

1 Relationship between the Distal Phalanx Angle and Radiographic 2 Changes in the Navicular Bone of Horses: A Radiological Study

3 Cristobal Dorner¹

4 ¹ Riding School of the Chilean Army

5 *Received: 7 December 2016 Accepted: 5 January 2017 Published: 15 January 2017*

6

7 **Abstract**

8 The aim of this study was to determine the relationship between the distal phalanx angle and
9 the radiological condition of the navicular bone and establish a database of reference values
10 for hoof radiographic measurements in Chilean horses. A retrospective study was performed
11 considering radiographic examinations on 140 feet from 92 horses. Linear and angle
12 measurements of the hoof capsule and distal phalanx were obtained and compared
13 statistically. Radiographic condition of the navicular bone was determined and statistically
14 compared with the radiographic hoof values. Additionally, horses were categorized by breed to
15 elucidate differences between breeds. There was a significant negative correlation between the
16 palmar angle and the navicular score. Also, there was a significant negative correlation
17 between the hoof angle and the navicular score. There were significant statistical differences
18 between the distal phalanx angle, weight-bearing surface of the toe and second phalanx length
19 when compared by breed. The information gathered in this study can help to prevent the
20 presentation or the advance of the radiological changes in the navicular bone. A
21 radiographic-guided shoeing should always be considered. Additionally, the present study
22 provides a database of normal values of the hoof capsule in Chilean horses that can be used by
23 veterinarians and farriers as a guideline for routine and orthopedic shoeing.

24

25 **Index terms**— horse, foot, palmar angle, navicular disease, radiographs.

26 **1 Introduction**

27 Foot pain is described as the most common cause of forelimb lameness in sport horses(Dyson2011 a) and has
28 been associated with poor hoof balance and conformation (Turner 1986). Some authors have been suggested
29 that changes in foot conformation increase the load on the palmar aspect of the foot and so the navicular bone
30 is overstressed predisposing to foot pain and lameness. Unfortunately, there is limited information about the
31 relation between the distal phalanx (P3) orientation within the hoof and the radiological changes in the navicular
32 bone.

33 A condition that causes foot pain is the one called "Negative palmar angle syndrome (NPAS)". This is a term
34 in which the solar or palmar and/or plantar margin of P3 has a negative angle in relation to the ground surface,
35 and sole depth under the dorsal-distal processes when viewed on a lateral radiographs (Floyd 2010). The term
36 "long toe, low heel" has been used to describe this condition and has been accepted as being abnormal among
37 veterinarians and farriers. Conversely, a recent study in horses with foot pain indicated the variations in shape
38 of the distal phalanx were not accurately predicted by external characteristics of the hoof capsule . On the
39 other hand, a marked correlation between hoof conformation and forces applied to the equine foot has been also
40 described (Eliashar et al 2004). According to the aforementioned, in many cases it is very difficult to predict an
41 abnormal condition in the structures inside the hooves when only the external hoof capsule is seen.

7 RESULTS

42 In normal conditions, the distal phalanx solar angle or palmar angle with the surface range between 2° -10°
43 (Parks 2003). As the border of the distal phalanx is the insertion point of the deep digital flexor tendon (DDFT),
44 a change in its orientation, increases the DDFT tensile force and subsequently the force it exerts on the navicular
45 bone during the different phases of a stride ??Wilson et

46 2 Materials and Methods

47 3 a) Horse Selection

48 One hundred and forty-six feet (146) from horses were used for the study (54.79% from Chilean Criollo horses and
49 45.21% from Warmbloods horses) (385 -590 kg bwt) in routine work and shoeing status examined consecutively
50 between July 2015 and December 2016. All horses were assessed for lameness. Sound horses were immediately
51 enrolled for the study. Lame horses selected for this study had lameness abolished after a palmar digital nerve
52 block was performed, using 1.5 mL mepivacaine 2% (Vetacaine TM) a injected just proximal to the lateral
53 cartilages of the distal phalanx. Horses presenting with laminitis or lameness located anywhere else were excluded
54 from the study. Horses selected should have been trimmed within 5 weeks. Additionally, age, gender and breed
55 were recorded.

