

1 Magnitude and Factors Associated with Low Birth Weight
2 among New Born in Selected Public Hospitals of Addis Ababa,
3 Ethiopia, 2016

4 Gebremariam Hailemicael¹, Kebebush Zepre² and Mulugeta Betre³

5 ¹ Addis Ababa University

6 *Received: 6 December 2016 Accepted: 1 January 2017 Published: 15 January 2017*

7

8 **Abstract**

9 Back ground: Low birth weight (LBW) is a worldwide public health problem. Ethiopia is one
10 of the countries greatly affected. LBW is not only the major cause of negative health outcome
11 in infancy and childhood, but it also affects the health outcome in later life. The nutritional
12 status of mother may have a great influence on birth weight of the newborn and its early
13 development. LBW imposes a considerable burden to health sector and on society as a
14 whole. Objective: This study aims to assess the magnitude of LBW and associated factors
15 among new born in public hospitals of Addis Ababa Ethiopia. Methods: Hospital based
16 cross-sectional study was undertaken from April to May 2015. A total of 457 mothers were
17 proportionally elected from the three hospitals and interviewed using Pre tested structured
18 interviewer administered questionnaire. The collected data were analyzed and interpreted to
19 respond to the objective.

20

21 **Index terms**— low birth weight, maternal risk factors, public health problem.

22 **1 I. Introduction**

23 Low birth weight (LBW) has been, and continues to be, very important public health problem. LBW is not only
24 the major cause of negative health outcome in infancy and childhood, but it also affects the health outcome in
25 later life. The nutritional status of mother may have a great influence on birth weight of the newborn and its
26 early development. LBW imposes a considerable burden to health sector and on society as a whole. Although,
27 the global prevalence of LBW is sluggishly reducing, yet, it remains high in many developing countries of Asian
28 and African. Hence, birth weight is an essential element in the success of national and global efforts to improve
29 child health, and a major target for public health intervention [1,2]. Studies have indicated that the mean birth
30 weight of African babies is significantly lower than those of developed countries. Analyzed data from east Africa
31 showed that about 52% of neonatal death happened due to Preterm and small for gestations births [3,4].

32 World health organization defines LBW as weight less than 2,500gram (5.5pounds) in the first hour of delivery.
33 Various epidemiological observations show that LBW contributes to a range of poor health outcomes which is more
34 common in developing than developed countries, LBW infants are about 20 times more likely to die than normal
35 weight, those who survive likely to remain under nourished, have impaired immune function and increased risk
36 of morbidity, and may suffer a higher incidence of chronic diseases in later life and lower intellectual ability that
37 in turn affect their future school performance and job opportunities [3]. These can be overcome by applying
38 preventive measures on the risk factors through lifespan approach (before, during, and after child birth) to the
39 health of women that takes full account of socioeconomic and environmental as well as medical issues and by
40 applying important Preventive interventions on maternal nutrition, antenatal care (ANC), Provision of all the
41 necessary services during ANC based on the working guide line and educating mother about reproductive health
42 [5].

8 F) DATA COLLECTION TOOLS AND PROCEDURE

43 The global magnitude of LBW is 15.5 %. In Ethiopia, the prevalence of under-five mortality ranges from 53 to
44 169 per 1000 live births out of this neonatal mortality which is mainly attributed by LBW accounts the largest
45 portion [6]. Extent of LBW is one of the key vital statistics used as an indicator of the quality of ANC, medical
46 service, and general health service to the mother. However, recent evidence regards to the magnitude and factors
47 associated with LBW are insufficient in the country, in addition. Some of the determining factor for LBW in the
48 literature are inconclusive and questionable [2,3]. Answering such question and taking positive action on the
49 results is often more important than knowing the precise magnitude of neonatal mortality.

