

Combined Use of Herb Extract as Anthelmintic for Controlling Gastro-Intestinal Parasites and Hemoto-Biochemical Effect on Sheep

By Shankar Biswas, Jotan Kar, Md Bayzid & Sabuj Kanti Nath

Chittagong Veterinary and Animal Sciences University

Abstract- This study was conducted on sheep for the evaluation of anthelmintic efficacy of some selected indigenous medicinal plants comparison with synthetic anthelmintic of ivermectin (0.1%). Three (3) medicinal plants Neem (*Azadirachta indica*), Bitter gourd (*Momordica charantia*) and Clove (*Eugeniu caryophyllus*) were selected. Crude aqueous extracts (CAE) and Crude methanol extract (CME) were prepared separately for in vivo screening against gastro intestinal parasites in sheep during July to December, 2015. Sixteen (16) naturally gastrointestinal parasites infested sheep (>840 EPG) were selected age between 6 to 24 months. The sheep population was divided into four (4) groups (A, B, C and D) which consisted of four (4) sheep in each group. Group A was control and group B, C and D were treated groups. Stock solution was prepared by following the herbs extraction standard procedure. Combined herbal anthelmintic dose was prepared at the ratio of 1: 2 : 2 (neem: bitter gourd: clove) to get better result instead of single use. In vivo screening, the extracts efficacy was observed @ 1ml/kg body weight at concentration (100 mg/ml) on day 0 and 7. The egg per gram (EPG) load was counted by using the McMaster egg counting technique on day 0, 7, 14, 21 and 28. Continuous reduction of EPG load observed at post-treatment period of group B, C and D (89%, 86 % and 90.7 %), respectively on day 28, in compared to day 0. Significant differences ($p \leq 0.05$) were observed among the treated groups. Conversely, in control group A, the EPG load sharply increased, ranging from 947.5 at day 0 to 1572.5 at day 28 but the differences were not significantly differed ($p \geq 0.05$). The Hb (%), PCV, TLC and TEC increased and ESR (mm/1st hr) decreased that was significant ($p \leq 0.05$) among the treated groups. In leukocytes count, the eosinophils (6.2%) and basophils (0.2%) decreased at the 28th day.

Keywords: *gastrointestinal parasites, medicinal plants, pharmacokinetics, extracts, ivermectin, GIT, EPG.*

GJMR-G Classification: *NLMC Code: QW 70*

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

Combined Use of Herb Extract as Anthelmintic for Controlling Gastro-Intestinal Parasites and Hemoto-Biochemical Effect on Sheep

Shankar Biswas ^a, Jotan Kar ^a, Md Bayzid ^b & Sabuj Kanti Nath ^c

Abstract- This study was conducted on sheep for the evaluation of anthelmintic efficacy of some selected indigenous medicinal plants comparison with synthetic anthelmintic of ivermectin (0.1%). Three (3) medicinal plants Neem (*Azadirachta indica*), Bitter gourd (*Momordica charantia*) and Clove (*Eugenia caryophyllus*) were selected. Crude aqueous extracts (CAE) and Crude methanol extract (CME) were prepared separately for *in vivo* screening against gastro intestinal parasites in sheep during July to December, 2015. Sixteen (16) naturally gastrointestinal parasites infested sheep (>840 EPG) were selected age between 6 to 24 months. The sheep population was divided into four (4) groups (A, B, C and D) which consisted of four (4) sheep in each group. Group A was control and group B, C and D were treated groups. Stock solution was prepared by following the herbs extraction standard procedure. Combined herbal anthelmintic dose was prepared at the ratio of 1: 2 : 2 (neem: bitter gourd: clove) to get better result instead of single use. *In vivo* screening, the extracts efficacy was observed @ 1ml/kg body weight at concentration (100 mg/ml) on day 0 and 7. The egg per gram (EPG) load was counted by using the McMaster egg counting technique on day 0, 7, 14, 21 and 28. Continuous reduction of EPG load observed at post-treatment period of group B, C and D (89%, 86 % and 90.7 %), respectively on day 28, in compared to day 0. Significant differences ($p \leq 0.05$) were observed among the treated groups. Conversely, in control group A, the EPG load sharply increased, ranging from 947.5 at day 0 to 1572.5 at day 28 but the differences were not significantly differed ($p \geq 0.05$). The Hb (%), PCV, TLC and TEC increased and ESR (mm/1st hr) decreased that was significant ($p \leq 0.05$) among the treated groups. In leukocytes count, the eosinophils (6.2%) and basophils (0.2%) decreased at the 28th day. The levels of AST, ALT and creatinine also varied significantly ($p \leq 0.05$) among the treated groups on days 7, 14, 21 and 28 and no toxicogenic effects was found. These findings revealed that adult gastrointestinal parasites are more vulnerable to selected indigenous herbs, no harmful effects on animal body and further may use as herbal anthelmintic at 1ml/kg (100 mg/ml).

Keywords: *gastrointestinal parasites, medicinal plants, pharmacokinetics, extracts, ivermectin, GIT, EPG.*

Author ^a: Department of Physiology, Biochemistry & Pharmacology.
e-mail: sabujkantinath@gmail.com

Author ^a: Department of Microbiology and Veterinary Public Health.

Author ^b: Faculty of Veterinary Medicine.

Author ^c: Department of Animal Science and Animal Nutrition, Chittagong Veterinary and Animal Sciences University, Chittagong, Khulshi-4225, Bangladesh.

