

1 Histopathological and Toxicological effects of crude saponin
2 extract from *Phyllanthus niruri*, L (Syn. *P. fraternus*. Webster)
3 on Organs in animal studies

4 Dr. Ajibade¹ and Famurewa²

5 ¹ The Federal Polytechnic, P.M.B 5351, Ado-Ekiti, Nigeria

6 *Received: 31 December 2011 Accepted: 21 January 2012 Published: 31 January 2012*

7

8 **Abstract**

9 The histopathological view of liver, intestines and kidney of bacterial infected rabbits, fed with
10 100mg/ml saponin extracted from *Phyllanthus niruri* over a period of seven days was carried
11 out to determine the effect of the plant extract on these organs after treatment. Saponin was
12 administered as strawberry suspension at a dose of 10mg per day (divided into four doses) to
13 ten rabbits, nine of which were fed with food contaminated with 0.5mL bacterial suspension
14 obtained by McFarland standardization (10

15

16 **Index terms**— Histopathological, *Phyllanthus niruri*, Saponin, Toxicological.

17 **1 INTRODUCTION**

18 Before the advent of modern medicine which witnessed synthetic production of many drugs including antimicrobial
19 agents, extract of plants were known to elicit certain reactions in human body when applied in a prescribed
20 manner. Among such plant is *Phyllanthus niruri* L., (Syn. *P. fraternus*. Webster). It belongs to the Euphorbiaceae
21 family and has been claimed to be an excellent remedy for jaundice and hepatitis (Qudhia and Tripathi,
22 2002;Tabasum et al., 2005). Based on its long documented history of uses in the Amazonian region, the plant is
23 believed to be helpful in treating oedema, anorexia and diabetes (George and Roger, 2002;Khanna et al. , 2002.).
24 The bark yields a bitter principle, phyllanthin, while the infusion of the root and leaves is a good tonic and
25 diuretic when taken cold in repeated doses (Unander, 1990). Many of the active constituents found in the plant
26 are biologically active lignands, glycosides, flavonoids, saponins, alkaloids, ellagitannins and phenylpropanoids
27 (Dhir et al., 2002 ; Tabasum et al., 2005.), common lipids sterols and flavonoids also occur in the plant (Barros
28 et al., 2003).

29 Saponins are glycosides with a distinctive foaming characteristic. They are found in various parts of the
30 plant leaves, stems, roots, bulbs, blossom, and fruit. The name originated from soapwort plant (saponaria),
31 the root of which was used historically as a soap. Saponins are believed to be useful in the human diet for
32 controlling cholesterol, but some including those produced by the soapberry are poisonous if swallowed and can
33 cause urticaria (skin rash) in many people (Otsuka, 2005). *Digitalis* type of saponin strengthens heart muscle
34 contractions, causing the heart pump to work more efficiently ??Desert, 2007). They inhibit some kind of cancer
35 cell tumor growth in animals particularly in the lungs and blood cancers, without killing normal cells (Unander,
36 1990;Ray, 2007). These effects point to the potentials of saponin, including those present in the diet, as a remedy
37 against two of the major health hazards in many countries, namely obesity and cancer (Otsuka, 2005). Saponin
38 from *P. niruri* has been observed, within the range of standard antibiotics like Chloramphenicol and Gentimycin
39 used as control;

40 showed high potency on *E. coli* and *Salmonella typhi* ??Ajibade and Famurewa, 2010). Histopathological
41 studies evaluate the conditions of organs of the body after the use of some therapeutic agents (Ambi et al., 2007).
42 The study estimates the toxic stage and damages that could come from the use of these agents.