56 To establish the normal reference values for the hoof radiographic measurements of the Chilean Criollo horses
57 and to investigate the differences of hoof radiographic measurements between Chilean Horses and Warmblood
58 horses, horses were categorized by breed.

59 4 b) Radiographic Image Adcquisition

60 Eighty forelimbs from Chilean horses (left front n=40; right front n=40) and sixty-six forelimbs from Warmblood
61 horses (left front n=33; right front n=33) were radiographed obtaining a total sample of one hundred and forty-six
62 feet (n=146). All radiographic examinations were performed after standard foot c) Image Analysis Radiographs
63 were analyzed using an image analysis software (Metron-DVM 7.05 for windows) c . Following the instructions
64 of the program, 10 parameters on the LM view were measured. The following measurements were obtained:
65 Palmar angle, descent of the distal phalanx, distance of the distal phalanx to ground, hoof angle, proximal HL
66 zone, distal HL zone, percentage of the weight-bearing surface of the toe, coffin joint angle, pastern joint angle,
67 length of the middle phalanx (Figure 1 and Figure 2). To determine the radiographic condition of the navicular
68 bone ("navicular score") a standardized classification was used as described by Dyson (2011 b) (Table ??).

69 5 d) Data Analysis

70 Statistical analyses were run on a specialized statistical software (SPSS Inc, version 19 for windows) d . A
71 Kolmogorov-smirnov test was performed to assess whether the data were normally distributed. A t-student test
72 for independent variables was used to compare the data between breeds. All measurements were compared to
73 determine whether they were significantly different between groups. A Spearman correlation test was run to
74 determine the association between the radiographic hoof values and the radiographic score of the navicular bone.
75 The significance level was set at p<0.05.

76 6 III.

77 7 Results

78 One hundred and forty-six feet (146) from horses were used for the study (47.83% geldings; 42.39% mares; 9.78%
79 stallions). Eighty feet were from Chilean Criollo horses and sixty-six feet were from Warmblood horses (29.53%
80 Holsteiner; 10.16% Selle Frances; 5.52% Warmblood cross). The mean \pm standard deviations (s.d.) and t-student
81 test of the data obtained for radiological hoof values for Chilean and Warmblood horses are summarized in table
82 2.

83 There was significant difference between groups for palmar angle, toe/support %, third phalanx distance to
84 the ground, and length of the middle phalanx determined radiologically (table 2). Warmblood horses have a
85 smaller palmar angle (3.39 ± 3.37) than Chilean Criollo horses (6.46 ± 3.88)(p= 0.000) as well as the toe/support
86 % (65.12 ± 5.48 and 67.35 ± 5.78 respectively, p= 0.033). Additionally, there was a significant difference in the
87 length of the middle phalanx in which the Chilean Criollo horses have a shorter middle phalanx bone ($3.99 \pm$
88 0.53, p value 0.000). The other measurements determined radiologically showed no difference between breeds
89 (table 2).

90 Table 3 summarizes means \pm s.d. and t-student test results when horses were assessed by limb, showing no
91 statistical differences when right and left legs were compared between each other. This situation was seen in both
92 breeds.). Lateromedial, 60° dorso proximal oblique navicular (upright pedal) and palmaro proximal -palmaro
93 distal (Navicular Skyline) radiographic views were obtained. For lateromedial view, the foot to be examined was
94 placed on a block 6 cm high and the x-ray beam was centered approximately 1 cm distal to the coronary band,
95 midway between the dorsal and palmar aspects of the hoof. The x-ray generator was set at 76 Kvp and 1.2 mAs.
96 For the 60° dorsoproximal navicular view, the hoof was placed over the x-ray tunnel in a square stance and the
97 x-ray beam was centered in the coronary band and the x-ray generator was set at 78 Kvp and 1.6 mAs. The

98 last radiographic view was obtained with the limb over the tunnel and placed backwards and the x-ray beam
99 was centered between the heel bulbs following the pastern angle and the x-ray generator was set at 80 Kvp and
100 2.0 mAs. Radiographs were obtained using a digital x-ray machine (Envision G2 DR panel) b and a Poskom
101 PXP-20HF x-ray generator.