I. INTRODUCTION

Helminthosis is a parasitic disease of animal that are major problems of livestock production throughout the world, particularly in tropical and subtropical areas (Hussain *et al.*, 2010). Bangladesh is an agro-based developing country of South Asia which has huge livestock population. Livestock is an important sector which plays important contribution to solve unemployment, poverty alleviation, promote human health by supplying animal protein sources with high calorie value in the forms of meat and milk and help to achieve the sustainable development goals (SDGs). But parasites hinder the growth of livestock production and it has been identified as one of the important limiting factors in small ruminant specially in sheep farming (Hussain *et al.*, 2010). It is estimated over 90% of the endoparasitism cases in small ruminants are due to such as *Haemonchus contortus* and *Trichostrongylus axei* whose are found in the abomasums of small ruminants (Sani *et al.*, 1990). Other most common gastrointestinal parasites are *Paramphistomus* spp, *Gastrophilus* spp, *Cooperia* spp in sheep (Eysker and Ploege, 2000). Clinically it is manifested by reduced weight, roughness hair, anaemic condition and lowered meat and milk production (Githigia *et al.*, 2005). For controlling of helminthes a lot of chemicals have been used in most of the part of the world. Frequently use to livestock development which grow resistance against chemical anthelmintics (Papadopoulos *et al.*, 2012). This view has renewed the interested to study of medicinal plants for the development of novel anthelmintics. Plants have been used for human benefit from time immemorial (Koehn and Carter, 2005). According to the World Health Organization (WHO, 2008), almost 80% of Asia's population has incorporated into their primary modality of health care by using traditional medicine, which has compounds derived from medicinal plants (Hossain *et al.*, 2003). The use of plants as medicine is slowly increasing day by day in the world because they have minor or no side effects (Jordan *et al.*, 2010). Bangladesh is endowed with vast resources of medicinal plants. About 5000 plant species have been estimated to be present in this country and most of them are reported to be used in

traditional medicines for the health care of the millions of people of this country (Rahman *et al.*, 2010). Neem (*Azadirachta indica*) is a tropical evergreen tree native to Indian sub-continent (Girish and Bhat, 2008). The various parts of neem such as fruits, seeds, leaves, bark and roots are used as antiseptic, anthelmintic, antibacterial, antiviral, antiulcer and antifungal, insecticides, pesticides and agrochemicals (Brahmachari, 2004). It has been recommended for using against gastro-intestinal nematodes and related problems in many parts of the world (Biswas *et al.*, 2002; Subapriya and Nagini, 2005). Bitter gourd (*Momordica charantia*) is a traditional medicine of India sub-continent are used to relieve diabetes, as a stomachic, laxative, emetic, anthelmintic agent, for the treatment of cough, respiratory diseases, hyperglycemia, increasing milk flow, intestinal parasites, jaundice, kidney stones (Sampath and Bhowmik, 2010). Clove (*Eugeniu caryophyllus*) used as carminative and to increase hydrochloric acid in the stomach that improve peristalsis (Chrieb *et al.*, 2007). Clove has been used a natural anthelmintic digestive stimulant (Patil *et al.*, 2014). A large number of chemical anthelmintics are now available but most of them are expensive, anthelmintic resistance, high price value and adverse effects (Hannan *et al.*, 2003). The multiple drug resistance not only increases morbidity and mortality but also increase expenditure and prevention and control of parasitic diseases are becoming very difficult day by day. In Bangladesh very limited research works have been conducted on the use of medicinal plants as anthelmintic. This present study was considered with the following objectives i) To evaluate the *in vivo* anthelmintic efficacy from *Azadirachta indica*, *Momordica charantia* and *Eugeniu caryophyllus* against GIT parasites in sheep. ii) To find out the combine *in vivo* efficacy at different concentration from methanol and aqueous treated extract. iii) To evaluate the effects of herb extracts on animal body by analysis the hematological (Hb, PVC, ESR, TEC TLC and DLC) and biochemical (AST, ALT and creatinine) parameters.

II. MATERIALS AND METHODS

a) Study area, study period and study design

The study area was included the sheep farm, a small gabble type farm housing during July to December 2015. An intervention study was conducted on in-vivo screening of herbs extract by using the three indigenous medicinal plants (Neem, Bitter gourd and clove) against gastrointestinal parasites in sheep.

b) Collection and processing of plant materials

Fresh leaves of neem (*Azadirachta indica*) Bitter gourd (*Momordica charantia*) fruits and dry clove (*Eugeniu caryophyllus*) were collected from the local area. Neem and bitter gourd washed thoroughly into running tap water to ensure removing of extraneous

dusts materials (Sujan *et al.*, 2008). Then cut into small pieces and taken a plastic jar. Then perform air-dried and finally sun dried for 3 days on the roof by covering a piece of cloth as prevention oxidation such as antioxidants and others chemical components (Amin *et al.*, 2009). Clove was cleaned and be prepared for use. Dust was prepared from the dried leaves by using blender, mortar and pestle. Dried bitter gourd and clove dust was prepared with the help of a blender (Sujan *et al.*, 2008). A 25-mesh diameter seize was prepared to obtain fine dust and were preserved them into air-tight plastic container until being used (Amin *et al.*, 2009).

c) Preparation of Crude methanol extract (CME)

Crude methanol extract (CME) was prepared from the selected three medicinal herbs according to the standard herb extraction methods (Gilani *et al.*, 2004). Ten (10) gm of each category of dusts were taken into a 500ml beaker and separately mixed with 100ml 70% aqueous methanol. Then the mixtures were stirred for 30 minute by a magnetic stirrer (6000 rpm) and left as such for next 24 hrs (Amin *et al.*, 2009). The extracts were filtered through a fine cloth and final filtration was done through filter paper (Whatman No. 1) (Hussain *et al.*, 2010). Evaporation of water from filtrate by using a vacuum rotary evaporator at 50°C till it reached the final volume of 10 ml (Amin *et al.*, 2009). Stored in a refrigerator in air tightly corked-labeled bottle at 4°C temperature until use (Hussain *et al.*, 2010).

d) Preparation of Crude aqueous extract (CAE)

Crude aqueous extract (CAE) was prepared by using the selected herbs according to the standard herb extraction methods (Gilani *et al.*, 2004). Half kilogram (kg) of each two category (neem and bitter gourd) plants parts and 250 gm of clove were taken separately and washed thoroughly in the running tape water. Each sample was dried in room temperature at 30 minutes and then bitter gourd was cut into small pieces. Then 50 gm of neem leaves was taken in blender's plastic pocket and mixed with 300 ml distilled water and prepared juice (Anonymous, 1996). Then the juice was filtered through a fine piece of porous cloth and final filtration was done by using the filter paper (Whatman No. 1) (Amin *et al.*, 2009). The juice performed evaporation by using evaporator at 50°C till it reached the final volume of 10 ml as condense form. Stored in air tightly corked-labeled bottle at 4°C temperature in a refrigerator until use (Hussain *et al.*, 2010).

e) Preparation of stock solution

Each category of condensed crude aqueous and crude methanol extracts was mixed separately at the ratio of 1: 2: 2 (neem: bitter gourd: clove) as formation of final stock solution. Then preserved in air tight corked-labeled bottle and stored at 4°C temperature in a refrigerator (Hussain *et al.*, 2010). Stock solution was used by diluting with required amount distilled water.