43 2 B

44 3 Global Journal of
45 4 Medical Research

46 II. The sample used for the analysis was air-dried at room temperature of $\pm 28.0^{\circ}\text{C}$ and pulverized. The saponin
47 was extracted according to the method described by Otsuka et al. (2005). The milled plant (170g) was defatted
48 using 700ml of Petroleum ether for 72h with the aid of Soxhlet. Seven hundred (700ml) milliliter of methanol was
49 used to extract saponin from defatted sample and the residue was left overnight under reflux at 70°C . It was
50 then filtered and the filtrate evaporated to dryness. The yield was dissolved in 300ml distilled water-butanol (1:1
51 v/v) in a separating funnel. The set up was left for three days after which two layers were formed. The upper
52 layer was precipitated with diethyl ether to obtain 20mg of crude saponin; this was poured into an evaporating
53 dish and dried by evaporation for 2 weeks at room temperature. c) Experimental animals Rabbits of both sexes
54 were maintained under standard environmental conditions at room temperature of ($\pm 28 \pm 1^{\circ}\text{C}$) in the animal
55 house of the Department of Science Technology, Federal Polytechnic, Ado-Ekiti. The rabbits had free access to
56 feed and water. Prior to the experiment, rabbits were fed with standard feed for 1 week in order to adapt to the
57 laboratory conditions. Seven days after acclimatization, the rabbits were divided into five groups of six rabbits
58 each ($n > 6/\text{group}$): the groups of rabbits were treated as follows: one negative control group, (water; 5ml/kg
59 body weight); one positive control group (200mg amoxicillin; 5ml/kg body weight,) and three saponin treated
60 groups (25-400mg saponin; 5ml/kg body weight). Prior to test, on day 1, the rabbits were fasted for 6hr, but
61 allowed free access to water. d) Effect and toxicity of crude saponin on rabbits infected with *Escherichia coli* and
62 *Salmonella typhi*.

63 5 MATERIALS AND METHODS

64 The toxicity effect was studied using the methods of Anupama et al., (2011). Saponin was administered as
65 strawberry suspension at a dose of 10mg per day (divided into four doses) to ten rabbits, nine of which were fed
66 with feed contaminated with 0.5mL bacterial suspension of *Salmonella typhi* and *Escherichia coli* obtained by
67 McFarland standardization (10% Barium sulfate) containing 10³ (forming units/ml) cfu/ml after starvation for
68 6hrs .Toxicity studies were done on white blood, diff count, urine and haemoglobin analysis, blood urea nitrogen
69 (BUN), creatinine, serum alanine transaminase (ALT) and aspartate transaminase (AST). It was performed
70 before administration of saponin, on the third day of therapy, and at 9 th day of therapy. The levels of intact
71 saponin were determined in specimen of urine and blood collected from the rabbits by spectrofluorometric analysis
72 described by Schwartz et al. ??1999).

73 6 e) Behavioural and toxic effects

74 The acute oral toxicity study was evaluated in the rabbits according to the standard methods of Litchfield and
75 Wilcoxon (1949) described in Adesokan and Akanji (2004) and Aziza et al, (2008). Four groups of five rabbits
76 were administered with 25, 50, 100, 200 and 400mg/kg of the saponin extract orally, while one group with
77 the same number of rabbits served as control. The animals were observed continuously for 1hr for any gross
78 behavioral changes, symptoms of toxicity and mortality if any, and intermittently for 6hr and 24hr after dosing
79 with saponin extract. After 24hr, animals were sacrificed following chloroform anesthesia. Blood was collected
80 by heart puncture. Blood samples were collected from each animal and allowed to clot for 45min at room
81 temperature. Serum was separated by centrifugation at 600rpm for 15min and analyzed for various biochemical
82 parameters including serum alanine transaminase (ALT) and serum aspartate transaminase (AST) (Ahmed et
83 al., 2003).

84 7 f) Histopathological examination

85 Experimental rabbits were dissected on the 9th day after administration of saponin. The method describe by
86 ??atel et al. (2010) was employed for the dissecting. They were killed by chloroform anesthesia and dissected.
87 The small and large intestine, liver and kidneys were removed separately and cut into sections, The sections were
88 fixed directly on a slide, stained with haematoxylin and eosin, examined and photographed.