102 Additionally, the mean \pm s.d. for the navicular score for each breed was analyzed. Chilean Criollo horses
103 (0.95 ± 0.80) showed a lesser value when compared with Warmblood horses (1.23 ± 0.83). These results were
104 statistically different ($p= 0.038$).

105 Each measurement determined radiologically was correlated with its respective navicular score. The palmar
106 angle and hoof angle ($\rho = -0.190$, $p = 0.024$) showed a weak negative correlation with the navicular score ($\rho = -$
107 0.173 , $p = 0.041$) (table 4). The other parameters measured did not show significant association with the navicular
108 score.

109 IV.

110 8 Discussion

111 This study was performed in order to establish the relationship between the distal phalanx angle within the hoof
112 capsule and the radiological condition score of the navicular bone. Additionally, a database of reference values
113 of the radiographic hoof values from the Chilean Criollo horses were obtained and compared with the values
114 obtained from Warmblood horses. Hoof trimming has shown a remarkable influence on hoof conformation and in
115 some measurements that describe the position of the third phalanx within the hoof capsule (Kummeret al 2006)
116 so in our study, horses were excluded when the feet had not been trimmed within 5 weeks.

117 The selection and use of Metron software for this study was based on the previous results obtained where it
118 was determined that Metron software can be used to objectively measure most of the parameters predefined by
119 the software (Vargas Rocha et al 2004).

120 Chilean Criollo horses showed a larger palmar angle when compared with Warmblood horses, finding somehow
121 expected due to the described lower palmar angle of Warmbloods compared to other breeds (Kummeret al 2006).
122 Toe/support % was larger in Chilean horses and thus they should have a better capacity to dissipate the ground
123 reaction forces within the hoof capsule compared with Warmbloods. Nonetheless, one study showed no differences
124 when the presentation of catastrophic pathologies and toe/support % were compared (Kane et al 1998). According
125 to the Fédération Equestre Internationale (2017), a Pony is a small horse whose height at the withers does not
126 exceed 148 cms. Chilean horses are considered as Ponies due to their height (<145 cms), so a shorter middle
127 phalanx compared to Warmblood horses was expected. Chilean horses tend to have narrow, upright, and small
128 feet relative to their body size (Reckmann 1999). According to the results of our study, there was a significant
129 negative correlation between the navicular score and the palmar angle. There was also a significant negative
130 correlation between the navicular score and the hoof angle. The aforementioned results, were in accordance to
131 our expectations and these may be the reflection of the increased force exerted by the DDFT due to a highest
132 moment arm force (Wilson et al 2001) to the navicular bone when the hoof presents a low palmar angle (neutral to
133 negative) (Floyd 2010). This situation has also been documented by Weaver et al (2009) where they topographically
134 map pressure distribution across the palmar surface of the navicular bone in response to forces applied by the deep
135 digital flexor tendon (DDFT). This study showed and evaluated the effect of raising the heels in vitro showing the
136 relationship between the DDFT and navicular disease. Moreover, Eliashar et al (2004) concluded that an increase
137 in the palmar angle by 1° would decrease the force of the DDFT on the navicular bone by 4%, supporting
138 the biomechanical overload suffered by the navicular bone when an abnormally low palmar angle is present.
139 Additionally, no significant correlation has been found between heel collapse and the palmar angle (Floyd 2010)
140 thus the radiographic evaluation to determine the hoof inner structures measurements is mandatory. Considering
141 biomechanical and risk factors for development of navicular disease, the palmar angle of the distal phalanx should
142 play an important role in the presentation of the disease. According to Dik and van den Broek ??1995 and Dik et
143 al (2001), horses presenting with different palmar angles should present different shapes of the navicular bone
144 based on a shape-dependent distribution of the forces exerted on the navicular bone. For example, navicular
145 bone shape 1 and 2 are associated with overloading of the distal interphalangeal joint, and navicular bone shape
146 3 is related with strain of the collateral ligament of the navicular bone (Dik and van den Broek 1995).