50 The empirical literature provides mixed results on the relationship between many of these factors and LBW.
51 Some of the variables that are found to be predictor of LBW in one study may not necessarily be factor in
52 another study. Supporting the argument on possible determinants of LBW vary across the geographical location.
53 Besides, the DHS findings based on the mother's subjective assessment of the baby's weight rather than active
54 weighting. In addition, DHS use the five years data preceding the survey. In most cases recalling such information
55 is difficult. Therefore, it is helpful to conduct such study in urban settings like Addis Ababa where around 83%
56 of births delivered in the health facilities and have their babies weighted at birth as it presumed to obtain more
57 reliable information than we get on the average [6]. Thus, this study was designed to assess the magnitude of
58 low birth weight and associated factors among newborns in selected public hospitals of Addis Ababa Ethiopia.
59 The finding expected to provide working base for all concerned stakeholders in such fields for planning programs
60 and interventions to effectively address the problems, thereby, decreasing neonatal mortality.

61 2 II. Methods

62 3 a) Study area and period

63 The study was conducted in Addis Ababa, the capital city of Ethiopia from April to May 2015. The city has
64 10 sub city administration and 116 Woreda administrations. According to population projection value for 2014
65 the city has an estimated population of 3,195,000. The proportion of male counts 1,515,000 and female counts
66 1,680,000. The city has 11 public hospitals of which 5 are owned by Addis Ababa health bureau(AAHB), 4 by
67 federal ministry of health, one (TikurAnbessa referral hospital) which is under the ministry of Education(AAU)
68 [28].

69 4 b) Study design and study population

70 Institution based cross sectional study was conducted in selected public hospitals of Addis Ababa Ethiopia.
71 Source populations for this study were all newborns in three public hospitals of Addis Ababa. All consecutively
72 selected alive newborns with a clearly defined gestational age were considered as study participants. Yet, multiple
73 births, Preterm and post term new born and new born with congenital anomalies were excluded.

74 5 c) Sample size determination

75 The sample size was determined using a formula for estimating sample size for single population proportion
76 assuming a confidence level of 95%, margin of error 3%, magnitude of LBW 17.1 % [8] and 10 % non-response
77 rate. Accordingly 457 new born were included as study participants.

78 6 d) Sampling procedure

79 Health institutions that provide delivery services were stratified into Federal Ministry of health and Addis Ababa
80 City Administration Health Bureau. One hospital from the Federal Ministry of Health and two from Addis Ababa
81 City Administration were selected using lottery method. The allocation of the study subjects to each hospital
82 was based on the number of deliveries the same period last year (from hospital records) in each health facilities.
83 Consecutive sampling was employed to select the study participants in each health facility. Participants were
84 recruited immediately after delivery, and recruitment was continued until the sample size allocated fulfilled/met.

85 7 e) Operational definitions

86 A new born with weight less than 2500 grams is considered as low birth weight. A birth weight < 1500 grams
87 irrespective of gestational age is stated as Very low birth weight (VLBW). An infant is considered as premature
88 if it born before 37 weeks of gestation. While, an infant born between 37 and 42 weeks of gestation is considered
89 as term. Intrauterine growth restriction (IUGR) refer to a fetus that has not reached its growth potential due
90 to various reasons, while Small for gestational age (SGA) refers to an infant whose birth weight is below the 10
91 th percentile for the appropriate gestational age. A baby born dead after 28 completed week of pregnancy is
92 Stillbirth. While, A fetus born before 28 week of gestation considered as abortion.

93 8 f) Data collection tools and procedure

94 A pretested structured questionnaire was used to gather data. The questionnaire was taken from different
95 literatures and modified. Before the data gathering the questionnaire was translated to Amharic and then back
96 translated to English to confirm consistency. The questionnaire was designed to measure Socio-demographic

97 characteristic, obstetric history, dietary counseling, extra diet and iron supplementation, burden of low birth
98 weight, and various factors affectingit.

99 The data gathering was undertaken by three midwives who were hired from other health facilities and
100 supervised by one health professional in each selected health facility (not from the same hospital) after giving a
101 2-day training to discuss the purpose of the study, data gathering method and procedure,moralissue, technique
102 of approaching the participants during interview, and about the inclusion and exclusion criteria. This was
103 complemented with practical role plays. After securing an oral consent, interview was carried out on the first
104 postnatal day. Astandardbaby weighing scale graded in grams was used to take babies nude weight within one
105 hour after delivery by data collectors. Weighing scales were checked daily by the principal investigator and
106 between measurements checked by the data collectors and adjusted at zero level.