89 8 g) Statistical analysis

90 The data were expressed as mean + S.D., while biochemical and physiological parameters were analyzed
91 statistically using one way ANOVA followed by Dunnet-+test using the Statistical Package for Social glucose
92 levels were significantly ($p < 0.05$) increase in group V rabbits when compared with group 1. Plasma protein,
93 haemoglobin, red blood cell (RBC) and leukocyte counts were not significantly different in all the groups.

94 The percentage of saponin in urine 72hr after oral administration is shown in Table 2. The mean percentage
95 of the saponin in the urine of the rabbits is 52.36 $\mu\text{g}/\text{ml}$

96 The urine analysis of rabbits treated with saponin for a period of 9days is shown in Table 3. The urine area,
97 uric acid and creatinine levels decreased significantly ($p < 0.05$) in group V animals. Urinary protein and alkaline
98 phosphate activity were not significantly different.

99 The effect of saponin on the activity of serum, liver and kidney enzymes in controlled and experimental groups
100 of rabbits is shown in Table 4 indicating the activity of marker enzymes (AST and ALT). Slight differences were
101 observed in the activity of enzymes in all the groups of rabbits tested. The result of the histopathological studies
102 of the liver, kidney and small intestine of treated and untreated rabbits is shown in figs 1, 2 and 3 respectively.
103 The liver, small intestine and kidney of the untreated rabbits showed no visible lesion, but there were sectioning
104 artifacts (figs 1(a), 2(a) and 3 (a)). In the treated liver, there was a mild periportal lymphocytic and histiocytic
105 cellular infiltration (Fig ??b). In the kidney, there are multiple foci of haemorrhages into the interstitium. There
106 were few loci of tubular necrosis and presence of hyaline casts with interstitial cellular infiltration by macrophages
107 (fig ??b), and small intestine of the treated rabbits there were marked hyperplasias of the mucosal layer (Fig
108 ??b).

109 9 DISCUSSION

110 Tolerance and toxicity studies of the treated rabbits included analyzing levels of crude saponin in blood between 1
111 and 24hr, investigating blood parameters e.g., urea, uric acid, creatinine, protein, glucose, white blood differential,
112 haemoglobin, urinalysis, alanine transaminase (ALT), aspartate transaminase (AST) in serum, liver and kidney
113 before and after administration of saponin. None of the experimental rabbits exhibited microbiologically active
114 or chemically detectable saponin in the serum or urine before therapy. The mean level of crude saponin in the
115 blood after administration to the rabbits reduced saponin in urine at 72h after administration. The percentage
116 of saponin reduced significantly. The analysis of the blood parameters of the experimental rabbits treated with
117 saponin showed that there was a significant increase in the values of urea, uric acid, creatinine, plasma protein
118 and blood glucose with significant decrease in urea, uric acid and creatinine levels in urine. This may explain
119 the use of *P. niruri* saponin to remove uric acid from urine (Nishiura et al., 2005). Plasma protein, hemoglobin,
120 red blood cell and leukocyte counts were not significantly different. This findings correlates with that of Lee et
121 al. (2000) and ??oshikawa et al. (2001) where it was reported that the use of *P. niruri* do not affect the blood
122 cells adversely.. The saponin was also found to significantly and dosedependently inhibit gastric emptying. This
123 observation was earlier reported by ??da et al. (2000), Shim et al. (2000), and Zhongguo et al. ??2005) who
124 opined that the inhibitory activity of saponin on gastric emptying was dependent on the level of serum glucose
125 and mediated at least in part by the capsaicin-sensitive sensory nerves and the central nervous system.