147 As this study did not evaluate the correlation between the palmar angle with the presentation of clinical
148 navicular disease, further investigation is required in this matter. Nonetheless, recent studies have shown very
149 interesting data regarding correlations between radiographic measurements of the foot and abnormalities of
150 specific structures found with magnetic resonance imaging (MRI) (de Zaniet al 2016). Moreover, it has been
151 documented that the larger the palmar angle, the smaller the likelihood of a DDFT or navicular bone lesion
152 (Holroyd et al 2013).

153 In conclusion, this study contributes to the informational already available in the literature helping to have
154 a better understanding of changes suffered by inner structures of the hoof capsule. We have documented the
155 reference hoof values from the Chilean Criollo horses and at the same time we have shown a few differences between
156 this breed and Warmblood horses. Additionally, we have demonstrated that there is a significant statistical
157 correlation between the radiographic navicular score and the palmar angle. Given these results, a radiological
158 evaluation of horse's feet before and after shoeing is always recommended. To fully understand the implication of

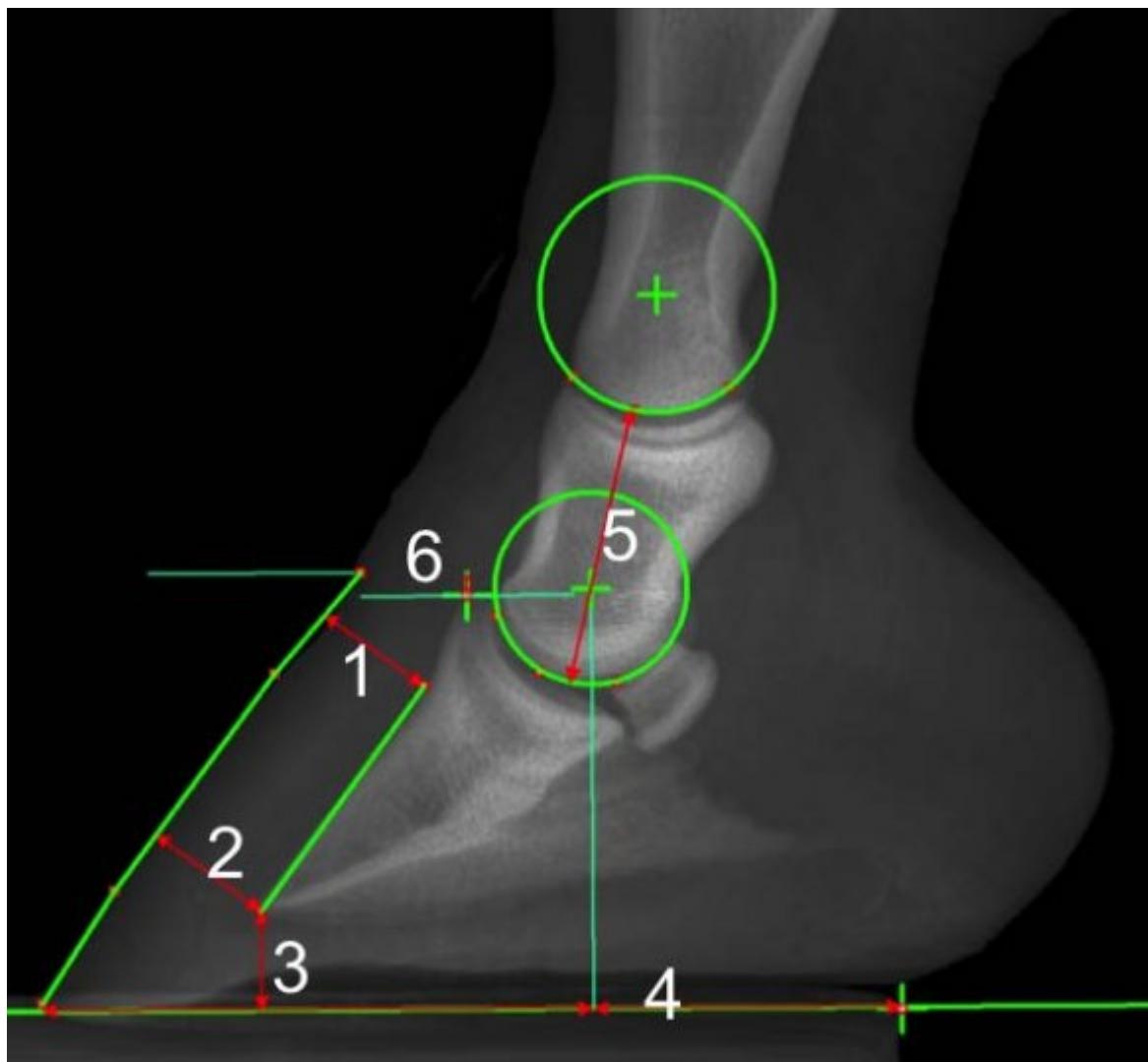


Figure 1:

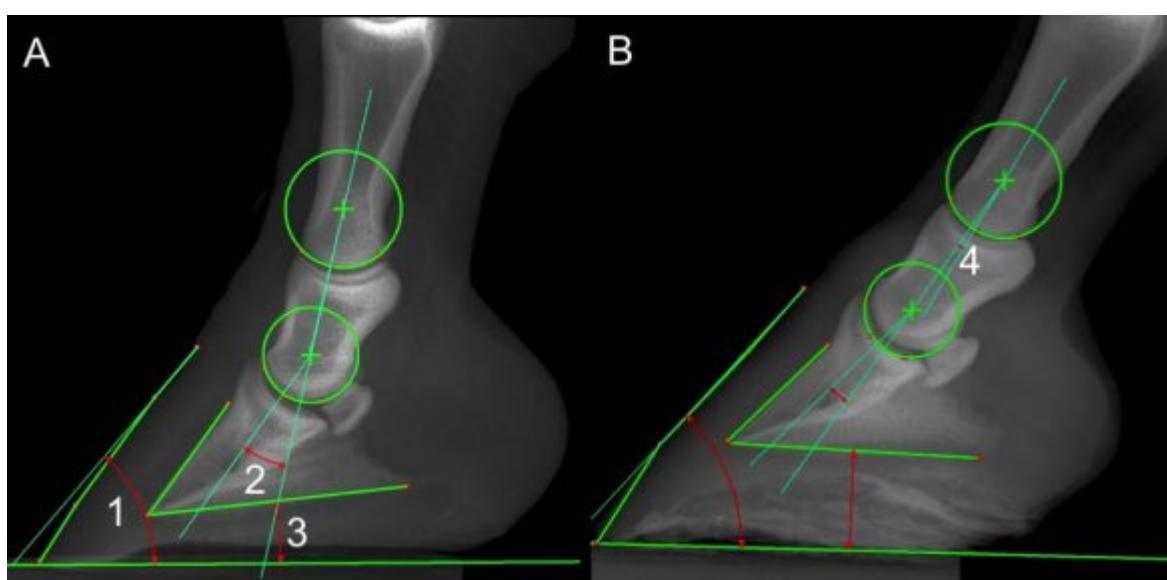


Figure 2: G

159 the changes suffered on the palmar angle in horses presenting navicular disease, further investigation is needed.
1 2

