

GLOBAL JOURNAL OF MEDICAL RESEARCH: G
VETERINARY SCIENCE AND VETERINARY MEDICINE
Volume 17 Issue 2 Version 1.0 Year 2017
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4618 & Print ISSN: 0975-5888

Use of Different Immunoresponse Assays for Evaluation of Live Attenuated Sheep Pox Vaccine in Comparison with Challenge Test

By Nermene G. Shafik, Ibrahim M.M, Sonia A. Rizk & Ali A.M

Abstract- Sheep pox (SP) is one of the priorities, high-impact animal diseases in many developing countries, where live attenuated vaccines are routinely used against sheep pox virus (SPV). Sheep pox virus is a member of the family Poxviridae, genus Capri poxvirus. In this study, live attenuated Sheep pox vaccines were evaluated for humoral and cellular immunity using virus neutralization index (NI), ELISA and lymphocyte proliferation assay (XTT) beside routinely titration of live attenuated virus content of vaccine in Vero cell line which gives mean satisfactory TCID50/dose (3.34) for used vaccine batches, in addition to clinical examination of vaccinated sheep and also application of challenge test. Sixty susceptible lambs were divided into (10) groups and vaccinated with field and safety doses of (10) different batches of live attenuated vaccine intradermal (I/D) in tail fold while three lambs kept as control. The results showed that lymphocyte proliferation began to increase till reach to its peak (1.312) at 10th day post vaccination then decrease after that with re-increasing after challenge , serological assays results revealed that protective serum antibody titer started at 10th day post vaccination with mean titer (1.6 and 1.99), mean absorbance (1.56 and 2.02) and at three weeks the mean titer (2.35 and 2.61) , mean absorbance (2.43 and 2.51) for NI and ELISA respectively, also all vaccinated lambs showed satisfactory levels of protection against the virulent SPV through challenge test as SID50 more than (2.5) for all batches of vaccine.

GJMR-G Classification: NLMC Code: WA 360

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

Use of Different Immunoresponse Assays for Evaluation of Live Attenuated Sheep Pox Vaccine in Comparison with Challenge Test

Nermeen G. Shafik^a, Ibrahim M.M^a, Sonia A. Rizk^b & Ali A.M^c

Abstract- Sheep pox (SP) is one of the priorities, high-impact animal diseases in many developing countries, where live attenuated vaccines are routinely used against sheep pox virus (SPV). Sheep pox virus is a member of the family Poxviridae, genus Capri poxvirus. In this study, live attenuated Sheep pox vaccines were evaluated for humoral and cellular immunity using virus neutralization index (NI), ELISA and lymphocyte proliferation assay (XTT) beside routinely titration of live attenuated virus content of vaccine in Vero cell line which gives mean satisfactory TCID₅₀/dose (3.34) for used vaccine batches, in addition to clinical examination of vaccinated sheep and also application of challenge test.

Sixty susceptible lambs were divided into (10) groups and vaccinated with field and safety doses of (10) different batches of live attenuated vaccine intradermal (I/D) in tail fold while three lambs kept as control. The results showed that lymphocyte proliferation began to increase till reach to its peak (1.312) at 10th day post vaccination then decrease after that with re-increasing after challenge, serological assays results revealed that protective serum antibody titer started at 10th day post vaccination with mean titer (1.6 and 1.99), mean absorbance (1.56 and 2.02) and at three weeks the mean titer (2.35 and 2.61), mean absorbance (2.43 and 2.51) for NI and ELISA respectively, also all vaccinated lambs showed satisfactory levels of protection against the virulent SPV through challenge test as SID₅₀ more than (2.5) for all batches of vaccine.

The results demonstrated that vaccine titration in Vero cell line and evaluation of humoral, cellular immuneresponses using different assays for vaccinated lambs were possible to be an accurate parameter for evaluation of live attenuated sheep pox vaccine equivalent the protective results obtained against a virulent SPV in challenge test.

I. INTRODUCTION

Sheep pox virus is a member of genus Capri poxvirus in the family Poxviridae (1). Sheep pox is a disease of sheep and goats characterized by pyrexia, generalized skin and internal pox lesions, and lymphadenopathy (2). Sheep pox and goat pox are ancient diseases that are currently endemic in the Middle East, the Indian subcontinent, and Central and Northern Africa. Kids and lambs are generally more susceptible than adults (3).