126 It has been reported that renal dysfunction may be the cause of raised plasma, urea, uric acid and creatinine
127 level accompanied by lowered urine urea, uric acid and creatinine level in high dose of drug treated rabbits
128 (Adesokan and Akanji, 2004). Raised urea and non-protein nitrogen level in blood have been observed with
129 impaired renal function or in acute renal failure ??Adebayo et al., 2003). In the present study, the observed
130 differences in the urinary contents are not significant. This difference may be due to the concentration of saponin
131 used in the treatment. Zhongguo et al. (2005) found that concentrationdependent response was noticed when
132 Quallaja saponin was used to treat *E. coli* K-12-infected wistar rats and that saponin from various sources differ
133 in their biological activity. The initial increase observed in the blood glucose level was suspected to be due to
134 the high percentage of sugar moiety that makes the chemical structure of saponins (Francis et al., 2002).

135 There was however a gradual reduction of the blood glucose to an insignificant level ($p < 0.001$) after 9 days.
136 This could be due to constancy of distribution, metabolism and excretion of the saponin (Zhongguo et al., 2005).
137 The presences of transaminase (AST and ALT) are good indices of liver and kidney damage (Nishiura et al.,
138 2005). In this study, saponin did not induce any damage to any of the organs which could be inferred from the
139 normal values of these enzymes. Reduction in the level of AST and ALT is an indication of the stabilization
140 of plasma membranes as well as repair of hepatic tissue damage. This in effect conforms with the commonly
141 accepted view reported earlier by Francis et al. (2002) that serum levels of transaminase return to normal with
142 healing of hepatic parenchyma and the regeneration of hepatocytes. It thus, means that in this study, the saponin
143 therapy did not lead to liver inflammation and/or kidney dysfunction.

144 The appearance of mild periportal lymphocytic and histiocytic cellular infiltration in the liver of the
145 saponin-treated rabbits is an indication of a cellular immunological response brought about by infiltration of
146 polymorphonuclear leucocytes to the site of infection induced by *Salmonella typhi* (Pooneh et al., 2010).


147 The presence of hyaline cast in the kidney is normal and has been ascribed to the use of medicines (Medline
148 Plus Medical Encyclopaedia). The appearance of a few loci tubular necrosis in the kidney has been observed to
149 be a reflection of the initial pathogenesis of the infection; indicating damage to the renal tubular epithelial cells.
150 This condition is normal and not caused by the saponin therapy but a clinical manifestation of the disease. The
151 description of renal tubular necrosis as one of the pathogenesis of clinical manifestation of typhoid fever has been
152 made (Nishiura et al., 2005) and this substantiates the observations made in this study. The binding of saponins
153 to bile acids in the intestine could reduce the availability of bile acids to the microbial population, thus reducing
154 the formation of carcinogenic substances in the colon (Nishiura et al., 2005) that may lead to necrosis.

10 CONCLUSION

10 CONCLUSION

156 With the information available and the observation recorded in this study, the extract seems not to show any
157 adverse effect on the organs despite its positive therapeutic actions on infections caused by *E. coli* and *Salmonella*
158 *typhi*.

23

Figure 1: Fig. 2 :Fig. 3 :

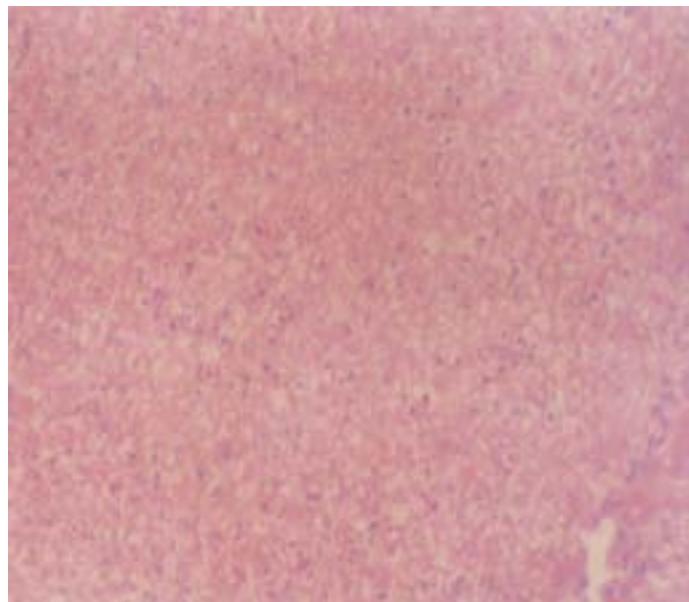


Figure 2:

159

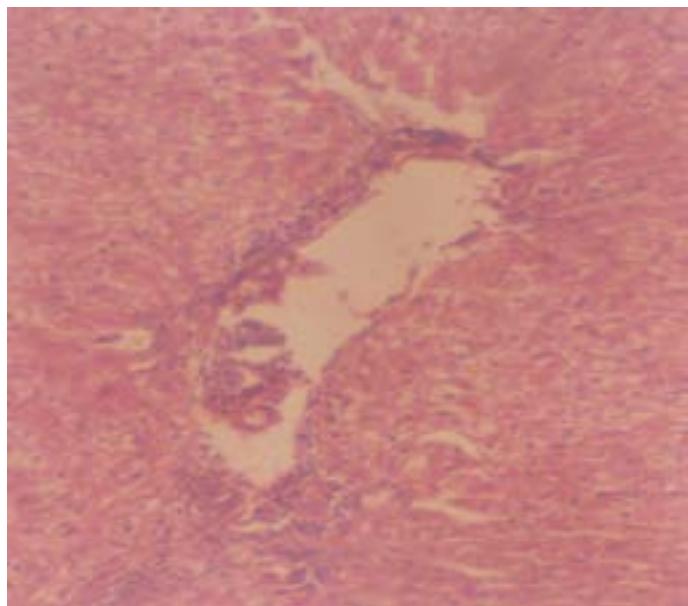


Figure 3:

1

Figure 4: Table 1 :

2

February

Figure 5: Table 2 :

3

Values are expressed as mean + SD for 6 rabbits

Comparisons were made between groups I (control) with II, III, IV and group V
 $p < 0.05$, ** $p < 0.01$,*** $p < 0.001$

Figure 6: Table 3 :

10 CONCLUSION

4

Parameters

	Groups				
	I	II	III	IV	V
Urea		3.18+0.43	3.06+0.51	3.51+0.45	2.99+0.31
Uric acid	0.73+0.12	0.78+0.24	0.69+0.17	0.61+0.13	0.46+0.04*
Creatinine	0.81+0.27	0.87+0.35	0.83+0.31	0.62+0.21	0.52+0.19**
Protein		5.02+1.85	5.56+1.4	6.06+1.22	6.18+1.55
Alkaline phosphate	0.45+0.08	0.43+0.07	0.45+0.07	0.52+0.06	0.54+0.12
Parameters Groups		I	II	III	IV
Serum (units/ml)					V
AST		25.62+5.2	27.14+5.5	26.60+4.98	22.6+4.81
ALT		36.25+3.5	39.41+6.04	34.16+5.62	34.16+5.62
Liver (units/mg protein)					34.94+**
AST	173.3+18.01	174.6+12.			179.7+16.2
ALT	37.02+5.31	37.34+5.2	5	6	164.12+14.
Kidney (units/mg protein)					*
AST	29.10+5.10	26.60+3.51	33.25+5.05	26.43+5.08	24.6+4.3***
ALT	26.82+3.27	25.32+2.61	29.44+3.50	24.71+2.96	24.33+4.6**

Values are expressed as mean + SD for six rats Comparisons were between groups I with II, III, IV and group V

*p<0.05, **p<0.01, ***p<0.001

Figure 7: Table 4 :

160 [parameters of rat kidney J. Ethnopharmacol] , *parameters of rat kidney J. Ethnopharmacol* 88 p. .

