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Thermodynamical Behavior of Laser Irradiated
Mass Diffusive Micro Stretch
Thermoelastic Medium

Arvind Kumar

Abstract- This paper is concerned with the elastodynamic
interactions of the ultra-laser heat source with homogeneous
micro stretch-thermoelastic mass diffusion medium. The
medium is under application of various forces. Normal mode
analysis technique has been applied to the basic equations to
solve the problem. Expressions are derived for normal stress,
tangential stress, micro stress and temperature distribution.
The numerically computed results have graphs also. The
analysis of various stress quantities is there in this model. This
research has some special cases from the present
investigation.
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[. [NTRODUCTION

= ringen [1] developed the theory of thermo-micro
=== stretch elastic solids. Micro stretch continuum is a
— model for Bravais lattice with basis on the atomic
level and two-phase dipolar solids with a core on the
macroscopic level. Composite materials reinforced with
chopped elastic fibers, porous media with pores
containing gas or in viscid liquid, asphalt or other elastic
inclusions and solid-liquid crystals etc. are examples of
micro stretch solids. Ezzat et al. [2, 3] discussed the
concept of thermal relaxation. Marin [4, 5] investigated
various problems in micropolar thermoelasticity and
micro stretch thermoelasticity.

Diffusion is the spontaneous movement of the
particles from a high concentration region to the low-
concentration region, and it occurs in response to a
concentration gradient expressed as the change in the
concentration due to change in position. Thermal
diffusion utilizes the transfer of heat across a thin liquid
or gas to accomplish isotope separation. Simply
concentration is calculated using Fick’s law. This law
does not consider the mutual interaction between the
inclusion substance and the medium. The thermo
diffusion in elasticity is result of the coupling of
temperature, mass diffusion and that of strain in addition
to heat and mass exchange with the environment.
Nowacki [6-9] developed the theory of thermoelastic
diffusion by using coupled thermoelastic model.
Dudziak and Kowalski [10] and Olesiak and Pyryev [11],
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respectively, discussed the theory of thermo diffusion
and coupled quasi-stationary problems of thermal
diffusion for an elastic layer.

Thermal shock due to exposure to an ultra-short
laser pulse is interesting from the point of thermo
elasticity since they require a coupled analysis of the
temperature and deformation fields. A thermal shock
induces very rapid movement in the structural elements,
giving rise to very significant inertial forces, and thereby,
an increase in vibration. In irradiation of ultra-short
pulsed laser, the high-intensity energy flux and ultra-
short duration lead to a very high thermal gradient. So,
in these cases, Fourier law of heating is no longer valid.
Scruby et al. [12] and Rose [13] considered the point
source model of lasers. Later McDonald [14] and Spicer
[15] proposed a new model known as laser-generated
ultrasound model by introducing the thermal diffusion
effect. Dubois [16] experimentally demonstrated that
penetration depth plays an important role in the laser-
ultrasound generation process. The thermoelastic
response of laser in context of four theories was
discussed by Youssef and Al-Bary [17]. A problem for a
thick plate under the effect of laser pulse thermal
heating was studied by Elhagary [18]. Kumar et al. [19]
studied the thermo-mechanical interactions of a laser
pulse with the micro stretch thermoelastic medium.

This  present research deals with the
disturbance in a homogeneous micro stretch
thermoelastic medium with mass diffusion due to the
effect of an ultra-laser heat source. The normal mode
analysis technique is used to obtain the expressions for
the displacement components, couple stress,
temperature, mass concentration and micro stress
distribution due to various sources.