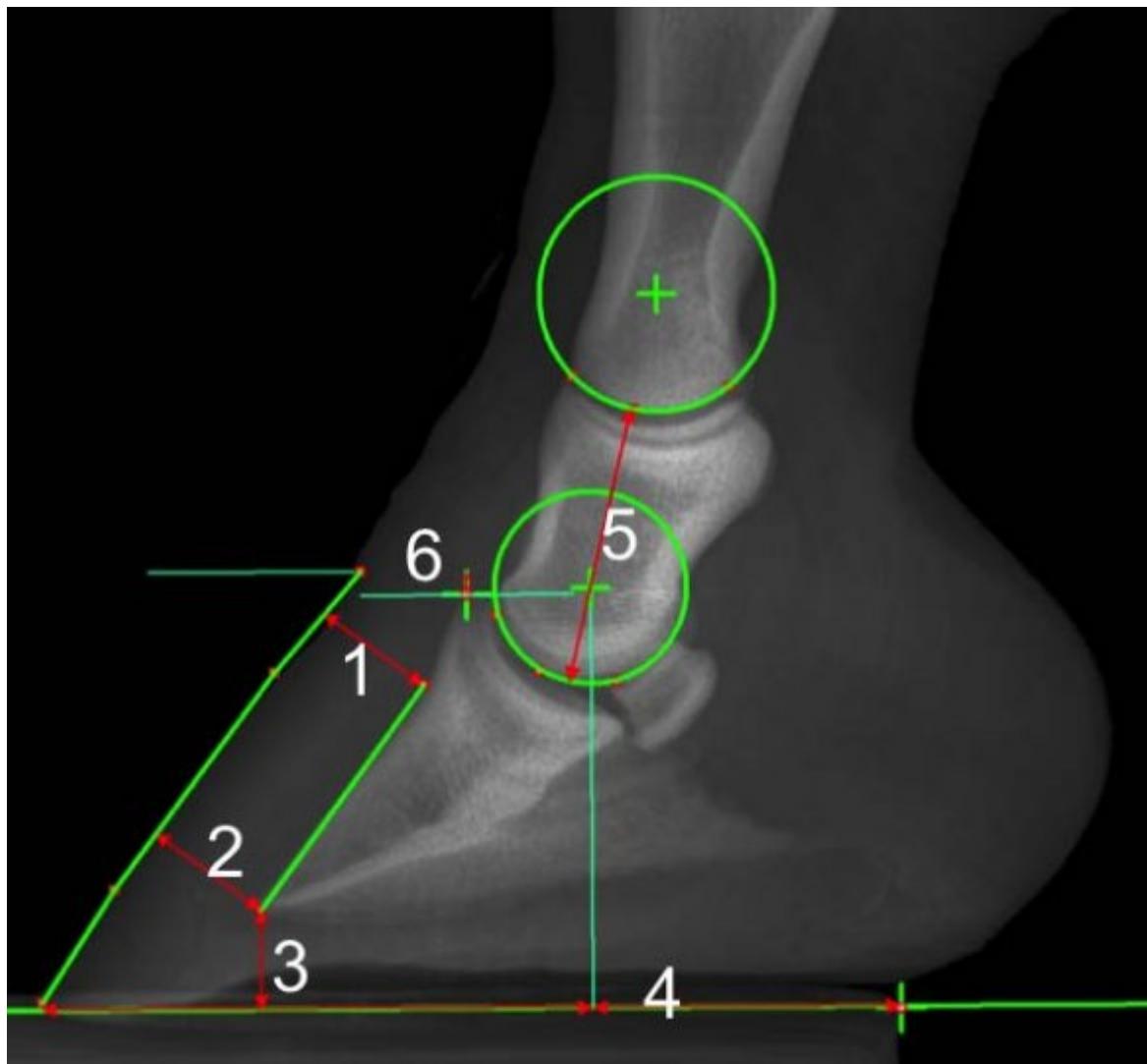


Figure 3:

2

a Significant difference $P < 0.05$

[Note: G]

Figure 4: Table 2 :