161 [Oda et al.] , K; Oda , H; Matsuda , T; Murakami , S Katayama .

162 [Patel et al.] , P; Patel , K; Sweiss , S; Shatavi , D; Peace , N Clark .

163 [Pooneh et al.] , R; Pooneh , S; Amir , A; Javad , E Rosita .

164 [Mehran] , A Mehran .

165 [Yoshikawa and Murakami] , M; Yoshikawa , T Murakami .

166 [Ahmed et al. ()] , B Ahmed , T A Al-Hoiriny , A B Siddigui . 2003.

167 [Ajibade et al. ()] , V A Ajibade , I Adanlawo , O D Komolafe . 2006.

168 [Anupama et al. ()] 'A 28-days Sub-Acute Toxicity Study in some Albino mice to evaluate toxicity profile of
169 Neurotol plus (Mannitol and Glycerol combination'. T Anupama , C Mani , S Rajest . *International Journal
170 of Biomedical Science* 2011. 5 (4) p. .

171 [Ohgifikasi and Yoshikawa ()] 'Adjuvant and haemolytic activities of 47 saponins derived from medicinal and food
172 plants'. T Ohgifikasi , M Yoshikawa . *Biological Chemistry* 2000. 381 p. .

173 [Otsuka ()] *Annual proceeding of the phytochemical society pg 1-12 (W. Oleszed and A. Mars ton, edition Oxford
174 and London, E A Otsuka* . 2005. (Analysis and isolation of saponin from plant materials. Clarendon process)

175 [Ajibade and Famurewa ()] 'Antibacterial activity of saponin and alkaloid extraction from whole plant of
176 Phyllanthus niruri L. (Syn. P. franternus Webster)'. V Ajibade , O Famurewa . *Pak. J. Sci Ind. Res* 2011. 54
177 (1) p. .

178 [Antihepatotoxic activity of seeds of Chichorium intybus Journal of Ethnopharmacology] 'Antihepatotoxic ac-
179 tivity of seeds of Chichorium intybus'. *Journal of Ethnopharmacology* 87 p. .

180 [Yao and Zhi ()] 'Antispasmodic saponins from bulbs of red onion Allium cepa (L.var.Tropea)'. Zhong Yao , Za
181 Zhi . *J Agric Food Chem* 2005. 53 (4) p. .

182 [Shim et al. ()] 'Effect of ginseng total saponin on extracellular dopamine released elicited by local infusion of
183 nicotine into the striatum of freely moving rats'. I; Shim , J Javaid , S E Kim . *Planta medica* 2000. 66 p. .

184 [Nishiura et al. ()] 'Effect of Phyllanthus niruri on urinary calcium levels in calcium stone forming patients'. J;
185 Nishiura , Campus , Boim , N Schor . *Journal of Clinical and Laboratory Investigation of Urolithiasis and
186 Related Areas* 2005. 32 (15) p. .

187 [Mohammadhosseini et al. ()] *Emergence of African swine fever virus, Northwestern Iran*, M; Mohammadhosseini
188 , M Saied , A ; Kayhan . 2010. 16 p. .

189 [Aziza et al. ()] 'Genetic and histopathology studies on mice; effect of Fenugreek oil on the efficiency of Ovarian
190 and liver tissues'. M H Aziza , K Wagdy , Kawkab A B>k . *African journal of Biotechnology* 2008. 6 (6) p. .

191 [George and Roger ()] D George , M D Roger . *Encyclopaedia of Medicinal Plant 5th print of the original edition
192 Spanish1*, 2002.

193 [Tabasum et al. ()] 'Hepatoprotective studies of Phyllanthus niruri on Paracetamol-induced liver cell damage in
194 albino mice'. N Tabasum , S Chatterrredi , S Agrawal , N Ahmed . *J. Exp. Med* 2005. 12 (14) p. .