107 **9 Volume XVII Issue V Version I**

108 Year 2017(D D D D) K g)

109 **10 Data analysis procedures**

110 The data were first checked manually for completeness and coded using a template prepared for this purpose.
111 Data were entered in to Epi-info version 3.5.4 statistical software, cleaned and exported to SPSS version 21 for
112 analysis. Descriptive analysis was done and presented using frequency tables and percentage. Bivariate analysis
113 was made to determine the association between LBW and such variables as socio demographic, types of pregnancy,
114 timing of ANC booking, taking extra meal during pregnancy and iron /folic acid supplementation using odds
115 ratio. These factors with significant associations were further tested using multivariate logistic regression analysis
116 at p? 0.05 and 95% confidence interval (CI).

117 To ensure quality of the data different steps were followed. Data collectors and supervisors were equipped with
118 all relevant informationregarding the data collection method and procedure, and complimented with role play
119 on how to do interviews and record. The study tools were pretested on 5% of the total sample size in one of the
120 hospitals out of the selected to assess for its completeness, clarity, length and skip patterns. Then, appropriate
121 amendments were done on the questionnaire based on thecomments from the pretest. These comments were
122 further discussed with data collectors and supervisor for better understanding. During data collection principal
123 investigator and supervisors checked the daily data collection processes proceed as intended and took timely
124 action for any gap identified. At data entry,Epi-info statistical software was used to enter and clean data before
125 exported to SPSS for analysis.

126 **11 h) Ethical approval**

127 Ethical clearance was obtained from the Research Ethical Clearance Committee (REC) of the School of Public
128 Health Addis Ababa University and permission was obtained from the head of study facilities. Before enrolling,the
129 purpose of the study was described and discussed and verbal consent was obtained from each respondent.

130 **12 III. Results**

131 **13 a) Socio demographic characteristics of the participants b) 132 Obstetric characteristics of the respondents**

133 Three hundred forty three (75.1%) of the respondent's recent pregnancies were planned. Twohundred sixty five
134 (58%) of participants were multiporous, of which 42 (15.8%) of them had history of small baby in their previous
135 birth. Two hundred eighteen (47.7%) of participants had greater than four ANC visit and only 158 (42.9%) of
136 participant started ANC during the first trimester.More than three fourth (81.8%) of participants reported to have
137 Tetanus toxoid(TT) vaccination during or before the recent pregnancy. More than half (55.4%) of respondents
138 reported that they were provided with dietary counseling during the current pregnancy and 216 (47.3%) reported
139 to have extra meal during the recent pregnancy. Two hundred seventy five (60.2%) were supplemented with
140 iron/folic acid during their recent pregnancy. A total of 457 mothers who gave birthin the selected hospitals,
141 participated, with a response rate of 100%. About two hundred eighty eight (63.0%) were between 20-29 years
142 with mean age of 28 years +10. Majority (97.4%) of the respondent's height was above 150 centimeter. Three
143 hundred twenty seven (71.6%) were married and close to half (42.0%) had attained secondary level education.
144 About one-third (30.4%) were house wives while 132 (28.9%) of the respondent's husbands were government
145 employee. Out of the total respondents, 322 (70.5%) had family size of less than four and more than half (57.2%)
146 of the babies were female sex (Table 1).

147 Out of the total respondents, 80 (17.5%) had history of abortion, while 46 (10.1%) and 56 (12.6%) had history
148 of still birth and APH respectively. Ninety seven (21.5%) of respondents were used alcohol like, tella, beer, wine,
149 areke during the recent pregnancy. Of the total 25 (5.5%) of the respondents were used substances like, chat,
150 cigarette and shisha and 21(4.6%) of the respondents had chronic diseases like, Diabetic mellitus, hypertension
151 (Table ??).