160

8 DISCUSSION

3

Parameters	Chilean Horses			Warmblood Horses		
	LF Mean ± s.d.	RF Mean ± s.d.	P value	LF Mean ± s.d.	RF Mean ± s.d.	P value
Palmar angle	6.69 ± 4.02	6.19 ± 3.94	0.474	3.59 ± 3.28	3.05 ± 3.48	0.768
P3 descent	0.45 ± 0.48	0.32 ± 0.51	0.321	0.53 ± 0.65	0.56 ± 0.56	0.588
P3 dist. to ground	1.83 ± 0.56	1.87 ± 0.52	0.754	2.08 ± 0.56	1.97 ± 0.58	0.500
Hoof angle	51.99 ± 2.37	50.64 ± 8.41	0.360	51.17 ± 4.08	51.24 ± 4.75	0.713
Prox. HL zone	1.52 ± 0.33	1.53 ± 0.34	0.991	1.57 ± 0.23	1.61 ± 0.27	0.823
Dist. HL zone	1.47 ± 0.32	1.50 ± 0.51	0.865	1.42 ± 0.25	1.45 ± 0.23	0.710
Toe/Support %	67.00 ± 6.34	67.49 ± 5.53	0.736	65.41 ± 5.27	64.84 ± 5.85	0.949
Coffin joint angle	9.20 ± 6.44	9.91 ± 6.92	0.846	8.98 ± 7.19	9.51 ± 7.28	0.751
Pastern joint angle	3.28 ± 4.46	1.96 ± 4.39	0.320	3.66 ± 4.81	1.98 ± 5.41	0.147
Length of P2	4.00 ± 0.53	3.98 ± 0.55	0.988	4.63 ± 0.33	4.71 ± 0.33	0.892
P3, distal phalanx;						

Figure 5: Table 3 :

4

Parameters	Rho	P value
	Spearman	
Palmar angle & Navicular score	-0.173	0.041 a
P3 descent & Navicular score	-0.136	0.108
P3 dist. to ground & Navicular score	0.096	0.259
Hoof angle & Navicular score	-0.190	0.024 a
Prox. HL zone & Navicular score	-0.045	0.595
Dist. HL zone & Navicular score	-0.058	0.498
Toe/Support % & Navicular score	0.118	0.165
Coffin joint angle & Navicular score	0.074	0.386
Pastern joint angle & Navicular score	0.021	0.801
Length of P2 & Navicular score	0.113	0.182
P3, distal phalanx; HL, hoof-lamella; P2, middle phalanx.		

[Note: a Significant difference $P < 0.05$]

Figure 6: Table 4 :

161 .1 Acknowledgments

162 The authors would like to acknowledge Dr. T. Herthel and for the critical review of the manuscript.

163 [Buttler et al.] , J Buttler , C Colles , S Dyson , S Kold , P Poulos .

164 [Wright ()] 'A study of 118 cases of navicular disease: radiological features' I Wright . *Equine Vet. J* 1993. 25
165 p. .

166 [Dyson et al. ()] 'An investigation of the relationships between angle and shapes of the hoof capsule and the
167 distal phalanx' S Dyson , C Tranquille , S Collins , D Parkin , R Murray . *Equine Vet. J* 2011. 43 p. .

168 [Komosa et al. ()] 'Changes in Navicular Bone (ossesamoideumdistale) Shape in Horses as a Result of Patholog-
169 ical Alterations'. M Komosa , H Purzyc , H Fr?ckowiak . *Folia Biologica* 2013. 61 p. .

170 [Zani et al. ()] 'Correlation of radiographic measurements of structures of the equine foot with lesions detected
171 on magnetic resonance imaging'. De Zani , D Polidori , C , Di Giancamillo , M Zani , D . *Equine Vet. J* 2016.
172 48 p. .

173 [Vergara ()] 'Descripción de casclos, herrajes y aplomos en caballoschilenos en la Región de La Araucanía'. I
174 Vergara . *Memoria de Título, Facultad Silvoagropecuaria*, (Temuco-Chile; Temuco, Chile) 2012. Universidad
175 Mayor

176 [Reckmann ()] *Evaluación de Aplomos, Cascos y Herraje en caballosfina sangre criollo Chileno. Memoria
177 de Título, Facultad de Ciencias Veterinarias*, O Reckmann . 1999. Valdivia, Chile. Universidad Austral de
178 Chile

179 [Vargas Rocha et al. ()] 'Evaluating the Measuring software package Metron-PX for morphometric description
180 of equine hoof radiographs'. J Vargas Rocha , C Lischer , M Kummer , M Hässig , J Aüer . *J. Equine Vet.
181 Sci* 2004. 24 p. .