195 [Lee et al. ()] 'Hypoglycaemic and hypolipidemic effects of tectorigenin and kaika-saponin III in the
196 streptozotocin-induced diabetic rat and their antioxidant activity in vitro'. K T Lee , I C Sohn , D H
197 Kim , J Choi , S H Kwon . *Arch Pharmacol. Res* 2000. 23 p. .

198 [Khanna et al. ()] 'Lipid lowering activity of Phyllanthus niruri in hyperlipemic rats'. A W Khanna , Rizvi , R
199 Chander . *J. Ethnopharmacol* 2002. 82 (1) p. .

200 [Kishi et al. ()] 'Medicinal flowers 111, marigold (1): hypoglycaemic gastric emptying inhibitory, and gastro-
201 protective principles and new oleanane-type triterpene oligoglycosides, calendasaponins A,B,C and D, from
202 Egyptian Calendula officinalis'. A Kishi , Kageura , H Matsuda . *Chemical and Pharmacectical Bulletin*
203 2001. 49 p. .

204 [Meagher et al. ()] 'Metabolism of diosgenin-derived saponins: implications for hepatogenous photosensitization
205 diseases in ruminants'. L P Meagher , B Smith , A L Wilkins . *Animal Feed Science and Technology* 2001. 91
206 p. .

207 [Flaoven et al. ()] 'Ovine metabolisms of saponin: evaluation of a method for estimating the ovine uptake of
208 steroidal saponins from Narthecium ossifragnum'. A Flaoven , A L Wilkins , D Deng , T Brekken . *Veterinary
209 Research Communications* 2001. 25 p. .

210 [Unander et al. ()] *Phyllanthus species: Sources of new antiviral compounds. Advances in new crops*, D W
211 Unander , P S Venkateswaran , I Mill Man , H Bryan , B S Blumberg . 1990. Portland: Timber Press.
212 p. .

10 CONCLUSION

213 [Ambi et al. ()] 'Phytochemical Screening and histopathological Studies on the seed of *Colocynthis citrullus* in
214 Albino rats'. A A Ambi , E M Sule , M I Patch , U U Abdurrahman , Y , IbrahimN D . *Nigeria Journal of*
215 *Pharmaceutical Sciences* 2007. 6 (2) p. .

216 [Qudhia and Tripathi ()] *Prospect of cultivation of medicinal plant in Chattisgarh, Indian. P211-236. in: recent*
217 *progress in medicinal plants*, Qudhia , R Tripathi . 2002. U.S.A: Sci Tech Public. 5. (Crop Improvement,
218 Production Technology, Trade and commerce)

219 [Adesokan and Akanji ()] 'Responses of selected rat kidney enzyme activities to administration of aqueous
220 extract of *Enantia chlorantha*'. A Adesokan , M A Akanji . *Nig. J. Pure and Appl. Sci* 2004. 19 p. .

221 [Francis et al. ()] 'The biological action of saponins in animal system: a review'. G Francis , Z Kerem , H P
222 Makkar , K Becker . *Br. J. of Nutri* 2002. 88 (6) p. .

223 [Barros et al. ()] 'The effect of an aqueous extract from *Phyllanthus niruri* on calcium oxalate crystallization in
224 *vitro*'. M E Barros , Schor , M A Boin . *Urol. Res* 2003. 30 (6) p. .

225 [Rondelli ()] 'The impart of novel influenza A (H1N1) after hematopoietic SCT. Bone Marrow Transplant'. D
226 Rondelli . *J. Exp. Med* 2010. 45 p. .

227 [Ray ()] 'The sapogenin of the seed of flour lupin species'. S M D Ray . *Journal of Plant Food* 2007. 3 p. .

228 [Dersert ()] 'Triterpenoid saponins from *Acacia victoriae* (Bentham) induce apoptosis by mitochondrial pertur-
229 bation'. K C Dersert . *Proceedings of the Nat Acad of Sci* 2007. 98 p. .