f) Herbal anthelmintic dose

Herbal anthelmintic dose was prepared for *in vivo* screening by adding required amount of distilled water after weighting stock solution (Amin *et al.*, 2009). For *in vivo* screening combine herbal anthelmintic dose was given 1 ml/kg (100mg/ml) body weight for this study.

g) Sampling Strategy

A total number of 33 sheep of both sexes (male and female) and different age (6-24 month) were selected by taking interview with the help of prepared questionnaire. Highly infected (>840 EPG) sixteen (16) sheep were used for this present study. The sheep were divided into four (4) groups; each group was consisted of four (4) populations with the mean EPG are 947.5, 918.7, 923.7 and 911.5 for group A, B, C and D, respectively. Group A was represented as infected control group and B, C and D were treated groups.

h) Treatment intervention, Dose and Dosing

This study was investigated the herbs extracts dose was 1 ml/kg body weight at the concentration of 100 mg/ml (Amin *et al.*, 2009). Ivermectin (1%) was used at 0.2 mg/kg body weight at sub cutaneous route in group B. 1 ml/ kg (100mg/ml) body weight was used as herbal anthelmintic doses in group C and D on day 0 and 7.

i) In vivo screening of plant extracts for anthelmintic efficacy

Oral administration of crude aqueous extract (CAE) and crude methanol extract (CME) at 1 mg/kg were performed and compared with ivermectin (Acimec®- ACI Pharmaceuticals Ltd.) on day 0, 7, 14, 21 and 28 by McMaster egg counting technique. The efficacy of different treatment was determined by faecal egg count reduction test. The effect of herbs extracts on animal body specially circulatory and visceral organs

effects were determined by analysing the haemato-biochemical parameters.

j) Collection, preservation and transportation of samples

Faecal and blood samples were collected from each sheep at day 0, 7, 14, 21 and 28 of the pre and post treatment period. Fresh eight gm fecal samples were collected from rectum in the morning before they are fed and then put the samples immediately into a sterile container containing six ml formalin. Blood samples were collected from jugular vein of each sheep and four ml blood placed into vacutainer tube, containing ethylene diamine tetra-acetic acid (EDTA) and four (4) ml placed in another vacutainer tube without containing EDTA. Samples were then being immediately transferred by transport media to laboratory through ice eskie and stored temporarily in refrigerator before laboratory evaluation.

k) Examination of fecal samples for parasitic egg count

In each case, three gm of fresh faeces was accurately weighed and mixed in 42ml of saturated salt solution (Sodium chloride-400gm, water-10000ml; specific gravity-1.2) while the number of eggs per gram of faeces was obtained by multiplying the total number of eggs counted in the two squares of the counting chambers of the McMaster slide by the dilution factor of 50. Externeous particles were removed and residue was left pass through. Homogenus distribution was performed by well stirring. McMaster slide was filled by using a Pasteur pipette and remove the bubbles. Then second counting chamber was filled in the same way. Then egg floated up and sticks to the cover glass. Characteristics of eggs were identified using standard parasitological criteria described by Soulsby (1986). Then egg was counted by using microscope at low magnification.

$$\text{Number in one gram} = \frac{\text{Number in two chambers}}{0.3} \times \text{Dilution factor}$$

$$\text{*Dilution factor} = \frac{\text{Total volume of suspension in ml}}{\text{Total volume of faeces}}$$

l) Determination of the drug efficacy

During the pre and post-treatment period EPG and clinical performance were monitored. Faeces were examined on day 0, 7, 14, 21 and 28 of post-treatment

period. Efficacy of the drug was calculated as per described formula by Moskey and Harwood (1941).

$$\text{Percent efficacy} = \frac{\text{EPG of faeces before treatment} - \text{EPG of faeces after treatment}}{\text{EPG before treatment}} \times 100$$

m) Evaluation of haematological parameters

EDTA containing blood samples were used to determine the haematological parameters such as Hb, TEC, TLC and DLC with the help of microscope at day 0, 7, 14 and 28 during the treatment period.

n) Evaluation of biochemical parameters

The activities of biochemical parameters like as AST, ALT and creatinine concentration were determined at day 0 and 7, 14 and 28 of post treatment. Serum was separated by centrifugation at 3000 rpm for 15 minutes. The separated serum was used for the estimation of biochemical parameters. AST and ALT activity was determined according to the method described by Reitman and Frankel (1957). Creatinine was determined by the method described by Husdan and Rapoport (1968).

o) Statistical Analysis

The experimental Data were entered into a spread sheet of the MS Excel-2007 Program. Data were sorted and cleaned using the Excel program before exporting to STATA-11 (STATA Corp, USA) for analysis. Descriptive statistics were performed to express the each category as percentage, mean and standard error (SE). p values of ≤ 0.01 and ≤ 0.05 were considered statistically significant.

Table 1: Efficacy of ivermectin, crude aqueous extracts (CAE) and crude methanol extract (CME) of neem, Bitter gourd and clove based on reduction of EPG

Group	Treatment	Pre-treatment	Post-treatment				
			Day 0 (Mean \pm SE)	Day 7 (Mean \pm SE)	Day 14 (Mean \pm SE)	Day 21 (Mean \pm SE)	Day 28 (Mean \pm SE)
A	Control	947.5 \pm 26.2	990.5 \pm 19.8	1162.5 \pm 33	1442 \pm 26.8	1572.5 \pm 22.1	
B	Ivermectin	918.7 \pm 27	586.5 \pm 20.5 (36 %)	294.2 \pm 26.1* (66.8 %)	157 \pm 15.7** (82.8 %)	109 \pm 11.6** (89 %)	
C	Crude aqueous extracts (CAE)	923.7 \pm 18.8	505 \pm 26.4 (45.2 %)	306.5 \pm 17.2 (66.8 %)	236.7 \pm 34** (74.4 %)	130.7 \pm 17.1** (86 %)	
D	Crude methanol extract (CME)	911.5 \pm 29.3	454.5 \pm 24.3 (50.1 %)	279.5 \pm 27.5** (69.3 %)	157 \pm 19.1** (82.7 %)	84 \pm 6.9** (90.7 %)	

Each group consists of four sheep.

