

1 In Vitro and In-Vivo Studies of Tolmetin Release From Natural
2 Gel Base Extracted From Okra Seed *Abelmoschus Esculentus*
3 That Cultivated In Egypt

4 Sayed H. Auda¹

5 ¹ Al-Azhar University

6 *Received: 25 December 2011 Accepted: 14 January 2012 Published: 26 January 2012*

7

8 **Abstract**

9 Tolmetin is a non-steroidal anti-inflammatory drug commonly used for the treatment of
10 rheumatoid arthritis, osteoarthritis, ankylosing spondylitis and periarticular disorders. In this
11 work, we prepared and evaluated tolmetin release from mucilage extracted from Okra
12 (*Abelmoschus esculentus* L) as a natural gel base. The in vitro release of tolmetin from
13 natural gel base was studied using Franz diffusion cells with cellophane membrane placed
14 between the donor and the receptor compartments. Possibility of solid state changes of
15 Tolmetin with Okra seed mucilage (OSM) was studied using differential scanning calorimetry
16 (DSC). The anti- inflammatory activity of tolmetin from natural gel base was evaluated using
17 the carrageenan induced rat paw edema method. The results revealed that the in-vitro release
18 of tolmetin from OSM without any additives was about 75

19

20 **Index terms**— Okra seed, mucilage, Natural Gel base, Tolmetin, In-vitro and In-vivo studies.
21 In Vitro and In-Vivo Studies of Tolmetin Release From Natural Gel Base Extracted From Okra Seed
22 (*Abelmoschus Esculentus*) That Cultivated In Egypt S. Abd El Rasoul ? , Sayed H. Auda ? & Alaa M.
23 Nafady ? Abstract -Tolmetin is a non-steroidal anti-inflammatory drug commonly used for the treatment of
24 rheumatoid arthritis, osteoarthritis, ankylosing spondylitis and periarticular disorders. In this work, we prepared
25 and evaluated tolmetin release from mucilage extracted from Okra (*Abelmoschus esculentus* L) as a natural gel
26 base. The in vitro release of tolmetin from natural gel base was studied using Franz diffusion cells with cellophane
27 membrane placed between the donor and the receptor compartments. Possibility of solid state changes of Tolmetin
28 with Okra seed mucilage (OSM) was studied using differential scanning calorimetry (DSC).

29 The anti-inflammatory activity of tolmetin from natural gel base was evaluated using the carrageenan induced
30 rat paw edema method. The results revealed that the in-vitro release of tolmetin from OSM without any additives
31 was about 75 % after 180 minutes. The drug was transformed from solid state to amorphous one indicating that
32 there is a physical interaction between tolmetin and OSM in gel form. At the same time there is no interaction
33 was observed in case of physical mixture. Finally, tolmetin from OSM gel base gave a significant antiinflammatory
34 activity when compared with reference.

35 **Keywords** : Okra seed, mucilage, Natural Gel base, Tolmetin, In-vitro and In-vivo studies.

36 olmetin is a pyrrole, acetic acid derivative, nonsteroidal anti-inflammatory drug commonly used for the
37 treatment of rheumatoid arthritis, osteoarthritis, ankylosing spondylitis and periarticular disorders. It inhibits
38 cyclooxygenase activity with a reduction in the tissue production of prostaglandins. [1,2] A topical preparation
39 of tolmetin would allow the administration of tolmetin in those patients who cannot tolerate the drug orally
40 because of its adverse GIT effects. Chemical structure of Tolmetin is shown in figure ??.

41 It is well known that transdermal gels are more popular among all topical preparations due to ease of application
42 and better percutaneous absorption than other semisolid dosage forms. Although many researches concerning
43 the topical application of nonsteroidal anti-inflammatory drugs are existing in the literature, a few records are

4 E) DRUG CONTENT DETERMINATION

44 available regarding the release study of tolmetin from gel bases. [3] The synthetic polymers have certain
45 disadvantages such as high cost, toxicity, environmental pollution during synthesis, side effects, less patient
46 compliance. [4] At the same time, the advantages of natural plant based materials include low cost, natural
47 origin, renewable source, environmental-friendly processing, local availability (especially in developing countries),
48 better patient tolerance as well as public acceptance, from edible sources. [5] Mucilage is soluble hydrophilic
49 polysaccharides and complex polymers of carbohydrate with branched structures. [6] It consists of polyuronides
50 and galacturonides that chemically resemble the pectic compounds; upon hydrolysis, arabinose, galactose, glucose,
51 mannose, xylose and various uronic acids are the most frequently observed components. [7] High concentration
52 of hydroxyl groups in the polysaccharide has high water binding capacity. The complex polysaccharide is a part
53 of dietary fibers which can absorb a large amount of water. It can dissolve and disperse, and can form viscous or
54 gelatinous colloids. [8] Moreover, mucilage is, being used for their binding, thickening, stabilizing and humidifying
55 properties in medicine. [9] Okra seed mucilage (OSM) is extracted from the seeds of *Abelmoschus esculentus* L.
56 which is a common herbaceous annual occurring weed throughout Egypt.