182 [Foot et al. (ed.)] Pastern Foot , Andfetlock . *Clinical Radiology of the Horse*, J Buttler, C Colles, S Dyson, S
183 Kold, P Poulos (ed.) (Oxford) Wiley-Blackwell. p. . (2nd ed)

184 [Kane et al. ()] 'Hoof size, shape, and balance as possible risk factors for catastrophic musculoskeletal injury
185 in Thoroughbred racehorses'. A Kane , S Strover , I Gardner , K Bock , J Case . *Am. J. Vet. Res* 1998. 59 p.
186 .

187 [Turner ()] *Navicular disease management: Shoeing principles, Proceedings of the 32 nd Annual Convention of
188 the American Association of Equine Practitioners*, T A Turner . 1986. Nashville, Tennessee, USA. p. .

189 [Weaver et al. ()] 'Pressure distribution between the deep digital flexor tendon and the navicular bone, and the
190 effect of raising the heels in vitro'. M Weaver , D Shaw , G Munaiwa , D Fitzpatrick , C Bellenger . *Vet.
191 Comp. Orthop. Traumatol* 2009. 22 p. .

192 [Verschooten et al. ()] 'Radiographic measurements from the lateromedial projection of the equine foot with
193 navicular disease'. F Verschooten , J Roels , P Lampo , P Desmet , De Moor , A Picavet , T . *Res. Vet. Sci*
194 1989. 46 p. .

195 [Thieme et al. ()] 'Radiographic measurements of the hooves of normal ponies.The Vet'. K Thieme , A Ehrle , C
196 Lischer . *J* 2015. 206 p. .

197 [Dyson ()] 'Radiological interpretation of the navicular bone'. S Dyson . *Equine Vet. Educ* 2011. 23 p. .

198 [Eliashar et al. ()] 'Relationship of foot conformation and force applied to the navicular bone of sound horses at
199 the trot'. E Eliashar , M Mcguigan , A Wilson . *Equine Vet. J* 2004. 36 p. .

200 [Dik et al. ()] 'Relationships of age and shape of the navicular bone to the development of navicular disease: a
201 radiological study'. K Dik , A Van Den Belt , J Van Den Broek . *Equine Vet. J* 2001. 33 p. .

202 [Dik and Van Den Broek ()] 'Role of navicular bone shape in the pathogenesis of navicular disease: a radiological
203 study'. K Dik , J Van Den Broek . *Equine Vet. J* 1995. 27 p. .

204 [Saunders et al. (ed.) ()] Dyson S ; W B Saunders , St Louis . *Diagnosis and Management of Lameness in the
205 Horse*, M Ross, S Dyson (ed.) 2011. p. . (2nd ed,)

206 [Kummer et al. ()] 'The effect of hoof trimming on radiographic measurements of the front feet of normal
207 Warmblood horses. The Vet'. M Kummer , H Geyer , I Imboden , J Aüer , C Lischer . *J* 2006. 172 p.
208 .

209 [Parks (ed.) ()] *The foot and shoeing. In: Diagnosis and Management of Lameness in the Horse*, A Parks . M.
210 Ross and S. Dyson, W.B. Saunders, St Louis (ed.) 2003. p. . (2nd edn)

211 [Wilson et al. ()] 'The force and contact stress on the navicular bone during trot locomotion in sound horses and
212 horses with navicular disease'. A Wilson , M Mcguigan , L Fouracre , L Macmahon . *Equine Vet. J* 2001. 33
213 p. .

214 [Floyd ()] 'Use of a grading system to facilitate treatment and prognosis in horses with negative palmar angle
215 (heel collapse): 107 cases'. A Floyd . *J. Equine Vet. Sci* 2010. 30 p. .

216 [Holroyd et al. ()] 'Variation in footconformation in lame horseswithdifferentfootlesions'. K Holroyd , J Dixon ,
217 T Mair , N Bolas , D Bolt , F David , R Weller . *Vet. J* 2013. 195 p. .

218 [Fei ()] *Veterinary Regulations, 13 th Edition*, Fédération equestre internationale Fei , Switzerland . 2017. 1042.