SE= Standard error; * = significant differences ($p \leq 0.05$); **= highly significant differences ($p \leq 0.01$)

The maximum reduction rate was observed in Crude methanol extract (90.7 % reduction where the ivermectin treated group (89 % reduction) and crude aqueous extracts (86 % reduction).

b) Effects on haematological parameters

The Hb (gm/dl) in untreated control group it decreased from 8.4 at day 0 to 6.1 at day 28 post-treatment. The Hb contents were increased from 7.8 at day 0 to 8.6 at day 28, 7.9 at day 0 to 8.4 at day 28 and

III. RESULTS*a) In-vivo screening of ivermectin, crude aqueous extracts (CAE) and crude methanol extract (CME) with their efficacy*

The efficacy was observed and compared with the control group A (non-treated) and group B with C and D groups. The efficacy of group C and D was determined at the concentration of 100 mg/ml. Efficacy of ivermectin and herbs extract was considered based on declination of EPG count. The average EPG loads per gm faeces sample were 947.5, 918.7, 923.7 and 911.5 in the group A, B, C and D, respectively on day 0 of the pre-treatment. The EPG load were reduced in different post-treatment period and reached 109 (89 % reduction), 130.7 (86 % reduction) and 84 (90.7 % reduction) for group B, C and D, respectively on day 28, compared to the results obtained at day 0. Highly significant differences ($p \leq 0.01$) were observed among the treated groups. The highest reduction of EPG was observed on day 28 irrespective of treatment groups (Table-1). Conversely, in the control group, the EPG load sharply increased, ranging from 947.5 at day 0 to 1572.5 at day 28 but the differences were not significantly differed ($p \geq 0.05$).

8.2 at day 0 to 9.2 at day 28 in ivermectin, CAE and CME treated groups, respectively. The PCV contents were increased from 28.2 at day 0 to 34.2 at day 28, 29.2 at day 0 to 36.6 at day 28 and 28.6 at day 0 to 35.2 at day 28 in ivermectin, CAE and CME treated groups, respectively. The PCV of the untreated control group reduced significantly ($p \leq 0.01$) in different interval of the post-treatment, compared to 32.8 at the day 0, 23.2 at the day 28 (Table-3). The mean values of ESR (mm/1st hr) were 0.4, 0.7, 0.5 and 0.5 for group A, B, C and D,

respectively at day 0. TEC levels increased among the anthelmintic treated groups and reached from 6.8 at day 0 to 11.4 at day 28, 6.2 at day 0 to 9.2 at day 28 and 7.2 at day 0 to 10.8 at day 28, across the study period in ivermectin, CAE and CME treated groups (Table-2), correspondingly but the variation was not significant

($p \geq 0.05$). The mean value of TLC content decreased from 7.3 at day 0 to 5.4 at day 28. The TEC levels increased among the treated groups and reached from 6.2 at day 0 to 10.1 at day 28, 7.4 at day 0 to 9.6 at day 28 and 6.2 in day 0 to 8.5 at day 28 in ivermectin, CAE and CME treated groups, respectively.

Table 2: Effects of ivermectin, crude aqueous extracts (CAE) and crude methanol extract (CME) on Hb, PVC, ESR, TEC and TLC

Treatment	Parameters	Post - treatment				
		Day 0 (Mean \pm SE)	Day 7 (Mean \pm SE)	Day 14 (Mean \pm SE)	Day 21 (Mean \pm SE)	Day 28 (Mean \pm SE)
Control	Hb	8.4 \pm 0.7	8.14 \pm 0.5**	8.06 \pm 0.4**	7.84 \pm 0.3*	6.11 \pm 0.2*
	PCV	32.4 \pm 01.2	29.8 \pm 0.67**	27.4 \pm 0.5 **	25.2 \pm 0.6**	23.2 \pm 0.7**
	ESR	0.7 \pm 0.2	0.1 \pm 0.1*	0.1 \pm 0.2*	0.1 \pm 0.1*	0 \pm 0*
	TEC	7.90 \pm 0.3	7.45 \pm 0.3**	6.84 \pm 0.1**	6.67 \pm 0.3**	6.24 \pm 0.3**
	TLC	7.29 \pm 0.5	6.95 \pm 0.5**	6.44 \pm 0.5**	5.72 \pm 0.5**	5.34 \pm 0.5**
Ivermectin	Hb	7.8 \pm 0.7	7.78 \pm 0.6	7.8 \pm 0.5	8.2 \pm 0.3	8.6 \pm 0.3
	PCV	28.2 \pm 01.4	29 \pm 1.6	30.8 \pm 1.2	33.2 \pm 1.4	34.2 \pm 1.5
	ESR	0.7 \pm 0.2	0.1 \pm 0.1*	0.1 \pm 0.1*	0.1 \pm 0.2*	0 \pm 0*
	TEC	6.82 \pm 0.6	7.87 \pm 0.7	8.97 \pm 0.7	9.84 \pm 0.6	11.41 \pm 0.7
	TLC	6.22 \pm 0.6	7.16 \pm 0.6	8.28 \pm 0.7	9.02 \pm 0.6	10.07 \pm 0.8
Crude aqueous extracts (CAE)	Hb	7.9 \pm 0.2	7.48 \pm 0.3	7.34 \pm 0.2	7.9 \pm 0.2	8.4 \pm 0.2
	PCV	29.2 \pm 01.2	29.8 \pm 1.1	31.2 \pm 1.2	33.4 \pm 0.9	36.6 \pm 0.7
	ESR	0.5 \pm 0.2	0.3 \pm 0.2	0.2 \pm 0.1*	0.1 \pm 0.1*	0 \pm 0*
	TEC	6.17 \pm 0.3	6.75 \pm 0.3	7.57 \pm 0.4	8.31 \pm 0.5	9.20 \pm 0.5
	TLC	7.4 \pm 0.3	7.94 \pm 0.3	8.57 \pm 0.3	9.11 \pm 0.3	9.64 \pm 0.3
Crude methanol extract (CME)	Hb	8.4 \pm 0.7	8.5 \pm 0.7	8.6 \pm 0.6	8.9 \pm 0.4	9.2 \pm 0.4
	PCV	28.6 \pm 1.5	30.2 \pm 1.2	32.6 \pm 1.3	34.4 \pm 01.1	35.4 \pm 1.1
	ESR	0.5 \pm 0.2	0.2 \pm 0.1*	0.2 \pm 0.1*	0.1 \pm 0.1*	0 \pm 0*
	TEC	7.16 \pm 0.5	7.88 \pm 0.4	8.92 \pm 0.4	9.97 \pm 0.2	10.84 \pm 0.1
	TLC	6.23 \pm 0.7	6.8 \pm 0.7	7.53 \pm 0.7	8.01 \pm 0.6	8.53 \pm 0.6

Each group consists of four sheep.