152 **14 c) Magnitude of low birth weight**

153 In this study birth Weight ranged from 1200 to 4500 gram with mean of 3041 ± 479.9 gram. It was found that
154 8.8 % of the new born were low birth weight.

155 **15 d) Factors associated with low birth weight**

156 Bivariate analysis shows that sex of the new born, type of pregnancy, parity, trimester at which ANC started,
157 number of ANC visit, iron/folic acid supplementation, TT vaccination, extra meal during pregnancy, history of
158 small baby and anti-partum hemorrhage (APH) during the current pregnancy were significantly associated with
159 low birth weight .The finding shows that mothers with; history of previous small baby, parity ? 5, who started
160 first ANC at third trimester and mothers with history of APH during current pregnancy were more likely to give
161 birth to low birth weight infant. It was also found that mothers with; planned pregnancy, pregnant of male
162 baby, ? 4 ANC visit, history of tetanus toxoid vaccination, mothers who supplemented with iron/folic acid and
163 mothers who took additional diet during the current pregnancy were less probable to give birth to low birth
164 weight infant (Table 3). Despite such evidences in bivariate analysis, multiple logistic regressions have shown
165 that only type of pregnancy, trimester at which ANC started, iron/folic acid supplementation and extra meal
166 during pregnancy were significantly associated with LBW. Accordingly, Mothers who booked first ANC at third
167 trimester were seven times more probable to give birth to LBW infant than those mother who booked first ANC
168 at first trimester (adjusted odds ratio [AOR]= 7.41, 95% confidence interval [CI] :1.15, 47.79). Mothers with
169 planned pregnancy were three times less probable to give birth to LBW infants (AOR=0.30, 95% CI: 0.09, 0.97).
170 Similarly those mothers who took additional diet during the current pregnancy two times (AOR=0.25, 95% CI:
171 0.06, 0.96) and respondents who supplemented with iron/folic acid three times (AOR=0.30, 95% CI: 0.09, 0.99)
172 less probable to give birth to LBW infant than who did not take additional diet during the current pregnancy
173 and respondents who were not supplemented with iron/folic acid respectively (Table 3).

174 **16 IV. Discussion**

175 In the present study the prevalence of LBW is 8.8 %. This is consistent with Ethiopian demographic and health
176 survey 2011(9.1%) [6]. and Axum and Laelay Maichew district (9.9%) [23]. But it is a little bit higher than the
177 study conducted in Addis Ababa Ethiopia (5.6%) [17], Jakarta Indonesia (4. 5%) [9]. This inconsistency may be
178 due to difference in the skills of data collectors, study area and methodology. And it is lower than study finding
179 in Gambia (22.5%) [13], Gonder referral hospital north Ethiopia (17.1%) [18] and Jimma west Ethiopia (11.2%)
180 [20]. This discrepancy between these findings may be due to various intervention undertaken between these study
181 time.

182 Likewise this finding is not in line with the finding in Nepal, Abha city Saudi Arabia, Northeast Nigeria and
183 Olkalou District Hospital, Kenya (11.7%, 18.8%, 16.9%, 12.3%) respectively [7,10,26,27]. This discrepancy might
184 be explained by different study area and time gap b/n these studies. The finding from present study is far lower
185 from a community based survey of Kersa, West Ethiopia (28.3 %) [25]. This might be permissible due to urban
186 rural difference.

187 Timing for first ANC booking was found to have significant association with LBW. Mothers who booked K
188 first ANC in the first three months of gestation have lower risk of LBW as compared to those mothers registered
189 for ANC visit during second and third trimester. This finding suggested that early ANC visit might help to
190 ensure early interventions, thus those mothers at risk of LBW can be identified early enough if quality prenatal
191 care is made available to them. This may have valuable impact on intrauterine fetal development and early
192 identification and management of pregnancy related problems, eliminating or decreasing modifiable risk factors
193 and is time to intervene activities like nutritional education, pregnancy related complications and other adverse
194 outcome of pregnancy. This finding was consistent with various other studies done in different areas [11,20,23].