Vaccination has been considered to be the cheapest and sustainable means of disease control in the enzootic situation like India, Egypt and Middle East

(4). Prophylaxis using attenuated vaccines is the choice of control measure as the immunity is long lasting (5). Vaccines are considered among the most valuable and cost-effective tools for the control of infectious diseases. The development of safe and effective vaccines for the prevention and control of emerging and neglected infectious diseases is an international priority (6) and (7).

In endemic countries a variety of attenuated live vaccines have been used against SPV. Live attenuated vaccine protection is mediated by both cellular and humoral immunity (8) and (9). The virus neutralization test is the most specific serological test for evaluation of immunity against SPV, also the enzyme linked Immunosorbent assay (ELISA) had already been proved to have great potentiality as a quantitative serological tool in the detection of antibodies against several viral infections including the pox viruses. It had been proved that the sensitivity and specificity of ELISA are superior to those of other serological tests (10) and (11).

A significant number of veterinary vaccine potency tests for serial release are conducted using in vitro methods. For live viral vaccines, these include culture techniques to quantify microbial content as an indicator of antigenic content of the vaccine (12) and (13).

Potency testing for inactivated veterinary vaccines has traditionally used challenge testing of vaccinated animals with live microbes to determine the quantity of vaccine necessary to provide adequate protection. Inadequately protected and control animals that become infected usually develop significant clinical signs of the disease and/or die. However, in recent years, antibody quantification procedures have been developed and validated and subsequently replaced the challenge test for several vaccines (14), (15) and (16).

The global veterinary vaccine industry continues to actively pursue in vitro assays and the reduction in the use of animals for in-process antigen measurement and finished product potency testing (17), (18) and (19).

The present work aims to use different immuneresponse assays for evaluation of live attenuated sheep pox vaccine as alternatives to challenge test.

Author a: e-mail: sonia_rizk@yahoo.com

II. MATERIAL AND METHODS

a) Virus

Virulent sheep pox virus, Egyptian strain of sheep pox virus was obtained from the Pox Department, VSVRI Abbassia, Cairo. The virus had been previously isolated from a local outbreak (20) and was used for challenge test.

b) Cell Culture

African Green Monkey Kidney cell line (VERO) was supplied by VSVRI, Abbassia Cairo and used for virus titration and serum neutralization test.

c) Attenuated sheep pox vaccine

10 batches of live attenuated sheep pox vaccine from Romanian strain of sheep pox virus years (2014, 2015 and 2016) stored at -20°C.

Table (1): Experimental Design

Groups	Batches of SHEEP POX Vaccine	Sub Groups		Number of Sheep/Gp
		(a) Field dose	(b) 20X (Safety dose)	
Gp1	(2016)	3 Sheep	3 Sheep	6 Sheep
Gp2	(2015)	3 Sheep	3 Sheep	6 Sheep
Gp3	(2015)	3 Sheep	3 Sheep	6 Sheep
Gp4	(2015)	3 Sheep	3 Sheep	6 Sheep
Gp5	(2015)	3 Sheep	3 Sheep	6 Sheep
Gp6	(2015)	3 Sheep	3 Sheep	6 Sheep
Gp7	(2015)	3 Sheep	3 Sheep	6 Sheep
Gp8	(2015)	3 Sheep	3 Sheep	6 Sheep
Gp9	(2015)	3 Sheep	3 Sheep	6 Sheep
Gp10	(2015)	3 Sheep	3 Sheep	6 Sheep
Gp CO.	CONTROL	3 Sheep		Total # 63 Sheep