57 Up to date, no research articles have dealt with formulation and evaluation of tolmetin from natural gel
58 bases. The aim of this work was to prepare topical gel of tolmetin using natural gel base extracted from seeds
59 of *Abelmoschus esculentus*. The prepared gel formulation was evaluated for in vitro release study and anti-
60 inflammatory activity using the carrageenan induced rat paw edema method.

61 1 a) Materials

62 Tolmetin sodium salt was kindly provided by Minapharm Co. for pharmaceuticals (10th Ramadan, Cairo, Egypt).
63 Standard cellophane membrane of molecular cut of rang = 1200, carrageenan, urethane (Sigma Chem. Co., USA).
64 Male albino rats weighing 90-110 gm (Animal house, Assiut University, Assiut, Egypt). Okra plant (*Abelmoschus*
65 *esculentus* L) was cultivated on the Experimental station, Department of Pharmacognosy, Faculty of Pharmacy,
66 Al-Azhar University, Assiut, Egypt. A voucher specimen was kept on Department of Pharmacognosy, Faculty of
67 Pharmacy, Al-Azhar University, Assiut, Egypt.

68 2 b) Extraction of Okra Mucilage

69 Seeds of *Abelmoschus esculentus* L. (250 g) was powdered and defatted by soxhlet extraction using petroleum
70 ether as a solvent (1.5 L, five times) at temperature 60-70°C this was repeatedly extracted with stirring using
71 double distilled water and boiled for 5hrs till the complete mucilage was extracted and a slurry was formed. The
72 slurry was cooled and kept in refrigerator overnight for settling protein and fibers so that the undisclosed portion
73 was settled out. The mucilaginous solution was then filtered off and concentrated at 60oC on water bath until
74 the volume reduced to one third of its original volume. Solution was cooled down to room temperature and
75 was poured into thrice the volume of acetone by contentious stirring. The precipitate was washed repeatedly
76 with acetone, absolute ethanol, diethyl ether and petroleum ether and dried at 50°C under vacuum. The dried
77 material was powdered, sieved and kept in desiccators. [10,11,12,13, ??4] c) Preparation of Tolmetin Free Acid
78 Tolmetin free acid was prepared from its sodium salt by dissolving a weighed quantity of the salt in deionized
79 water and precipitating out the free acid with an excess of concentrated hydrochloric acid. The precipitate was
80 then washed with copious amounts of deionized water to remove unreacted hydrochloric acid. The tolmetin free
81 acid was dried under vacuum at 40oC, to a constant weight. The free acid was obtained and then examined by
82 melting point method, UV assay and infrared spectrum.

83 3 d) Preparation of Topical Gel

84 Gel was prepared by cold mechanical method. [15] Briefly, required quantity of OSM (20 % w/w) was weighed
85 and slowly sprinkled on the surface of purified water for 2 hours. After which it was continuously stirred by
86 mechanical stirrer till become completely soaked in water. Triethanolamine was added with continuous stirring
87 to neutralize the gel. Finally tolmetin was added to the natural gel with continuous stirring until the drug
88 completely dispersed in the gel base. The prepared gel base was packed in wide mouth screw capped glass
89 container and kept in dark and cool place.

90 4 e) Drug Content Determination

91 Drug content of medicated gel was determined by dissolving accurately weighed (1gm) of gel in phosphate buffer
92 of pH 5.5. After suitable dilution, absorbance was recorded at 324 nm. [16] f) In-Vitro Release Studies

93 The release of tolmetin from gel bases were studied using Franz diffusion cells with cellophane membrane placed
94 between the donor and the receptor compartments. The membrane was soaked in sorenson's buffer overnight
95 and then washed before use. A known amount (1 gm) of gel was added to the donor side and a known volume
96 of Sorenson's buffer was added to the receptor side.