SE= Standard error; * = significant differences ($p \leq 0.05$); **= highly significant differences ($p \leq 0.01$)

c) *Effects on differential lymphocyte count*

The mean values of lymphocyte (%) were reduced in different post-treatment period and reached from 66.2, 65.2 and 63.2 at the day 0 to 51.7, 52.7 and 52.5 for group B, C and D, respectively on day 28 of post-treatment (Table 3). The average values of neutrophil (%) of sheep were 36.5, 36.7 and 36 at the day 0 and reached 26.75, 28.5 and 29.2 on day 28 of post-treatment of group B, C and D (Table 3). Highly significant differences ($p \leq 0.05$) were observed among treated groups. The average values of monocyte (%) of sheep were 1.5, 1.2 and 1.5 at the day 0 and reached 2.5, 2.2 and 2.5 on day 28 of post-treatment of group B, C and D (Table 3). Highly significant differences ($p \leq 0.05$) were observed among treated groups across the study period, compared to day 0. Conversely, in control group, the values of monocyte increased, ranging from 2.2 at day 0 to 0.2 at day 28. The eosinophil contents were decreased from 7 at day 0 to 5.7 at day 28, 6.7 at day 0 to 6 at day 28 and 7.2 at day 0 to 6.25 at day 28 in ivermectin, CAE and CME treated groups, respectively (Table 3). The eosinophil

percentage of untreated control group increased significantly ($p \leq 0.05$) 8.2 at day 28, compared to 6.2 day 0. The basophil contents were decreased from 0.5 at day 0 to 0.2 at day 28, 0.5 at day 0 to 0.2 at day 28 and 0.5 at day 0 to 0.2 at day 28 in the ivermectin, CAE and CME treated groups. The basophil of the untreated control group declined from 0.7 to 0 on day 28.

Table 3: Effects on differential lymphocytes count in sheep affected with gastro-intestinal parasitic infestation

Treatment	Parameters	Post-treatment				
		Day 0 (Mean±SE)	Day 7 (Mean±SE)	Day 14 (Mean±SE)	Day 21 (Mean±SE)	Day 28 (Mean±SE)
Control	Lymphocyte	63±1.4	63.7±0.9	65.7±0.9	68.7±0.9	70.5±1.2
	Neutrophil	34.5±1.9	36±1.4	38.7±1.5	41.5±2.2	44.2±1.7
	Monocyte	2.25±0.5	1.5±0.5*	0.7±0.5**	0.5±0.5**	0.2±0.5**
	Eosinophil	6.2±0.9	6.5±0.5	6.5±0.5	7±0.8**	8.2±0.5**
	Basophil	0.7±0.6	0.5±0.5	0.2±0.5	0±0	0±0
Ivermectin	Lymphocyte	66.2±2.0	63.2±0.9*	61.2±0.9**	56.2±1.7**	51.7±1.7**
	Neutrophil	36.5±1.2	34.7±0.9	33.75±0.5**	30±1.6**	26.7±0.9**
	Monocyte	1.5±0.5	0.7±0.5	1±0.8	1.5±0.5	2.5±0.5
	Eosinophil	7±1.1	6.7±0.9	6.5±0.5	6±0.8	5.7±0.9
	Basophil	0.5±0.5	0.5±0.5	0.2±0.5	0.5±0.5	0.2±0.5
Crude aqueous extracts (CAE)	Lymphocyte	65.2±2.7	63.7±1.7	60.7±1.8*	55±2.5*	52.7±.95**
	Neutrophil	36.7±1.7	35.2±.55*	33.5±.57**	31.7±1.5**	28.5±2.6**
	Monocyte	1.25±0.5	0.8±0.5	1±0.8	1.7±0.5	2.2±0.5
	Eosinophil	6.7±0.9	6.5±0.5	6±1.1	6.25±1.2	6±0.8
	Basophil	0.5±0.5	0.5±0.5	0.2±0.5	0±0	0.2±0.5
Crude methanol extract (CME)	Lymphocyte	63.2±.9	62.5±1.7	60.1±1.9	56±1.6	52.5±1.2
	Neutrophil	36±1.6	34.5±1.2	33±1.1	31±1.5*	29.2±0.9*
	Monocyte	1.5±0.5	0.7±0.9**	1±0.8**	1.5±1.1**	2.5±0.5**
	Eosinophil	7.2±0.9	6.7±0.1	6.5±1.7	6.25±1.2	6.25±0.9
	Basophil	0.5±0.5	0.5±0.5	0.2±0.5	0±0	0.2±0.5

Each group consists of four sheep.

SE= Standard error; * = significant differences ($p\leq 0.05$); **= highly significant differences ($p\leq 0.01$)*d) Effects on biochemical parameters*

The AST (U/L), ALT (U/L) and creatinine (mg/dl) values were differentiated among the treated and control groups. The levels of AST, ALT and creatinine varied significantly ($p\leq 0.01$) at different observational periods within the ivermectin, CAE and CAME treated groups. The result recommended that the AST, ALT and creatinine level decreased significantly in

ivermectin, CAE and CAME treated groups on days 7, 14, 21 and 28 compared to day 0 (Table 4). The levels of AST, ALT and creatinine also varied significantly ($p\leq 0.01$) among the groups on days 7, 14, 21 and 28. The values of AST, ALT and creatinine were significantly lower in the treatment groups than in the untreated group across the study period.