e) Evaluation of live attenuated sheep pox vaccine

1. Titration of live attenuated sheep pox in Vero cell Line by using tenfold serially dilutions of vaccine and calculation of tissue culture infective dose fifty / dose for each vaccinal batch ($TCID_{50}/dose$)
2. *Potency field tests:* Ten groups of sheep were vaccinated by inoculated subcutaneously in the ventral aspect of the tail fold with the field and (20X) safety dose of different (10) batches of vaccine, beside one control group, kept unvaccinated as negative control. The animals were clinically observed daily to detect post-vaccinal reaction, and different blood samples were collected for cellular and humeral immune responses were evaluated.
3. *Challenge test:* was applied according to (10); 3 weeks post vaccination, all sheep groups and control group, inoculated with 0.5 ml of the virulent SPV through the intradermal route as five inoculums for each dilution of six tenfold serial diluted virus in both body sides of sheep. The challenged animals were kept in separate isolator under observation for (7) days, then exanimate for count of button shaped lesion and calculated sheep infected dose fifty (SID_{50}).

c) Animals

Sixty three susceptible native breed sheep 6 months old were screened using serum neutralization test and found to be free from antibodies against SPV.

d) Experimental Design

The experimental sheep were divided into ten groups (contain 6 animals/each) and each group divided into two subgroups as described in Table (1). Beside control group (Gp Co.) contains three animals, were kept unvaccinated as negative control.

f) Samples

- Heparinized blood samples were collected from vaccinated and control animals before and after vaccination at different intervals (0, 3, 5, 7, 10, 14, 21 and 28 days) for application of the cellular immuneresponse assay.
- Whole blood samples for separation of serum were collected also for application of the humoral immuneresponse assay at different intervals (0, 3, 5, 7, 10, 14, 21 and 28 days).

g) Evaluation of cellular immune response of the vaccine Batches

The cellular immunity was evaluated by application of Lymphocyte blastogenesis assay. It was carried out according to (21) and (22) using XTT cell viability assay kit (AppiChem).

h) Evaluation of humoral immune response of the vaccine Batches

- *Serum neutralization test (SNT):* It was carried out using the microtitre technique according to (23) where SP antibody titer was expressed as neutralizing index (NI) according to (24).

- *Indirect ELISA:* It was performed to evaluate the humoral immune response according to the method

described by (25) and the results were expressed by Mean of Absorbance (Ab).

III. RESULTS

Table (2): Showed the titer values of live sheep pox virus of different Batches of vaccine using Vero cell line (T.C) which calculated as TCID₅₀.

Table (2): Titration of different Batches of SHEEP POX Vaccine in Vero Cell Line

Batches of SHEEPPOX Vaccine	Virus Titer of Vaccine (TCID ₅₀ /dose)	Virus Titer of Vaccine (TCID ₅₀ /1ml)	Lot Dose	CONCLUSION
1-(2016)	2.5	3.5	10 dose	Satisfactory
2-(2015)	2.7	3.7	10 dose	Satisfactory
3-(2015)	4.5	6.5	100 dose	Satisfactory
4-(2015)	4.3	5.3	10 dose	Satisfactory
5-(2015)	2.5	3.5	10 dose	Satisfactory
6-(2015)	4.1	5.1	10 dose	Satisfactory
7-(2015)	4.3	6.3	100 dose	Satisfactory
8-(2015)	3.3	5.3	100 dose	Satisfactory
9-(2015)	2.7	3.7	10 dose	Satisfactory
10-(2015)	2.5	3.5	10 dose	Satisfactory
Virus Control	2.1/0.1 ml	4.1/1ml	---	Control

Table (3-1) Showed the post vaccinal body temperature changes (thermal response) of all vaccinated animals and control ones through different follow up intervals of experiment and till application of challenge test. the thermal reaction elevated only in sheep groups of batches (2, 6 and 10) at 5th days post

vaccination, while at 7th and 10th days the thermal reaction recorded in all sheep groups, and there was mild thermal reaction for all vaccinated groups while control unvaccinated group showed severe thermal reaction post challenge.