97 The receptor compartments were maintained at 32oC ± 0.5 throughout the experiment. At predetermined time
98 intervals, a sample was removed from the receptor compartments and analyzed spectrophotometrically at 324 nm.
99 The withdrawn samples were replaced immediately with an equal volume of fresh buffer. A control experiment
100 was carried out using gel formulation without drug in order to ascertain any interference in the analysis by either
101 the formulation or the membrane. g) Differential Scanning Calorimetry (DSC) Differential scanning calorimetry

102 (DSC) was recorded using T.A. 501 Differential scanning calorimeter (Shimadzu Co., Japan). Samples of about
103 5 mg were accurately weighed and encapsulated into flatbottomed aluminum pans with crimped-on lids. The
104 scanning speed of 10°C/min from 0°C to 200°C was used in presence of nitrogen at flow rate of 40 ml/min.

105 **5 h) Preparation of Samples for DSC**

106 The prepared plain and medicated gel base (5%) were dried in a desiccator for one week. After complete dryness,
107 the co-precipitate was scratched, powdered and stored in capped amber-glass containers until use. For preparation
108 of physical mixture, Samples having the same composition of the medicated gel base were prepared by simply
109 mixing the triturated powdered drug and the tested mucilage powder in a porcelain mortar. The mixtures were
110 then sieved, and the particles below 420 μ m were collected and stored in capped amber-glass containers until use.
111 The samples were analyzed within one week after their preparation.

112 **6 i) Anti-Inflammatory Effects of OSM Gel Containing**

113 Tolmetin on Carrageenan-Induced Paw Edema

114 The experiment was conducted on male albino rats weighing 90-110 g divided into four groups each group
115 consisting of 5 rats. Group 1: control, injected with carrageenan. Group 2: received plain natural gel base (without
116 drug). Group 3: received medicated natural gel base (5%). Group 4: received commercial indomethacin synthetic
117 gel base (Indotopic®, Ramida Pharmaceuticals Co. Cairo, Egypt). Paw edema was induced by subcutaneous
118 injection of 0.1 ml of 1% carrageenan in physiological solution in the plantar surface of rat hind paw. [17] The
119 rats were fasted for 16 hrs before the experiment with free access to water. The rats were anaesthetized by
120 urethane (0.5 ml intraperitoneal) then 100 mg of each topical preparation were applied to the right hind of the
121 rat. The thickness of rat hind was determined before and immediately after injection of carrageenan. Subsequent
122 measurements for resulted edema were carried out at 0.5, 1, 2, 3, 4, 5 and 6 hrs after induction of edema.
123 The anti-inflammatory effect was expressed as percentage inhibition of edema thickness compared with control
124 according to the following equation; % inhibition of edema = $(T_o - T_t) / T_o \times 100$. Where T_o is the edema
125 thickness in control group, T_t is the edema thickness in treated group. [18,19] a) In-Vitro Release Studies

126 The in vitro release study of tolmetin from natural gel base was investigated in table (1) and graphically
127 represented in figure (1). The results indicated that tolmetin released freely from natural gel base without
128 any addition of penetration enhancers (about 75% after 3 hrs). This suggests that tolmetin free acid forms a
129 hydrophobic complex with TEA, whereas, the OSM is hydrophilic. Hence, an increase in the aqueous content
130 of the gels may have possibly increased the escape tendency of the relatively hydrophobic drug-TEA complex.
131 ??3] b) Differential Scanning Calorimetry DSC In order to shed a light on the possibility of solid state changes
132 of tolmetin free acid, when dispersed in mucilage gel base extracted from Okra, DSC were performed on 5%
133 medicated gel after complete dryness, its corresponding physical mixture and plain gel base after its dryness as
134 well as the individual solid components. The DSC scan of untreated tolmetin free acid showed an endothermic
135 peak (Figure ??A), at 160°C which is corresponding to tolmetin free acid melting point. DSC tracing of OSM
136 in solid powder and gel state exhibited a broad shallow peak at about 78°C (Figure ??B and C). Concerning the
137 corresponding physical mixture (Figure ??D), characteristic endothermic peak of tolmetin were seen again at 158
138 °C but with low intensities. Upon scanning the DSC thermogram of tolmetin -OSM 5%, a complete disappearance
139 of the drug fusion peaks (Figure ??E), suggesting a homogeneous dissolution of the drug in the polymer matrix.
140 [20,21] Any abrupt or drastic change in the thermal behavior of rather the drug or excipient may indicate a
141 possible drug-polymer interaction. [22] The endothermic peak of pure drug was observed at about 160° (figure
142 ??A). However in the thermogram of the medicated gel there was no endothermic peak of the drug melting,
143 suggesting the amorphous state of the drug in the microparticles. Pignatello et al. [23] studied the thermal
144 behavior of Diflunisal-Eudragit RS100 and Eudragit RL100 coprecipitates (1:5). They found that a blend of the
145 drug with polymers resulted in the disappearance of such a fusion peak, replaced by broad endothermic signals
146 exhibiting a reduced melting endotherm and a lowering of the peak temperatures. These findings suggest that
147 Diflunisal is able to dissolve in the polymer to a certain degree to form a solid solution.