195 Similarly, a type of pregnancy was significantly associated with LBW. Mothers who did not plan the current
196 pregnancy were more probable to give birth to LBW baby compare to those mothers who have plan. This might
197 be attributed to the beneficial impact of early ANC booking on pregnancy outcome, either through the treatment
198 of complications or by contributing to the reduction of modifiable maternal risk factors as mother with planned
199 pregnancy envisioned to reduce the risk of LBW and other negative pregnancy outcomes. This finding was in line
200 with the finding from other study [23]. Iron supplementation during pregnancy was also significantly associated
201 with LBW. Women who supplemented with iron were less probable to deliver LBW baby. It is due to the fact
202 that, the growing fetus shares not only iron but also other nutrient from mother for its intrauterine development.
203 This finding was in line with a study done in west Bengal [11].

204 The current study also showed a significant association between taking additional diet during pregnancy and
205 low birth weight. Respondents who didn't take additional diet during pregnancy were more probable to give
206 birth to LBW baby. It is due to the fact that, healthy and optimal intra uterine fetal growths rely heavily on
207 maternal nutrient status. This finding was consistent with the study on the same theme from Gondar Ethiopia
208 [18].

209 **17 Strength**

210 Direct measurement of newborn's weight was done in contrast to history based estimation as it eliminates recall
211 bias.

212 **18 Limitations**

213 Since this study is cross-sectional, it may not provide strong evidence on the direct cause and effect relationship
214 between dependent and independent variables. As this study was done at public hospitals found in Addis Ababa
215 those receives referred pregnant mother from periphery health facility, the result may not be generalizable to
216 mothers in Addis Ababa.

217 **19 V. Conclusion and Recommendations**

218 The magnitude of low birth weight in this study is substantial (8.8 %). Trimester at first ANC visit, unplanned
219 pregnancy, iron/folic acid supplementation and taking extra meal during pregnancy were supposed to have played
220 imperative role. In a country like Ethiopia where neonatal mortality is foremost issue, investing on strengthening
221 strategies like awareness creation on benefit of early pregnancy identification and ANC booking, birth planning,
222 additional diet for pregnant mother and iron/folic acid supplementation is vital. All stake holders should apply
223 their effort in strengthening the already established strategy on maternal and neonatal health care services.

224 **20 VI. Acknowledgements**

225 We are grateful to study participants for their kindly cooperation in providing the required facts. We are
226 also grateful to data collectors and supervisors. ^{1 2}

1

Variables	Frequencies(no)	Percentage (%)
Age(in years)		
<19	11	2.4
20-29	288	63.0
30-34	67	14.7
5+	61	13.3
Unknown	30	6.6
Height		
<150 cm	12	2.6
>150 cm	445	97.4
Marital status		
Married	327	71.6
Cohabitation	106	23.2
Separated	19	4.2
Others	5	1.1
Level of education		
Illiterate	26	5.7

Figure 1: Table 1 :

226

¹© 2017 Global Journals Inc. (US)

²Magnitude and Factors Associated with Low Birth Weight among New Born in Selected Public Hospitals of Addis Ababa, Ethiopia, 2016

20 VI. ACKNOWLEDGEMENTS

2a

Magnitude and Factors Associated with Low Birth Weight among New Born in Selected Public Hospitals of Addis Ababa, Ethiopia, 2016

Primary school	71	15.5						
Secondary school	192	42.0						
Collage and above	168	36.8						
Occupation of the mother								
Government employee	112	24.5						
Private employee	95	20.8						
Merchant	73	16.0						
House wife	139	30.4						
Others	38	8.3						
Occupation of the husband								
Government employee	132	28.9						
Private employee	103	22.5						
Merchant	111	24.3						
Year	Daily laborer	No husband	Family size	88	23	19.3	5.0	
2017								
	1-3			322		70.5		
	4-5			132		28.9		
Volum	5	Sex of the baby	Female	Male	3	262	0.7	57.3
XVII					195		42.7	