IL. BASIC EQUATIONS

Following Eringen [20] and Al-Qahtani and
Datta [21], the basic equations for homogeneous micro
stretch thermoelastic mass diffusion medium in the
absence of body force, body couple with laser heat
source are given by:
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a) Stress equation of motion
A+ WVV.U) + (u+ KVPu+ KV X ¢ + 299" = 1 (1+1,2) VT = B, (1 + rla"—t) VC = pii (1)
b) Couple stress equation of motion

(YV? = 2K)¢p + (@ + B)V(V.¢) + KV x u = pj ©)
c) The equation of balance of stress moments

(agV? — A" —/10Vu+v1(1+rl )T+v2(1+‘[ —)Cz%q,’;* (3)
a) The equation of heat conduction
. (2 9? ? 92 9 APY 92
K*V2T = pc (6_t+ TOat_Z)T + B, T (6_t+ gTOat_Z) V.u—Q) +vT, (§+ eroat—z)(l) + aT, ( +7 atz) c 4

e) The equation of mass diffusion is

Year 2017

DﬁZVZ(Vu)+Da(1+Tl 2)VT + (& + e1 )C Db(1+11;—t)V2C=O (5)

—_
&)

7)) The constitutive relations are

ty = (Aod" + 2, )85 + p(uy; + ;) + K(w; — € i) — B (1 +715; )6le Bz (1 +1! )511 C ®)

my = a6 + BPij +yYPji + bo€mji Oom (7)
A = agd; + bo€ijm i m (8)

The plate surface is illuminated by laser pulse given by the heat input
Q =Iof () g(x1)h(x3) ©)

Where I, is the energy absorbed. The temporal profile f(t) is represented as,
t
£ = e (10)
0

Here t, is the pulse rise time. The pulse is also assumed to have a Gaussian spatial profile in x;

(K)

g9(x) = ﬁe‘@ (1)

Where r is the beam radius, and as a function of the depth x5 the heat deposition due to the laser pulse is assumed
to decay exponentially within the solid,

h(x;) =y e V' (12)
Equation (9) with the aid of (10-11) and (12) takes the form:

2

M t _[*1
Q = IOYZ 5 te_(%)e <z>e_y*x3’ (1 3)

2nret
|
t Xy X3
Fig. 1. Temporal profile of f(t). Fig. 2 Profile of g(x1). Fig. 3: Profile of h(x3).
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Here 4, u, @, B, v, K, g, A1, o, by, are material  coordinates and a superposed dot (* ) denotes the
constants, p is mass density, u = (uj,uu3)is the derivative with respect to time respectively.
displacement vector and ¢ = (d1, P2, P3)is  the
microrotation vector, ¢*is the scalar micro stretch [II.  FORMULATION OF THE PROBLEM
function, T is temperature and T, is the reference
temperature of the body chosen,C is the concentration
of the diffusion material in the elastic body,K* is the
coefficient of the thermal conductivity,c* is the specific
heat at constant strain, D is the thermoelastic diffusion
constant, a is the coefficient describing the measure of
thermo diffusion and b is the coefficient describing the Laser pulse
measure of mass diffusion effects, j is the microinertia,
B = BA+2u+ Kay, Bz =(BA+2u+K)ag, g 4
vy = B+ 2u+ K)a,,, v, = (BA+2u+ K)a,,, 7
a1,y are coefficients of linear thermal expansion and el x3 = 02x,
a1, are coefficients of linear diffusion expansion, j, >
is the microinertia for the microelements,t; are
components of stress, m;; are components of couple

We consider a micro stretch thermoelastic mass
diffusion medium with rectangular Cartesian coordinate
system 0X;X,X; with x3-axis pointing vertically
downward the medium.

X2
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Micro stretch Thermog]astic Mass Diffusion Medium

stress, 4; is the micro stress tensor, e;; are components (0<x3 < )
of strain, ey is the dilatation,§;; is Kroneker delta X3
function, 7°, t! are the diffusion relaxation times and v

Ty, T1are thermal relaxation times with ¢y = 7; = 0. Fig. 4: Geometry of the Problem

“w oy

In the above equations symbol (“,”) followed by
a suffix denotes differentiation with respect to spatial

For two dimensional problems, we take the displacement vector and micro rotation vector as:
u= (ull 0’u3)!¢ = (O, ¢2’O)v (1 4)

For further consideration it is convenient to introduce in equations (1)-(5) the dimensionless quantities
defined by:

'_pm*c1 ’_w* T * ’_T o * I * r_ * ro_ 1 *_pC*cz ’_PCZ
u; = 5T U; , X; —:xi,t =w't, T —T—O,T1—O)T1,TO—OJT0 Y1 =0 L —mtu"“’ = K*l'¢i —ﬁd’i’ 9
1’ _ x_1 2 A+2u+k 2 ﬂ 2 _ Y 2 _ﬂ _ }/ZTO x w* ’ _ﬁ_Z _ K*(A)*Z ’ « :
' wr.a=s—/ra s ’CB_pi’C4_Pf02’ T ety U T epymy Y _pC%C'Q_ Q¢ =
peT *
— 1
s ® (15)
By Helmholtz representation of a vector into scaler and vector potentials the displacement components u;
and uz are related to non- dimensional potential functions ¢ and ¥ as:
_9% _ 9 L
ul - ax1 aX3 ’ u3 - a)C3 + axl (16)
Substituting the values of u;&u; from (16) in (1)-(5) and with the aid of (14) & (15), after suppressing the
primes, we obtain:
24 7 x_ LAY 19\, —
V2 — ¢+ ay (1+Tlat)T a5(1+rat)C—0, (17)
a2 R d d
(V2 —ag _a12m_2)¢ —agV?p + ay (1 +T16_t)T+a11 (1 +115)C =0, (18)
] 92 ] o a\ A . o
(a_t + Toat_z - Vz) T + (1 + EToa_t) (a13V2¢ + a14¢) ) + Aqs (1 + Y1 E) C = Qof (xl,t)e 4 X3’ (19)
4 9\ 2 9 0%\ _ 19\ g2, —
Vi +ay (1+1,2)V T+a17(at+sr atz)c a18(1+'[ 2)v2c=0 (20)
a; V2 — P + azp, = 0, 21) O
V2¢, — 2a5p, — agVAy = a7d52, (22)
xz t
2 02, 9% i - ¢ ‘(ﬁ*%) _ Qlor®
HereV-= Py + Py is Laplacian operator, f(x;,t) = [t + €1 (1 to)] e and Qg = 220
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IV.  SOLUTION OF THE PROBLEM

The solution of the considered physical variables can be decomposed in terms of the normal modes as in
the following form:

{¢; 1/); T; ¢2; ¢*, C}(‘xll X3, t) = {d_)’ II_J, 7_1; E: F) 6}(x3)ei(kxl_wt) (23)
Here w is the angular frequency and k is wave number.

Making use of (23), equations (17)-(22) after some simplifications yield:

[AD® + BD® + CD* + ED? + F1$ = f,(y", x1, t)e ™" 3 (24)
[AD® + BD® + CD* + ED? + FI§ = fo(y", x;, t)e ¥ '3 (25)

D~
S [AD® + BDS + CD* + ED? + FIT = f3(y", x,, t)e ™ '3 (26)
3 [AD® + BDS + CD* + ED? + FIC = fi(y*, xy, )e ™" % @7
[D* + GD?+ H]Yp =0 (28)

=
[\8}

d
Where D= g ,A = a21 - a33,B = a37 - 2k2a21 - a31a39 + _a34,
3
_ 4 2 _ 2
C = azg + ank® — 2k®asz; — az,azg — Az a0 + A33a43 + A34a4; , H = —(k“azae + assase)/a;
_ 4 2 _ 4 _
E = a3 k™ — 2k®azg — azya40 — 31041, F = azgk™ — az,a41 + 34044, G = a35 + aza6 — az036/a;,

Also, a; ,i = 19, ....,44 are defined in appendix A.