148 **7 c) Anti-Inflammatory Activity**

149 The effect of topical formulation on the antiinflammatory activity of the drug was studied. The percent inhibition
150 of carrageenan induced edema by 5% tolmetin in natural gel base and commercial indomethacin synthetic gel
151 base is graphically represented in Fig. (4). the edema swelling was inhibited in all groups of rats either treated
152 with the medicated natural gel base or in the group received topical indomethacin as standard drug. Three
153 hours after carrageenan injection the percent edema inhibition was 43.30 and 48.70 % for medicated natural gel
154 base and standard indomethacin respectively. The slight increased inhibition effect in case of reference group
155 may be attributed to the incorporation of penetration enhancers. The group treated with natural gel base
156 showed the highest inhibitory effect at 5 hrs after injection of carrageenan (percentage of edema inhibition was
157 58.59%). These results were nearly equal to inhibitory effect that obtained in group treated with commercial
158 indomethacin gel as a reference (percentage of edema inhibition was 64.04 %). The results of this study show the
159 possibility of commercial formulating tolmetin in natural gel topical formulation, which can produce a desirable
160 local anti-inflammatory effect. It has been reported that topical application of NSAID containing formulations in

7 C) ANTI-INFLAMMATORY ACTIVITY

161 animals can markedly attenuate inflammation pain and related behaviors. [24,25,26] Tolmetin gel is prepared by
162 using Okra seed mucilage (OSM) as gel base. The prepared gels are evaluated for in vitro release, possibility of
163 interaction between the drug and base and the anti-inflammatory activity. From the results, it has been observed
164 that, the in-vitro release of tolmetin from OSM without any additives was 75 % after 180 minutes. The drug was
165 transformed from solid state to amorphous one indicating that there is a physical interaction between tolmetin
166 and OSM in gel form. At the same time there is no interaction was observed in case of physical mixture.

167 Tolmetin from OSM gel base gave a significant antiinflammatory activity when compared with reference. It
168 can be concluded that tolmetin-natural mucilage gel for use as an anti-inflammatory dosage form is possible and
may be applicable in future. ^{1 2 3}

2

Figure 1: Figure 2

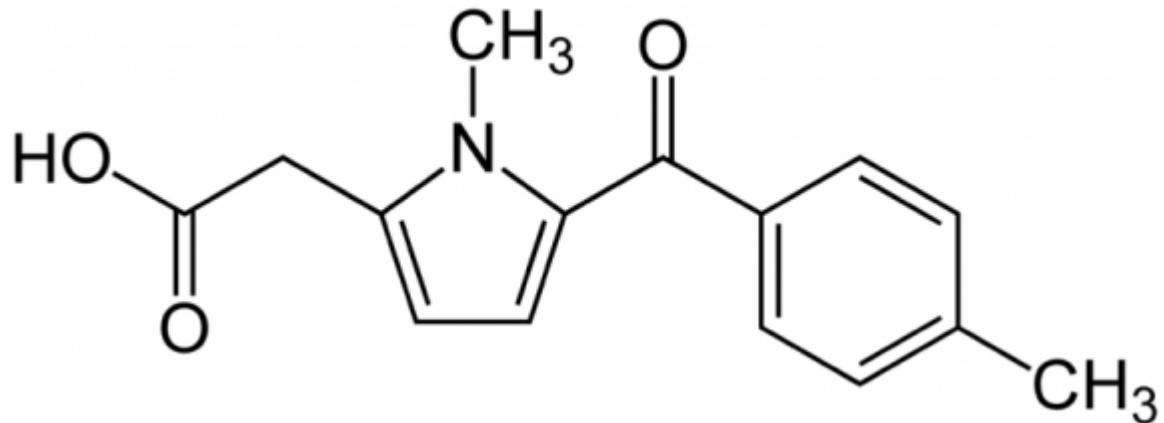


Figure 2:

169

¹© 2012 Global Journals Inc. (US)