Table 4: Effects on biochemical parameters in sheep affected with parasitic infestation

Treatment	Parameters	Post treatment				
		Day 0 (Mean±SE)	Day 7 (Mean±SE)	Day 14 (Mean±SE)	Day 21 (Mean±SE)	Day 28 (Mean±SE)
Control	AST	92.9±5.2	95.7±5.4	99.5±6.1	102.2±6.7	105.4±7.1
	ALT	21.7±1.5	22.9±1.4	24.4±1.3	25.2±1.7	26.5±1
	Creatinine	1.6±0.1	1.7±0.1	1.9±0.1	2.0±0.1	2.1±0.1
Ivermectin	AST	99.4±6.7	96.6±6.4**	93.2±6.0**	88.7±5.9**	85.4±5.8**
	ALT	24.5±2.1	22.1±2.0**	19.8±1.7**	17.6±1.6**	16.0±1.2**
	Creatinine	1.7±0.1	1.3±0.1**	1±0.1**	0.8±0.1**	0.7±0.1**
Crude aqueous extracts (CAE)	AST	90.9±3.1	87.4±2.7*	84.4±3.0*	80.6±2.7**	75.4±3**
	ALT	24.5±1.4	23.3±1.3**	21.1±1.0**	19.8±0.8**	18.4±0.5**
	Creatinine	1.8±0.1	1.5±0.2**	1.2±0.1**	1.0±0.2**	0.8±0.2**
Crude methanol extract (CME)	AST	95.7±9.4	92.7±9.5**	89.5±8.8**	86.5±8.4**	82.9±7.0**
	ALT	23.7±2.9	21.7±2.5**	19.5±2.2**	18.3±2.2**	17.1±2.0**
	Creatinine	1.8±0.0	1.6±0.1*	1.4±0.1**	1.1±0.1**	0.8±0.1**

Each group consists of four sheep.

SE= Standard error; * = significant differences ($p\leq 0.05$); **= highly significant differences ($p\leq 0.01$)

IV. DISCUSSION

Efficacy was founded on the basis of reduction of EPG count in comparison with the control and ivermectin treated group with other group on the day 0 to 28 day. The efficacy of neem, Bitter gourd and clove at the form of crude aqueous and methanol treated Extract against parasitic infestation in sheep was satisfactory level which was determinated by *iv vitro* and *in vivo* anthelmintic activity. The present study showed higher efficacy at the concentration of 100 mg/ml than the concentration of 25 mg/ml and 50 mg/ml. The anthelmintic efficacy was compared with corresponded studies Bhalke *et al.*, (2011); Sujon *et al.*, (2008); Rabiu and Subhasish, (2011); Surendra *et al.*, (2013) and Kumar *et al.*, (2014) who found that neem leaves were 85.4% and 89.7% effective at the dose rate of 100 mg/kg body weight, respectively and ivermectin was effective 96.62% against gastrointestinal helminths in sheep. The current result is in agreement with Qamar *et al.*, (2011), after oral administration were observed and compared with the ivermectin. Efficacies of drug and herbs extract were considered based on declination of EPG count. In the study the maximum reduction level of ivermectin treated group (89 %) efficacy was observed which was close to the following author activites. The result is also consistent with Sujon *et al.*, (2008) and Jaiswal *et al.*, (2013) who found efficacy of Ivermectin and neem 94% and 81%, respectively. The maximum EPG reduction rate was observed in aqueous treated extracts 86 % reduction at the concentration of 100 mg/ml by oral administration of 1 ml per kg body weight. The control group A where the EPG count increased from 947.5 at the day 0 to 1572.5 at the day 28. On the other hands the maximum EPG reduction rate was observed in methanol treated extracts 88.6 % reduction at the concentration 100 mg/ml by oral administration of 1 ml per kg body weight. Costa *et al.*, (2008) and Marta *et al.*, (2008) reported neem, bitter gourd and clove extract were very effective in eliminating parasitic infection in sheep. The other authors of the same kinds of work against gastrointestinal parasites were investigated Das *et al.*, (2000); Brelin, (2002); Mishra *et al.*, (2005); Saha *et al.*, (2006); Amin *et al.*, (2008) found almost similar results. Frequently reduction of EPG indicates the effectiveness of both aqueous and methanol treated extracts against gastrointestinal parasites in sheep. So the present work proved the anthelemintic property of neem, bitter gourd and clove in response to the existence of popular reports of such activity in animals.

a) Effects on haematological parameters

The hematological parameters were analyzed on the comparison with control and treated groups (Table 2). The following investigated blood parameters such as PCV, Hb, TEC and TLC were improved

significantly in parasites affected sheep with the anthelmintic (ivermectin) and selected herbs extracts treatment. Due to reduction of blood-sucking parasites (*Haemonchus* spp) and other gastrointestinal parasites infections in sheep the blood parameters such as Hb, PCV, TEC and TLC increasing day by day. The ESR percentages were decreased in control group due to blood cell destruction by comparison on the day 0 to day 28 (Table 2). The effectiveness of herbs extracts both aqueous and methanol treated indicated the stimulatory effect on the hemopoietic system. The rise in mean PCV after treatment might be associated with the increase of Hb%, as these parameters are closely interrelated with each other. The improvement of blood PCV, Hb, TEC and TLC levels in the treated sheep might be due to the elimination of external and internal parasites, which was expected. Similar kinds of improvement of these blood parameters after anthelmintic treatment have been previously reported in sheep Amin *et al.*, (2008); Aruwayo *et al.*, (2011) and Rahman (2002) observed extract of neem leaves increased TEC, Hb content on day 21 of post-treatment in goat. Similarly, (Rob *et al.*, 2004) stated that Hb content, PCV, TEC and TLC increased in sheep on day 28. (Kumar *et al.*, 2003) reported that fall of Hb, PCV, TEC and TLC might be due to disturbance caused by worms rather than a direct blood lost. Reduction of ESR may be due to recovery from inflammation, which was produced by parasitic infestation. The result of the current study is consistent with Rahman *et al.*,(2009) who found the ESR values was increased up to 5.19 mm on day 28 in untreated groups. Similar findings have been reported by (Kumar *et al.*, 2003) and Deka and Borah (2008). In the study ESR and PCV values significantly ($p \leq 0.05$) increased in treated group which is similar to the finding of Nayaka *et al.*, (2013). The effects of herbs extracts as anthelmintic in animal body were indicated that the Eosinophil, basophil were decreased on the day 0 to on the day 28. On the other hand the monocytes count was increased day by day. In this study has showed the eosinophil and basophil were decreased and monocyte levels were increased which indicates that the herbs extracts have effectiveness against gastrointestinal parasites in sheep. The percentages of eosinophil, basophil were decreased and monocytes were increased after post-treatment in parasitic infections reported by (Aruwayo *et al.*, 2011). Similarly, Biu *et al.*, (2009) reported that the mean values for monocytes, basophils and eosinophils increased significantly with increasing dose of anthelmintics while mean values for lymphocytes and neutrophil decreased significantly.

b) Effects on biochemical parameters

Effect of herbs extracts on animal body in the levels of AST, ALT and creatinine in anthelmintic treated groups decreased, which indicates the removal of

parasites from the affected sheep. Furthermore, it indicates that treatment with ivermectin, aqueous and methanol treated extracts are not toxic to the liver and kidney. By external palpation of liver and kidney in sheep are normal in size and shape. No debilitating lesion was founded on the liver. These results are in near similar with earlier reports (Sokumbi and Egbunike, 2000; Gupta *et al.*, 2005).