Is-

sue

V

Ver-
sion

I

D Variables

D

D

D)

K

(

History of previous small baby

Yes	42	15.8
-----	----	------

No	223	84.2
----	-----	------

Current pregnancy type

Planned	343	75.1
---------	-----	------

Unplanned	114	24.9
-----------	-----	------

No of parity

1	192	42.0
---	-----	------

2-4	210	46.0
-----	-----	------

>5	55	12.0
----	----	------

No of ANC visit for the last pregnancy

No ANC	38	8.3
--------	----	-----

1-3	199	43.5
-----	-----	------

>4	218	47.7
----	-----	------

Trimester at 1st visit for the last pregnancy

1 st	158	42.9
------	-----	------

2 nd	126	34.2
------	-----	------

3 rd	84	22.8
------	----	------

TT vaccine before or during pregnancy

Yes	374	81.8
-----	-----	------

No	83	18.2
----	----	------

Iron supplementation for current pregnancy

Yes	377	82.2
-----	-----	------

2b

Figure 3: Table 2b :

		Frequencies(no)	Percentages (%)	Year 2017
No		203	44.4	
Extra meal during current pregnancy				
Yes		216	47.3	
No		241	52.7	
History of abortion				
Yes		80	17.5	
No		377	82.5	
History of still birth				
Yes		46	10.1	
No		419	89.9	
Variables				
APH during the current pregnancy				31
Yes		56	12.3	
No Substance use during the current pregnancy	401	25	432	87.7
Yes No Alcohol use during the current pregnancy	97	360	21	5.5
Yes No Chronic medical illness	436		94.5	21.5
Yes No			78.5	4.6
			95.4	
				D D D D)
				(
				Medical Research
				Global Journal of

[Note: © 2017 Global Journals Inc. (US) K]

Figure 4:

Variables		LBW	COR(95% CI)	AOR (95% CI%)
Yes(%)	No(%)			
History of previous small baby				
Yes	33(80.4%)	9(19.6%)	3.36(1.36, 8.32)	3.57(0.75, 17.02)
No	205(91.9%)	18(8.1%)	1	1
Current pregnancy type				
Planned	336(94.6%)	19(5.4%)	0.22(0.11, 0.42)	0.30(0.09, 0.97)*
UnPlanned	81(79.4%)	21(20.6%)	1	1
No of parity				
1	179(93.2%)	13(6.8%)	1	1
2-4	192(96%)	18(4%)	1.27(0.62, 2.71)	1.39(0.09, 22.12)
>5	46(83.6%)	9(16.4%)	2.69(1.08, 6.69)	1.31(0.06, 28.83)
No of ANC visit for the last pregnancy				
No ANC	38(82.6%)	8(17.4%)	1	1
1-3	178(89.4%)	21(10.6%)	0.65(0.24, 1.72)	0.00
>4	202(94.8%)	11(5.2%)	0.27(0.09, 0.79)	0.00
Trimester at 1st visit for the current pregnancy				
1st	151(95.6%)	7(4.4%)	1	1
2nd	114(98.3%)	12(1.7%)	2.27(0.867, 5.95)	5.85(0.96, 35.61)
3rd	73 (86.9%)	11(13.1%)	3.25(1.21, 8.73)	7.41(1.15, 47.79)*
TT vaccine before or during pregnancy				
Yes	345(92.7%)	27(7.3%)	0.43(0.21,0.88)	1.15(0.26, 5.10)
No	72(84.7%)	13(5.3%)	1	1
Iron supplementation for current pregnancy				
Yes	258(93.8%)	17(6.2%)	0.46(0.24, 0.88)	0.30(0.09,0.99)*
No	159(87.4%)	23(12.6%)	1	1
Extra meal during current pregnancy				
Yes	206(95.4%)	10(4.65%)	0.34(0.16,0.72)	0.25(0.06,0.96)*
No	211(87.5%)	30(22.5%)	1	1
APH during the current pregnancy				
Yes	46(82.1%)	10(17.9%)	2.69(1.23, 5.86)	3.11(0.98, 14.8)
Sex of the baby				
Female	230(87.8%)	32(12.2%)	3.252(1.46,7.23)	2.53(0.73,8.85)
Male	187(95.9%)	8(4.1%)	1	1

Note: * statistically significant

Abbreviations: AOR, adjusted odds ratio; COR, crude odds ratio; CI, confidence interval.