The solution of the above system of equations (24)-(28) satisfying the radiation conditions that
(6,9, T,¢,,C) > 0 as x3 — oo are given as following:

¢ = Ty e 4 ey (29)
¢ =Tl ance ™ + ;:_zse_y*” (30)
T =Y, ayce ™* + 15—36_}’*"3 (31)
o~ 5
N _ f *
— C=Y!,asce™™* + f—46_y X3, (32)
5
W, d2) = Xos(1,8)ce ™3, (33)
Wherem?(i = 1,2,3,4) are the roots of the equation (24) and m?(i = 5,6) are the roots of characteristic
equation of equation (28) and
R | Y S =9 =
My = =10 =00, a, 1,2,3,4&9; amZam) ' 5,6
Here, Aq;, Ay, As, Ay are defined in Appendix B.
Substituting the values of ¢, ¢*, T,, ¢, C from the equations (29)-(33) in the (6)-(8), and using (14)-(16) &
(23) and then solving the resulting equations, we obtain:
f33 = Yooy G ™%3 — Mye V'3 (34)
B31 = Yooy Gye™™i*3 — Mye™ 3, (35)
TTl32 = Zi6=1 G3ie_mix3 - M3e_y*x3 (36)
A5 = X0 Gyye ™ — Mye S, (37)
| T =35, Gse ™3 — Mge™ %3, (38)
C =35, Gge ™3 — Mge™V 3, (39)

Gri = Gmi G im=12,..,6. G ,(r,s=12,..,6),M,.,(r =1,2,...,6) are described in Appendix C.
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V. BouNDARY CONDITIONS

We consider normal force and thermal and mass concentration sources are acting at the surface x3 =0
along with vanishing of couple stress in addition to thermal and mass concentration boundaries considered
atx; = 0 andl, = 0 . Mathematically this can be written as:

t33 = —Flei(kxl_wt), t31 = 0, mszp; = 0, Ag = 0, a_T = eri(kxl_wt), i = F3€i(kx1_wt) (40)
5}(3 aX3
Where F; and F, are the magnitude of the applied force.

Substituting the expression of the variables considered into these boundary conditions, we can obtain the

following system of equations:
Ziézl(Gli:GZi'G3i'G4i'miGSi:miG6i)Ci = (—F,0,0,0,—F,, —F;) (41)

The system of equations (41) is solved by using the matrix method as follows:

[C1] [ g1 912 913 914 915 916 ]_1 —F

&) 921 922 923 924 925 926 0

C3|_| 93 932 933 934 935 936 0 (42)
Cy 9u 92 943 94 945 946 0

Cs migs1 Mpgsz M3gsz Mygsy Msgss Mefse —F,

CGJ M1ge1r M2962 M3G9e3 Mafges Ms5Ges MeYes —F3J

VI.  SPECIAL CASES

a) Micro stretch Thermoelastic Solid

If we neglect the diffusion effect in (41), we obtain the corresponding expressions of stresses,
displacements and temperature for micro stretch thermoelastic solid.

b) Micropolar Thermoelastic Diffusive Solid

If we neglect the micro stretch effect in (41), we obtain the corresponding expressions of stresses,
displacements and temperature for micropolar thermoelastic diffusive solid.

VII. NUMERICAL RESULTS AND DISCUSSIONS

The analysis is conducted for a magnesium crystal-like material. The values of constants are as:

A1=94%X10°Nm=2 u=40x%x10"°Nm=2, K=1.0x10Nm™2, p=1.74x103Kgm=3,j = 0.2x 107Ym?, y =
0.779 x 10—°N

Thermal, diffusion and micro stretch parameters are given by:

c* =104 x103JKg K1,

K*=17x10°m s 'K, a,y =233 x107°K 1, a;, = 248 x 107 °K~1, T, = 0.298 x 10°K, 7,
=0.02,7; = 0.01,a,; = 2.65x 10*m3Kg~1, a,, = 2.83 x 107*m3K g™, a = 2.9 x 10*m?s~2K~1,b
=32x%x10°Kg~'m°s~2,7!1 = 0.04,7° = 0.03,D = 0.85 X 108 Kgm3s,

jo =019 % 1079m2, @y = 0.779 x 10N, by = 0.5 x 10°°N, A, = 0.5 x 101°Nm=2, 1,

=0.5x 101°Nm™2

A comparison of the dimensionless form of the
field variables for the cases of micro stretch
thermoelastic mass diffusion medium with a laser pulse
(MTMDL), micro stretch thermoelastic mass diffusion
medium without a laser pulse (MTMD) subjected to
normal force is presented in Figures 5-13. The values of
all physical quantities for both cases are shown in the
range 0 < x3 < 5.

