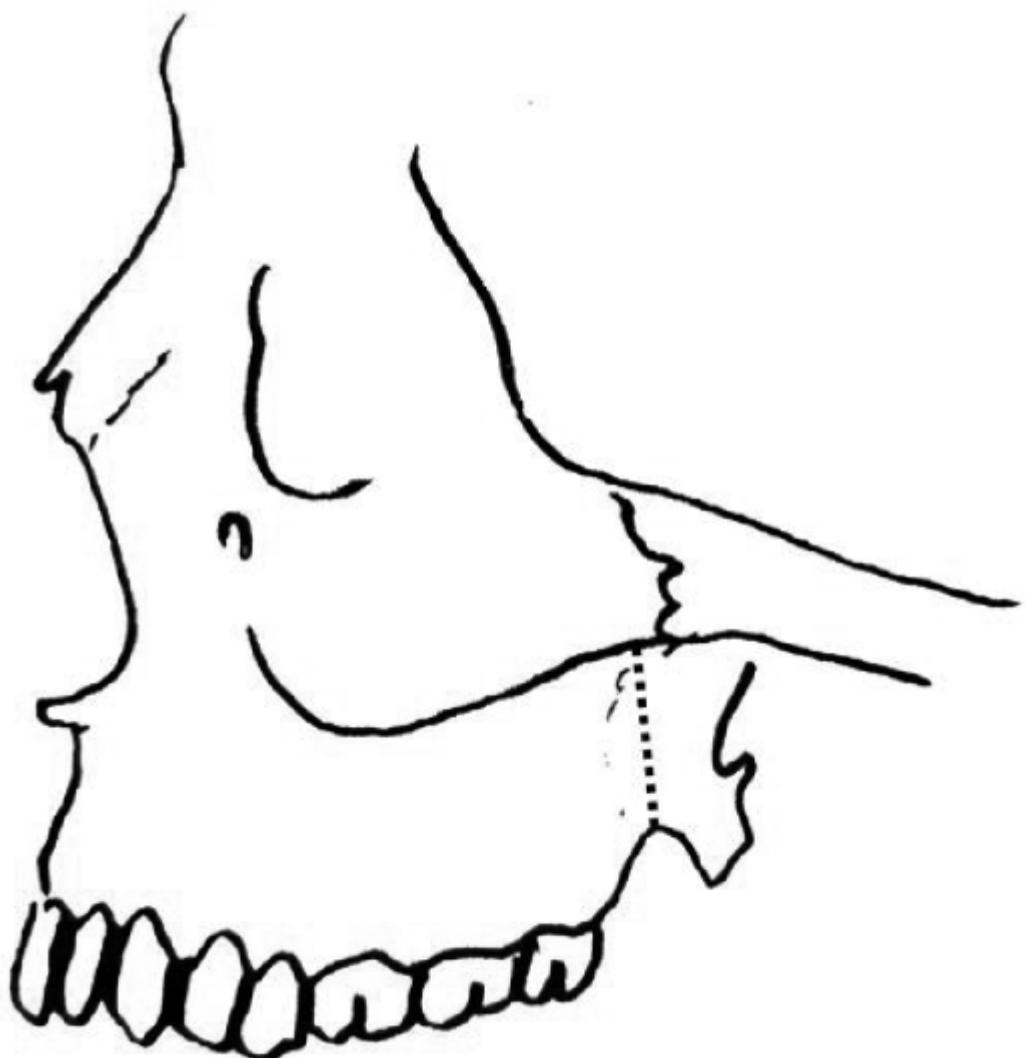



Figure 3: Figure 1 :

164 hemorrhage, pain, sinusitis, palatal tissue irritation/ulceration, asymmetrical expansion, nasal septum deviation,
165 periodontal problems and relapse 46 . ^{1 2}

23

Figure 4: Figure 2 :Figure 3 :

4

Figure 5: Figure 4 :

5

Figure 6: Figure 5 :

5 D) SURGICAL TECHNIQUE

166 [Barth] , Johann Ambrosius Barth . *Verlag, Leipzig*. P 101.

167 [Bell ()] 'A review of maxillary expansion in relation to rate of expansion and patients age'. R A Bell . *Am J Orthod* 1982. 81 p. .

168

169 [Lines ()] 'Adult rapid maxillary expansion with corticotomy'. P A Lines . *Am J Orthod* 1975. 67 p. .