227 .1 Author's contributions

228 All authors were responsible for data analysis, interpretation, preparing the manuscript and approved for
229 submission and reach agreement to be responsible in all aspects of the work.

230 .2 Competing interests

231 Authors declare that no financial and nonfinancial conflicts of interest regard to this work.

232 [Leonardo and Mr ()] , R Leonardo , Mr . *Contract* 2005. p. 97.

233 [Geneva ()] , Geneva . 2011.

234 [Idris et al. ()] 'A prospective study of maternal risk factors for low birth weight babies in Maiduguri'. U Idris ,
235 B Mohammed , M Bala . *North-Eastern Nigeria Nigerian Journal of Basic and Clinical Sciences* 2014. (2)
236 p. 11.

237 [Assefa et al. (2012 7)] *A Wealth Status, Mid Upper Arm Circumference (MUAC) and Antenatal Care (ANC)*
238 *Are Determinants for Low Birth Weight*, N Assefa , Y Berhane , Worku . 2012 7. Kersa, Ethiopia.

239 [Berhanu et al. ()] 'Birth to pregnancy interval and its effect on perinatal out comes in Addis Ababa Ethiopia'.
240 A Berhanu , E Fikre , Y Lakman . *Jornal of health Develop* 2000. 14 (2) p. .

241 [Fikre and Aklilu ()] 'Change in birth weight of hospital deliverd neonate in Addis Ababa'. E Fikre , M Aklilu .
242 *Ethiopia Journal of Health Develop* 2000. 14 (2) p. .

243 [CSA and ICF International the 2011 Ethiopia Health and Demographic Survey, Central Statistical Agency and ICF Internationala
244 *CSA and ICF International the 2011 Ethiopia Health and Demographic Survey, Central Statistical Agency*
245 *and ICF International*, 2012. Addis Ababa, Ethiopia & Calverton, Maryland, USA.

246 [Ms K] *Determinants of low birth weight: weight neonates. Essence of pediatrics*, Ms K . (3rd edition)

247 [Louangpradith et al. ()] 'Factors affecting low birth weightat four central hospitals in Vientiane'. V Louangpra-
248 dith , Y Yoshitoku , -Or-R Harun , S Junichi . *Lao Nagoya J Med Sc* 2010. 72 (51) p. .

249 [Onesmus and Anselimo ()] 'Factors associated with low birth weight among neonates born at Olkalou District
250 Hospital, Central Region'. M Onesmus , Elizabeth E Anselimo , M . 10.11604/pamj.2015.20.108.4831. *Kenya*
251 *Pan African Medical Journal* 2015. 20 p. 108.

252 [Gebremariam ()] 'Factors predisposing to low birth weight in Jimma Hospital'. A Gebremariam . 554-55. 21.
253 21. *South Western Ethiopia. East African Medical Journal* 2005. 2006. 82 (11) p. . (Southwest Ethiopia. East
254 African Medical Journal)

255 [Federal Democratic Republic of Ethiopia Central Statistical Agency. Population Projection of Ethiopia for All Regions At Wereda
256 *Federal Democratic Republic of Ethiopia Central Statistical Agency. Population Projection of Ethiopia for*
257 *All Regions At Wereda Level from, 2014 -2017*. 2013. Addis Ababa August.

258 [Wado and Afework ()] *Hindin MJ Effects of Maternal Pregnancy Intention, Depressive Symptoms and Social*
259 *Support on Risk of Low Birth Weight: A Prospective Study from Southwestern Ethiopia*, Y D Wado , M F
260 Afework . 2014. 9.