Solid lines, dash lines corresponds to micro
stretch thermoelastic mass diffusion medium with laser
pulse (MTMDL) and micro stretch thermoelastic mass

diffusion medium without laser pulse (MTMD)
respectively. The computations were carried out in the
absence and presence of laser pulse (I, = 10°,0) and
on the surface of plane x; = 1,t = 0.1

Fig. 5 shows the variation of normal stress ts3
with the distance x5. It is noticed that for MTMDL and
MTMD, the normal stress t33 show similar behavior. The
normal stress in both the cases initially increases and
then monotonically decreases. The value of tj3
increases near the application of the normal force due to
the stretch effect and then decreases.

© 2017 Global Journals Inc. (US)
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MTMDL

o 1 2 3 4 5

Fig. 7: Variation of coupled tangential stress

Fig. 6 displays the variation of tangential stress
t3; with the distancex;. It is noticed that initially the
behavior of t3; for MTMDL and MTMD is similar. Initially
ts; increases monotonically for MTMDL and MTMD and
then approaches to the boundary surface away from the
point of application of normal force.

Fig. 7 shows the variation of couple stress ms,
with distance x5 for MTMDL and MTMD. The variation of
ms, for (MTMDL, MTMD) is monotonically decreasing in

Temprature

Fig. 9: Variation of temperature distribution

© 2017 Global Journals Inc. (US)
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20 — i A MTMD

-10
I I I I |

MTMDL

[ MTMD

microstress

3

Fig. 8:Variation of micro stress

region 0 <x3; <1 and monotonically increasing after
that. The ms, approaches to zero away from the point of
application of source. It is clear from figure 3 that laser
source has a significant effect on the value ofms,.

Fig. 8 depicts the variation of micro stress 13
with distance. The variation of A3 is similar for both the
cases in the beginning and in the last, however A3 for
MTMD show oscillatory behavior in rangel < x; < 4

6 MTMDL

mass concentration
I

Fig. 70: Variation of mass concentration



o 1 2 3 4 5

Fig.77: Variation of Uy Wrlo xs.

Fig. 9 displays the variation of temperature T
with distancex;. The values of temperature change for
MTMDL and MTMD show monotonically decreasing
behavior in the range 0 < x3 < 5. In case of MTMDL the
temperature decreases more rapidly in comparison to
MTMD due to the presence of input ultra-short laser heat
source.

Fig. 10 show variation of mass concentration
w.rt. distancex;. Mass concentration monotonically
decreases with increasing distance from application of
source. The laser source seems to have no significant
effect on variation of mass concentration.

Fig. 11 and Fig.12 exhibits the behavior of
displacement components u; and usw.r.t. x;. Both the
displacement components approaches to boundary
surface away from the application of normal force which
is in agreement to the generalized theory of
thermoelasticity.

VIII. VARIATION OF TEMPERATURE WITH

REsPECT TO TIME

MTMDL

temperature (T)
|

I I I I |
o 0.002 0.004 0.006 0.008 0.01
time (t)

Fig. 13: Variation of temperature w.r.t. time

o 1 2 3 4 5

Fig. 12: Variatic;n of uz w.rt. x3.

Fig. 13 represent the variation of temperature
distribution w.r.t. time. As the laser is irradiated the
temperature increases rapidly. The temperature
decreases uniformly after reaching a peak value.

[X. CONCLUSIONS

The problem consists of investigating
displacement components, scalar micro stretch,
temperature distribution and stress components in a
micro stretch thermoelastic mass diffusion medium
subjected to input laser heat source. Normal mode
analysis is employed to express the results.
Theoretically obtained field variables are also depicted
graphically.