V. CONCLUSION

Efficacy of herb extracts and drugs were measured *in vitro* and *in vivo* after the preparation and use of various concentration viz. 25 mg/ml, 50 mg/ml and 100 mg/ml of crude aqueous extract (CAE) and crude methanol extract (CME). *In vitro* screening the anthelmintic efficacy (96.6%) of methanol extract at the concentration of 100 mg/ml was higher than the aqueous extracts (86.6%). Highly parasitic infested sheep (16) age between 6 to 24 months were selected based on EPG count (>840 EPG) indicating anemic condition. *In vivo* screening of aqueous extracts and methanol extract at the concentration of 100mg/ml were reasonably effective 86 % and 88.6 % reduction of EPG. By hemato-biochemical parameters analysis the percentages of eosinophil and basophil were decrease which indicates reduction of endoparasites and correction of anemia. Therefore, these herbs can be used as alternatives to conventional anthelmintic and this could reduce the unnecessary use of conventional drugs which make parasites more resistant to the drugs.

ACKNOWLEDGEMENTS

I would like to praise to acknowledge the to the Dept. of Animal Science and Animal nutrition for giving their special support and take care for sheep farm management. I give special thanks to directorate of research and extension, CVASU and staff and teachers of Dept. of Pathology and Parasitology for laboratorial help.

REFERENCES REFERENCIAS REFERENCIAS

1. Akbar MA, Ahmed TU, Mondal MH. 2006. Improving animal productivity and reproductive efficiency: Development and testing medicated urea molasses until nutrient blocks in rural farms of Bangladesh. Improving animal productivity by supplementary feeding of multi nutrient blocks, controlling internal parasites and enhancing utilization of alternate feed resources (pp.14-27). Austria: International Atomic Energy Agency.
2. Al-Shaibani, I.R.M.S. 2009. Epidemiological study and evaluation of anthelmintics activity of indigenous plants on gastrointestinal nematodes of sheep in Hyderabad district. Sindh Agriculture University, Tandojam, Pakistan.
3. Amin MR, Mostafa M, Awal MA, Hossain A. 2008. Effects of neem (*Azadirachta indica*) leaves against gastrointestinal nematodes in cattle. Journal of Bangladesh Agricultural University, 6(1): 87-99.
4. Amin MR, Mostafa M, Hoque ME and Sayed MA. 2009. *In vitro* anthelmintic efficacy of some indigenous medicinal plants against gastrointestinal nematodes of cattle. Journal of Bangladesh Agricultural University, 7(1): 57-61.
5. Aruwayo A, Maigandi SA, Malami BS, Daneji AI. 2011. Haematological and Biochemical Parameters of Uda Lambs Fed Graded Levels of Alkali -Treated Neem Kernel Cake. Nigerian Journal of Basic and Applied Science, 19(2): 277-284.
6. Bernal J, Mendiola JA, Ibanez E, Cifuentes A. 2011. Advanced analysis of nutraceuticals. Journal of Pharmaceutical and Biomedical Analysis, 55: 758-774.
7. Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. 2002. Biological activities and medicinal properties of Neem (*Azadirachta indica*) Clinical Science, 82: 1336-1345.
8. Biu A, Yusufu SD, Rabo JS. 2009. Studies on the effects of aqueous leaf extracts of neem (*Azadirachta indica* A. Juss) on haematological parameters in chicken. African Scientist, 10(4): 189-192.
9. Brahmachari G. 2004. Neem - An omnipotent plant: A retrospection. Chembiochem, 5: 408-421.
10. Brelin D. 2002. Evaluation of the neem tree (*Azadirachta indica*) as an alternative anthelmintic for helminth control in small ruminants in Malaysia. Minor Field Studies International Office, Swedish University of Agricultural Sciences. 196: 31.
11. Cava R, Nowak E, Taboada A, Marin-Iniesta F. 2007. Antimicrobial activity of clove and cinnamon essential oils against *Listeria monocytogenes* in pasteurized milk. International Journal Food Protection .70(12): 2757-2763.
12. Chaieb, K., Hajlaoui, H., Zmantar, T., Kahla-Nakbi, A. B., Rouabchia, M., Mahdouani, K. and Bakhrouf, A. The chemical composition and biological activity of clove essential oil, *Eugenia caryophyllata* (*Syzygium aromaticum* L.). *Phytother. Res.* 2007, 21, 501-506.
13. Coffin DL. 1955. Manual of Veterinary Clinical Pathology. Third Ed. Cointock Publishing Associates. Inc. Ithaca New York, 116-157.
14. Costa CTC, Bevilqua CML, Camurca-Vasconcelos ALF, Maciel MV, Morais SM, Castro CMS, Braga RR, Oliveira LMB. 2008. *In vitro* ovicidal and larvicidal activity of *Azadirachta indica* extracts on *Haemonchus contortus*. *Small Ruminant Research*, 74: 284-287.
15. Eisa E, Mukhtar I. 2007. Antimicrobial activity of Neem (*Azadirachta indica*) callus and leaf extracts.