170 [Ilizarov ()] 'Clinical applications of the tensionstress effect for limb lengthening'. G A Ilizarov . *Clin Orthop* 1990. 250 p. .

171

172 [Lehman et al. ()] 'Conservative surgical orthodontic adult rapid palatal expansion: sixteen cases'. J A Lehman , A J Haas , A S Glassman , S J Nahigian , J M Medway , H I Aronowitz . 16: 749-755. 38. 38. *Clin Plast Surg* 1989. 1984. 86 p. . (Am J Orthod)

173

174

175 [Swennen et al. ()] 'Craniofacial distraction osteogenesis: a review of the literature. Part I: clinical studies'. G Swennen , H Schliephake , R Dempf , H Schierle , C Malevez . *Int J Oral Maxillofac Surg* 2001. 30 p. .

176

177 [Scott ()] *Dentofacial development and growth. oxford*, J H Scott . 1967. Pergamon Press. p. .

178 [Neubert et al. ()] 'Die operative gaumennahterweiterung durch eine modifizierte Le-Fort-I-osteotomie'. J Neubert , S Somsiri , H P Howaldt , K Bitter . *Dtsch Z Mund Kiefer Gesichts Chir* 1989. 13 p. .

179

180 [Starnbach et al. ()] 'Facioskeletal and dental changes resulting from rapid maxillary expansion'. H Starnbach , D Bayne , J Cleall , J D Subtelny . *Angle Orthod* 1966. 36 p. .

181

182 [Isaacson and Ingram ()] 'Forces produced by rapid maxillary expansion I: Forces present during treatment'. R J Isaacson , A H Ingram . *Angle Orthod* 1964. 34 p. .

183

184 [Isaacson et al. ()] 'Forces produced by rapid maxillary expansion II'. R J Isaacson , J L Wood , A H Ingram . *Angle Orthod* 1964. 34 p. 261.

185

186 [Pinto et al. ()] 'Immediate postexpansion changes following the use of the transpalatal distractor'. P X Pinto , M Y Mommaerts , G Wreakes , Wvgja Jacobs . *J Oral Maxillofac Surg* 2001. 59 p. .

187

188 [Haas ()] 'Just the beginning of dentofacial expansion'. A J Haas . *Am J Orthod* 1970. 57 p. .

189 [Mehra et al. ()] 'Lifethreatening, delayed epistaxis after surgically assisted rapid palatal expansion: a case report'. P Mehra , D A Cottrell , A Caiazzo , R Lincoln . *J Oral Maxillofac Surg* 1999. 57 p. .

190

191 [Chung et al. ()] 'Maxillary sagittal and vertical displacement induced by surgically assisted rapid palatal expansion'. C H Chung , A Woo , J Zagarinsky , R L Vanarsdall , R J Fonseca . *Am J Orthod Dentofacial Orthop* 2001. 120 p. .

192

193

194 [Steinhauser ()] 'Midline splitting of the maxilla for correction of malocclusion'. E W Steinhauser . *J Oral Surgery* 1972. 30 p. .

195

196 [Talma] *Mémoires sur quelques points fondamentaux de la médecine dentaire*, A F Talma . Tircher. 1852. Bruxelles.

197

198 [Lefoulon ()] *Nouveau traité Théorique et pratique de l'art dentaire du dentiste. Pairs: fortin*, P J Lefoulon . Masson. 1841: 198.

199

200 [Codivilla ()] 'On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity'. A Codivilla . *Am J Orthop Surg* 1905. (2) p. 353.

201

202 [Lefoulon] *Orthopédie dentaire. Gazette de l'hôpital*, P J Lefoulon . 1839 p. .

203 [Kennedy et al. ()] 'Osteotomy as an adjunct to rapid maxillary expansion'. J W Kennedy , W H Bell , O L Kimbrough , W B James . *Am J Orthod* 1976. 70 p. .

204

205 [Melsen ()] 'Palatal growth studied on human autopsy material'. B Melsen . *Am J Orthod* 1975. 68 p. .

206 [Chr and Gerlach ()] 'Palatinaldistraktor Ein innovativer ansatz für die gaumennahterweiterung'. Zahl Chr , K L Gerlach . *Mund Kiefer Gesichts Chir* 2002. 6 p. .