The analysis of results permits some concluding
remarks:

1) Itis clear from the figures that all the field variables
have nonzero values only in the bounded region of
space indicating that all the results are in agreement
with the various theories of thermoelasticity.

2) The effect of the input laser heat source is much
pronounced in normal stress, tangential stress,
micro  stress, temperature distribution and
displacement components. Change in the value of
I, cause significant changes in all these simulated
resulting quantities.

3) It is noticed from the figures that the laser heat
source has no significant role on mass
concentration.

4) The trend of variation of physical quantities show
similarity with Elhagary [18] although diffusion effect
is included.
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APPENDIX A

A+u p+K K Ao pci Kcf pjct Acf Aopct
=0 = a3 = 5,4 = 5,05 = 5,0 = 7 a7 = ,ag = 749 = 7 (1o
B1To BiTo pcq pci B1To yw* 14 Aow* BiToayw*
4 2.6 2 2 4
_ U1pG S V2p" Cq - PCijo n = ToBt - v1 8170 e = apcq a
=7 01 = 12 = 13 = 14 = 15 = 55 r M6
ﬁla%w*z ’ ﬁlﬁzToaow*z’ 5 Za() ’ . pOJ*K* ’ p(J)*K* ’ w*ﬁzK* ’
apcy pPCr bpcl pPCy 2 2
= Q17 = 5 ,1g = 5,00 = 5o g = W° — k5,
BB w*D Py ﬁz/ w* B K
_ : _ : ) _ 2 2 _ :
Az = 1—iwTy,ay = as(1 —iwt ),glzz =k“aq ,a%3 = w"ay, — ag — k%, a5, = a0(1— la)T21), ays
=a;1(1 — iwT ), a36 = —ay3(iw + w*eTy), ay7 = k*azs,a3;, = —k“azy , a3 = —a4(iw + w*eTy), azg =
1.2 . 2 _ . 2 _ . _ . ' )
=k —iw—w To,A30 = —als(la) + w ]/1), as, = a16(1 - l(UTl), azz = —a18(1 — lwT ), a3y Q
= ay;(iw — w?et?),a35 = w? — k?a, , a3, = w?a; — k? — 2aq , a3, 5
= a4Qps5 + Az0a3¢ — A9 t+ dz3, A3 -
= a4(az4030 — Az9a35) + a4(az4030 — A29a55) — A4(A24a30 — A29025) , A39 = G103 + A3, Agg
= a31(A26033 — Az7) + a30(Az3 — A19) + A4A35076 — A9z1 Az — A4AoA30 — Az50ag , Ayy
= —ay1(Az2028 + A23027) — A25(A24027 — A19058) — A30(A19a23 — A4a32), Ay
= Qp9 — A3 + Q19 + A4Q9 + A0 Az6, Au3
= Ay3029 — Ag4028 — A19(Az9 — Ap3) — A4(Az9a9 — Az — Ap4036) + A0 (Az3A56 + Az7 — Aglag), Ass
= a19(aAz4028 — Az3039) — A4(Az2059 + A24057) — Az (Az7a53 + Aza;),
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2 2 2 232 2 2
0 azym; +as; assm; + sy (mi —k*)* agymi +az; azm;+as
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APPENDIX C
2 2 2
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1=_"72 02 =""73,b3=""73—,05 =506 = 7,07 =""73,08 =""7 b9 =""3" D10 = 7
2051 pc pc pc pc pc Py Py Py
_ 2 2 _ _
g1 = ay; + (M — byk?) — ay; + byyas; gy = —thskm; ,gs; = thokay; ,
Jai = —Qobiomay; gs; = o, Goi = Azi i=1234
_ _ 2 2 _
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2 2
by fo+(v*?=bak?)fr—fa+b11 fa —tb3ky*fy tbokfy —agb1oy*f2 fs fa
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fs fs fs fs fs fs
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