²Volume XII Issue II Version I © 2012 Global Journals Inc. (US) March

³Volume XII Issue II Version I © 2012 Global Journals Inc. (US) March

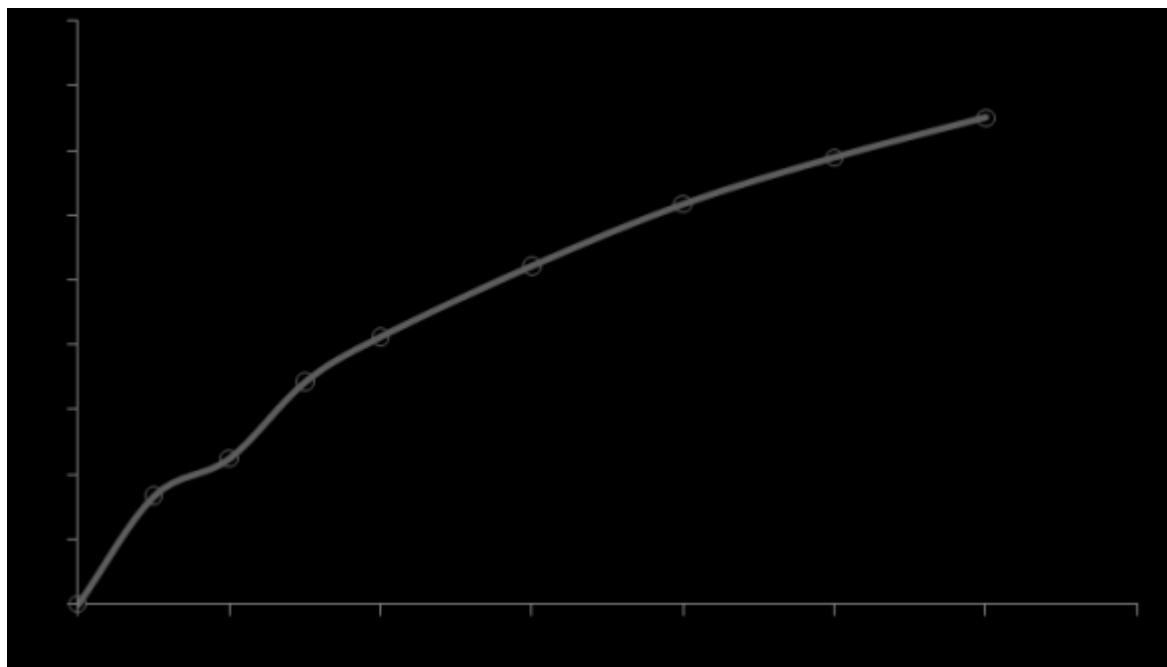


Figure 3:

Figure 4:

7 C) ANTI-INFLAMMATORY ACTIVITY

.1 March

[170] [Jones and Pearce ()] 'An investigation of the effects of some process variables on the microencapsulation of propranolol hydrochloride by the solvent evaporation method'. D S Jones , K J Pearce . *Int J Pharm* 1995. 118 p. .

[171] [Katzung ()] *Basic and clinical pharmacology. 9 th edn*, B G Katzung . 2004. New York: McGraw Hill.

[172] [Gupta et al. ()] 'Comparison of Analgesic and Anti-Inflammatory Activity of Meloxicam Gel with Diclofenac and Piroxicam Gels in Animal Models: Pharmacokinetic Parameters after Topical Application'. S K Gupta , P Bansal , R K Bhardwaj , J Jaiswal , T Velpandian . *Skin Pharmacol Appl Skin Physiol* 2002. 15 p. .

[173] [Shivakumar et al. ()] 'Design and optimization of diclofenac sodium controlled release solid dispersions by respons surface methodology'. H N Shivakumar , B G Desai , G Deshmukh . *Indian J Pharm Sci* 2008. 70 p. .

[174] [Chaudhari et al. ()] 'Development and in vitro release evaluation of thermo reversible nasal gel formulations aof Rizatriptan benzoate'. P Chaudhari , Ajab A , P Malpure , P Kolsure , D Sanap . *Indian J Pharm Eud Res* 2009. 43 p. .

[175] [Western et al. ()] 'Differentiation of mucilage secretory cells of the Arabidopsis seed coat'. T L Western , D J Skinner , G W Haughn . *Plant Phys* 2000. 122 p. .

[176] [Shin et al. ()] 'Enhancing effects of fatty acids on piroxicam permeation through rat skins'. S C Shin , E Y Shin , C W Cho . *Drug Dev Ind Pharm* 2000. 26 p. .