207

208 [Öztürk et al. ()] 'Pulpal bloodflow: effects of corticotomy and midline osteotomy in surgically assisted rapid palatal expansion'. M Öztürk , C Doruk , I Özeç , S Polat , H Babacan , A Biçakci . *J Cranio-Maxillofacial Surg* 2003. 31 p. .

209

210

211 [Alpern and Yuroska ()] 'Rapid palatal expansion in adults'. M C Alpern , J J Yuroska . *Angle Orthod* 1987. 57 p. .

212

213 [Haas ()] 'Rapid Palatal expansion of the maxillary dental arch and nasal cavity by opening the midpalatal suture'. A J Haas . *Angle Orthod* 1961. 31 p. .

214

215 [Schröder-Benseler ()] Schröder-Benseler . *Die kiefererweiterung. Erg ges Zahnhk*, 1913. p. 629.

216 [Wertz ()] 'Skeletal and dental changes accompanying rapid midpalatal suture opening'. R A Wertz . *Am J Orthod* 1970. 58 p. .

217

218 [Persson] 'Structure and growth of facial sutures'. M Persson . *Odontol Revy* 1973 (6) p. 24.

5 D SURGICAL TECHNIQUE

219 [Krogman ()] 'Studies in growth changes in the skull and face of anthropoids: Ectocranial and endocranial suture
220 closure in anthropoids and old world apes'. W M Krogman . *Am J Phys Anthropol* 1930. 46 p. .

221 [Bell and Epker ()] *Surgical orthodontic expansion of the maxilla*, W H Bell , B N Epker . 1976. 70 p. .

222 [Bell and Jacobs ()] 'Surgical-orthodontic correction of horizontal maxillary deficiency'. W H Bell , J D Jacobs .
223 *J Oral Surg* 1979. 37 p. .

224 [Kraut ()] 'Surgically assisted rapid maxillary expansion by opening the midpalatal suture'. R A Kraut . *J Oral
225 Maxillofac Surg* 1984. 42 p. .

226 [Pogrel et al. ()] 'Surgically assisted rapid maxillary expansion in adults'. M A Pogrel , L B Kaban , K Vargervik
227 , S Baumrind . *Int J Adult Orthodon Orthognath Surg* 1992. 7 p. .

228 [Bays and Greco ()] 'Surgically assisted rapid palatal expansion: an outpatient technique with long-term
229 stability'. R A Bays , J M Greco . *J Oral Maxillofac Surg* 1992. 50 p. .

230 [Strömberg and Holm ()] 'Surgically assisted, rapid maxillary expansion in adults. A retrospective longterm
231 follow-up study'. C Strömberg , J Holm . *J Crano Maxillofacial Surg* 1995. 23 p. .

232 [Silverstein and Quinn ()] 'Surgically-assisted rapid palatal expansion for management of transverse maxillary
233 deficiency'. K Silverstein , P D Quinn . *J Oral Maxillofac Surg* 1997. 55 p. .

234 [Latham and Burston ()] 'The postnatal pattern of growth at sutures of the human skull'. R A Latham , W R
235 Burston . *Dent Pract* 1966. 17 p. .

236 [Timms and Vero ()] 'The relationship of rapid maxillary expansion to surgery with special reference to
237 midpalatal synostosis'. D J Timms , D Vero . *Br J Oral Surg* 1981. 19 p. .

238 [Brown] *The surgery of oral and facial diseases and malformation*. 1938. 4 th Ed, Gvi Brown . London; Kimpton.
239 p. 507.

240 [Mommaerts ()] 'Transpalatal distraction as a method of maxillary expansion'. M Y Mommaerts . *Brit J Oral
241 Maxillofac Surg* 1999. 37 p. .

242 [Gerlach and Zahl ()] 'Transversal palatal expansion using a palatal distractor'. K L Gerlach , C Zahl . *J Orofac
243 Orthop* 2003. 64 p. .

244 [Angell] *Treatment of irregularity of the permanent or adult teeth*, E H Angell . 1860: 1: 540-544. p. . (Dental
245 Cosmos)

246 [Mossaz et al. ()] 'Unilateral and bilateral corticotomies for correction of maxillary transverse discrepancies'. C
247 F Mossaz , F K Byloff , M Richter . *Eur J Orthod* 1992. 14 p. .

248 [Reichenbach and Brückl] *Zahnärztliche fortbildung heft* 7, E Reichenbach , H Brückl . (Kieferorthopädische
249 klinik und therapie)