261 [Singh et al. ()] 'Incidence and risk factors of low birth weight babies born in Dhulikhel Hospital'. S D Singh , S
262 B Ss , Marahatt . *Nepal. Journal of institute of Medicine* 2010. 32 (3) p. .

263 [Birhan et al. ()] 'Incident and correlates of low birth weight at a referral hospital in North West Ethiopia'. M
264 Birhan , Z Meseret , M Nuru . *Pan Africa Medical Journal* 2012. 12 (4) p. .

265 [International statistical classification of available information. World health disease and related health problems ()]
266 *International statistical classification of available information. World health disease and related health*
267 *problems*, 1992. (10th revision)

268 [Kahsay et al. ()] 'Low birth weighand associated factors among new born in Gonder town North West Ethiopia:
269 Institutional based crosssectinal study'. Z Kahsay , A Tadese , B Nigusie . *Indo Global Journal of*
270 *Pharmaceutical Sciences* 2014. 4 (2) p. .

271 [Abdou and Siri ()] 'Maternal and obstatsrics risk factors for low birth weight and praterm in rular Gambia:
272 hospital based study of1579 deliveries'. J Abdou , Johanne S Siri , V . *Open Jornal of Obstetrics and*
273 *Gynacology* 2011. 1 p. .

274 [Michael et al. ()] 'Maternal Risk Factors for Low Birth Weight in a District Hospital in Ashanti Region of Ghana
275 Research in'. F Michael , A Iddrisu , Y Riskatu . *Obstetrics and Gynecology* 2013. 2 (4) p. .

276 [Methodological assessment and meta-analysis Bull World Health Organ ()] 'Methodological assessment and
277 meta-analysis'. *Bull World Health Organ* 1987. 65 p. .

278 [Marchant et al. ()] *Neonatal Mortality Risk Associated with Preterm Birth in East Africa, Adjusted by Weight*
279 *for Gestational Age: Individual Participant Level Meta-Analysis*, T Marchant , . B Willey , S Clarke , S
280 Kariuki . *Journalpmed1001292*. 2012. 9 p. .

20 VI. ACKNOWLEDGEMENTS

281 [Nirmalya et al. ()] 'Prevalence and Determinants of Low Birth Weight in Abha City'. M Nirmalya , S Jhuma ,
282 Dr , B Baijayanti , B Gandhari , B Lina , M R Faten , Ham Ismaeil . *KSA Life Sci* 2012. 9 (4) p. .

283 [Ramesh ()] 'Prevalence and Determinants of Low Birth Weight in Sirte City of Libya'. Ramesh . *JK Science*
284 2013. 15 (1) p. .

285 [Negassi et al. ()] 'Prevalence and factors associated with low birth weight in Axum and LaelayMicheDis-
286 tricts,NorthEthiopia:A Comparative crossectional study'. T Negassi , H Tesfaye , A Huruy . *International*
287 *Journal of Nutrition and Food Sciences* 2014. 3 (6) p. .

288 [Ec Oh et al. ()] 'Singleton Low Birth Weight Babies At A Tertiary Hospital In Enugu'. E Ec Oh , O Io , A Jc .
289 *The Internet Journal of Gynecology and Obstetrics* 2009. 14 (1) p. .

290 [Baur and Bandyopadhyay ()] 'Socio-Biological Determinants of Low Birth Weight: A Community based study
291 from rural field practice area of Medical College'. N Baur , G Bandyopadhyay . *India) Journal of Dental and*
292 *Medical Sciences* 2013. 4 (4) p. .

293 [Yanita ()] 'The relation ship between demographic factors and low birth weight infant'. P Yanita . *International*
294 *Jornal of Research in Nursing* 2010. (1) p. .

295 [United nations children's Fund WHO. Low birth weight: Country regional and global estimate ()] *United na-*
296 *tions children's Fund WHO. Low birth weight: Country regional and global estimate*, 2004. Newyork.

297 [WHO guide lineon optimal feeding of lowbirth weight in low and middile income countries] *WHO guide lineon*
298 *optimal feeding of lowbirth weight in low and middile income countries*,