- African Journal of Microbiology Research, 11(2): 53-61.
16. Eysker M, Ploeger HW. 2000. Value of present diagnostic methods for gastrointestinal nematode infections in ruminants. *Parasitology*, 120 (Suppl): S109–S119.
17. Gilani AH, Ghayur MN, Saify ZS, Ahmad SP, Choudary MI, Khalid A. 2004. Presence of cholinomimetic and acetylcholinesterase inhibitory constituents in betel nut. *Life Science* 75: 2377–2389.
18. Girish K, Bhat SS. 2008. Neem -A Green Treasure. *Electronic Journal of Biology*, 4(3):102-111.
19. Githigia, S.M, Thamsberg, S.M, Maing N. and Munyua, W.K.(2005). The epidemiology of gastrointestinal nematodes in goats in the low potential areas of Thimka district, Kenya. *Animal Health Production Africa*. 53,5-12.
20. Gupta RK, Kersari AN, Murthy PS, Chandra R, Tandon V, Watal G. 2005. Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of *Annona squamosa L.* in experimental animals. *Journal of Ethnopharmacology*, 99(1): 75-51.
21. Hannan ASMA, Mostofa M, Hoque MA, Alim MA, Saifuddin AKM. 2003. Efficacy of ivermectin against naturally occurring gastrointestinal nematodes and ectoparasites of sheep. *Bangladesh Journal of Animal Science*, 32(2): 39-45.
22. Hossain Z. 2003. People's awareness about medicinal values of plants and prospect in Bangladesh. BRAC, Research and Evaluation division, Dhaka, Bangladesh.
23. Husdan H, Rapoport A.1968. Estimation of creatinine by the Jaffe reaction. A comparison of three methods. *Clinical Chemistry*, 14: 222-238.
24. Hussain A, Khan MN, Sajid MS, Iqbal Z, Khan MK. 2010. In vitro screening of the leaves of *Musa paradisiaca* for anthelmintic activity. *The Journal of Animal & Plant Sciences*, 20(1): 5-8
25. IUCN. 2003. The World Conservation Union. Bio-ecological Zones of Bangladesh., Bangladesh.
26. Jaiswal AK, Sudan V, Shanker D, Jaiswal AK, Kumar P. 2013. Emergence of Ivermectin resistance in gastrointestinal nematodes of goats in a semi-organized farm of Mathura district. *Indian Veterinarski Arhiv*, 83(3): 275-280.
27. Jordan SA, Cunningham DG, Marles RJ. 2010. Assessment of herbal medicinal products: Challenges, and opportunities to increase the knowledge base for safety assessment. *Toxicology and Applied Pharmacology*, 243:198–216.
28. Joshi KK. 2001. Genetic Heritage of Medicinal and Aromatic Plants of Nepal Himalayas. Kathmandu: Buddha Academic Publishers and Distributors Pvt. Ltd.
29. Kala CP, Sajwan. 2007. Revitalizing Indian systems of herbal medicine by the National Medicinal Plants Board through institutional networking and capacity building. *Current Science*, 93 (6): 797-806.
30. Koehn FF, Carter GT. 2005. The evolving role of natural products in drug discovery. *Nature Reviews Drug Discovery*, 4(3): 206-220.
31. Kumar DS, Sharathnath KV, Yogeswaran P, Harani A, Sudhakar K, Sudha P, et al. 2010. A medicinal potency of *Momordica charantia*. *International Journal of Pharmacological Science*3(1): 95-100
32. Kumar RV, Gupta VK. 2002. Thrust on Neem is need of today. In: Employment news, 20-26. New Delhi, India.
33. Marta MC, Souza, Claudi ML, Bevilaqa, Selene M, Morais, Cicero TC. 2008. Anthelmintic acetogenin from *Annona squamosa L.* *Annals of the Brazilian academy of sciences*, 80(2): 271-277.
34. Mishra V, Parveen N, Singhal KC. 2005 Antifilarial activity of *Azadirachta indica* on cattle filarial parasite *Setaria cervi*. *Fitoterapia*, 76: 54-61.
35. Moskey HE, Harwood PD. 1941. Methods of evaluating the efficacy of anthelmintics. *American Journal of Veterinary Research*, 2: 55-59.
36. Papadopoulos E, Gallidis E, Ptochos S. 2012. Anthelmintic resistance in sheep in Europe: A selected review. *Veterinary Parasitology*, 189: 85– 88.
37. Patil, Kadam JS, Chavhan JA and Salunkhe AJ. 2014. Anthelmintic Activity of Ethanolic Bud Extract Of *Syzygium Aromaticum* Against *Pheritima Posthuma*. *Journal of Medicinal Plant Research*, 3 (4): 294-310.
38. Qamar MF, Maqbool A, Ahmad N. 2011. Comparative efficacy of allopathic, herbal, homeopathic and effective micro-organisms for the control of haemonchosis in sheep & goats. *Science International*, (Lahore). 23(1):43-48.
39. Rabiu H, Subhasish M. 2011. Investigation of in Vitro Anthelmintic activity of *Azadirachta indica* leaves. *International Journal of Drug Development & Research*, 3 (4): 94-100.
40. Rahman M. 2002. In vitro and in vivo anthelmintic effects of some plants against gastrointestinal nematodes of goats. M.S. Thesis, submitted to the Department of Parasitology, Bangladesh Agricultural University, Mymensingh.
41. Saha BN, Islam W, Khan AR. 2006. Effect of Azadirachtin on the growth and development of the pulse beetle, *Callosobruchus chinensis* L. *Journal of the Asiatic Society of Bangladesh, Science*, 32 (1): 69-65.
42. Sani RA, Rajamanickam C. 1990. Gastrointestinal parasitism in small ruminants. In Proc. Workshop on Integrated tree cropping and small ruminant production system. Medan, Indonesia.

43. Schalm OW, Jain WC, Carroll EJ. 1975. Veterinary haematology, 3rd Edition Lea and Febiger, Philadelphia. p.807.
44. Simmons A, Leverton P, Elbert G. 1974. Normal laboratory values for differential white cell counts established by manual and automated cytochemical methods (Hemalog D). *American Journal of Clinical Pathology*, 27: 55.
45. Sokumbi OA, Egbunike GN. 2000. Physiological responses of growing rabbits to neem (*Azadirachta indica*) leaf meal based diets. *Haematology and serum biochemistry*. *Tropical Journal of Animal Production Investment*, 3: 81-87.
46. Subapriya R, Nagini S. 2005. Medicinal properties of neem leaves: a review. *Current Medicinal Chemistry - Anti-Cancer Agents*, 5: 149-156.
47. Sujon MA, Mostofa M, Jahan MS, Das AR, Rob S. 2008. Studies on medicinal plants against gastrointestinal nematodes of goats. *Bangladesh Journal of Veterinary Medicine*, 6(2): 179-183.
48. World Health Organization (WHO). 2008. Traditional medicine. Available from: <http://www.who.int/meadiacentre/factsheets/fs134/en/>