[177] [Kulkarni et al. ()] 'Evaluation of binding properties of Plantago ovata and Trigonella foenum graecum mu- cilages'. G T Kulkarni , K Gowthamarajan , B G Rao , B Suresh . *Indian drugs* 2002. 39 p. .

[178] [Wang et al. ()] 'Evaluation of ketoprofen formulations via penetration rate and irritation in vivo study'. R J Wang , J S Chang , Y H Tsai , P C Wu . *Int J Pharm* 2007. 339 p. .

[179] [Padi et al. ()] 'Evaluation of topical gels containing non-steroidal antiinflammatory drugs on inflammation and hyperalgesia in rats'. Ssv Padi , N K Jain , S K Kulkarni . *Eur J Pharmacol* 2004. 491 p. .

[180] [Sharma et al. ()] 'Fast dissolving tablets of promethazine theoclinate by using natural super disintegrants'. S Sharma , S Bharadwaj , G D Gupta . *Research J Pharm and Tech* 2008. 1 p. .

[181] [Gupta et al. ()] 'Formulation and valuation of meloxicam gels'. M Gupta , R K Marwaha , Prp Verma , G Singh , A Faruk . *J Pharm Res* 2008. 7 p. .

[182] [Sanjay et al. ()] 'Formulation development and evaluation of Flucanazole gel in various polymer bases'. Jain Sanjay , Bd , A Palsalg , K Patel , V Mokale . *Asi J Pharm* 2007. 1 p. .

[183] [Prakshak et al. ()] 'Formulation, evaluation and anti-inflammatory activity of topical etoricoxib gel'. P R Prakshak , Raghavendra Rao , N G Soujanya , C . *As J Pharm and clinic Res* 2010. 3 p. .

[184] [Kulkarnia et al. ()] 'In vitro release kinetics of cefadroxilloaded sodium alginate interpenetrating network beads'. A R Kulkarnia , K S Soppimatha , T M Aminabhavi , W E Rudzinski . *Eur J Pharm Biopharm* 2001. 51 p. .

[185] [Kumar and Verma ()] 'In vitro release of topical gel prepared using natural polymers'. L Kumar , R Verma . *Int J Drug Devel* 2010. 2 p. .

[186] [Young ()] *Introduction to Polymers*, Chapman & Hall. 2 nd edn, P Young , Lovell . 1996. London. p. .

[187] [Avachat et al. ()] 'Isolation and evaluation of fenugreek seed husk as granulating agent'. A Avachat , K N Gujar , V B Kotwal , S Patil . *Indian J Pharm sci* 2007. 69 p. .

[188] [Lindsley] 'Nonsteroidal Antiinflammatory Drugs: Renal Toxicity'. Carol B Lindsley . *Clinical Pediatrics* 29 (1) p. .

[189] [Pignatello et al. ()] 'Preparation, characterisation and photosensitivity studies of solid dispersions of diflunisal and Eudragit RS100 and RL100'. R Pignatello , M Ferro , De Guidi , G Salemi , G Vandelli , M A Guccione , S . *Int J Pharm* 2001. 218 p. .

[190] [Copeland and Mcdonald ()] *Principles of seed science and technology*, L O Copeland , M B Mcdonald . 2005. India) Private Limited: Springer. India.

[191] [Macedo et al. ()] 'Release of Tolmetin from Carbomw Gel Systems'. T Macedo , H B Lawrence , A J Shukla . *Drug Dev Ind Pharm* 1993. 19 p. .

[192] [Anroop et al. ()] 'Studies on Ocimum gratissi-mum seed mucilage: Evaluation of binding properties'. B Anroop , B Ghosh , V Parcha , S Vasanti . *Int J Pharm* 2006. 325 p. .

[193] [Deveswaran et al. ()] 'Studies on the disintegrant properties of mucilage and seed powder of Plantago ovate'. R Deveswaran , S Bharath , S Furtado , B V Basavaraj . *Int J Chem Tech Res* 2009. 1 p. .

[194] [Williams and Wilkins] *The science and Practice of pharmacy*, Lippincott Williams , Remington Wilkins . p. 756. (21 st edn.1: 223,305, 320)

[195] [Dominguez-Lopez and Review ()] 'Use of the fruit and stems of the prickly pear cactus (Opuntia spp.) into human food'. A Dominguez-Lopez , Review . *Food Sci Tech Int* 1995. 1 p. .