Table (3): Field follow up for Different Batches of SHEEP POX Vaccine post Vaccination

Days	3-1- Thermal Response (Reaction)														Challenge Test in Sheep		
	Post Vaccination																
	Day 0		Day 3		Day 5		Day 7		Day 10		Day 14		Day 21				
	F	20x	F	20x	F	20x	F	20x	F	20x	F	20x	F	20x			
1-(2016)	-	-	-	-	-	-	+	++	+	+	-	-	-	-	-		
2-(2015)	-	-	-	-	+	++	+	++	+	+	-	-	-	-	-		
3-(2015)	-	-	-	-	-	-	+	++	+	+	-	-	-	-	-		
4-(2015)	-	-	-	-	-	-	+	++	+	+	-	-	-	-	-		
5-(2015)	-	-	-	-	-	-	+	++	+	+	-	-	-	-	-		
6-(2015)	-	-	-	-	+	++	+	++	+	+	-	-	-	-	-		
7-(2015)	-	-	-	-	-	-	+	++	+	+	-	-	-	-	-		
8-(2015)	-	-	-	-	-	-	+	++	+	+	-	-	-	-	-		
9-(2015)	-	-	-	-	-	-	+	++	+	+	-	-	-	-	-		
10-(2015)	-	-	-	-	+	++	+	++	+	+	-	-	-	-	-		
Controls	-	-	-	-	-	-	-	-	-	-	-	-	-	-	++		

* No Thermal reaction (-) (37.6 – 38.5) = Normal Temp. or very mild not over 0.5°C

*Mild Thermal reaction (+) (38.6 – 39.5)

*Severe Thermal reaction (+ +) (39.6 – 40.5)

Also clinical examination of all sheep groups explained in *Table (3-2)* Showed that small post vaccinal lesions or reactions in tail fold of sheep vaccinated with some batches and after 7 days of

challenge test few numbers of intradermal buttons shaped lesions were observed in body sides of vaccinated sheep groups control unvaccinated sheep group.

Days	3-2- Clinical Examination (Appearances of I/D Lesion)												Challenge Test in Sheep	
	Post Vaccination													
	Day 0		Day 3		Day 5		Day 7		Day 10		Day 14		Day 21	
Batches of SHEEP POX Vaccine	F	20x	F	20x	F	20x	F	20x	F	20x	F	20x	F	20x
1-(2016)	-	-	-	-	-	-	±	+	-	-	-	-	-	-
2-(2015)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3-(2015)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-(2015)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5-(2015)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6-(2015)	-	-	-	-	-	-	±	+	-	-	-	-	-	-
7-(2015)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8-(2015)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9-(2015)	-	-	-	-	-	-	±	+	-	-	-	-	-	-
10-(2015)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Controls	-	-	-	-	-	-	-	-	-	-	-	-	-	+++

* No Lesion (-)

*Small or Mild reaction (±)

*Detected Skin reaction (+)

* Variable numbers (V)

Table (4): Showed the titers of Vaccine Batches using Challenge Test in Sheep after being challenged

with virulent field strain of sheep pox virus, and calculated of SID_{50} .

Table (4): Titration of different Batches of SHEEP POX Vaccine using Challenge Test in Sheep

Batches of SHEEPPOX Vaccine	Post Challenge (I/D) Button Shaped Lesion	Titer of Vaccine Post Challenge Test in sheep [Average of sheep infective dose ₅₀] (SID ₅₀)	Deference Between SID ₅₀ of Control & vaccinated Groups	CONCLUSION
1-(2016)	±	2.3	3	Satisfactory
2-(2015)	±	2.1	3.2	Satisfactory
3-(2015)	±	0.5	4.8	Satisfactory
4-(2015)	±	0.7	4.6	Satisfactory
5-(2015)	±	2.4	2.9	Satisfactory
6-(2015)	±	0.9	4.4	Satisfactory
7-(2015)	±	0.6	4.7	Satisfactory
8-(2015)	±	1.7	3.6	Satisfactory
9-(2015)	±	2.2	3.1	Satisfactory
10-(2015)	±	2.6	2.7	Satisfactory
Mean for all Batches	±	1.6	3.7	-----
Virus Control	+++	5.3		control

NB. The Batch of SHEEP POX Vaccine considered satisfactory if the deference between SID₅₀ of Control and Vaccinated Sheep is more than (2.5) after challenge.

Laboratory follow up of Different Batches of SHEEP POX Vaccine

Table (5): Showed the results of cell mediated immune response (XTT) expressed as the mean of absorbance and clarified that the lymphocyte proliferation.

Table (5): Cell mediated immune response (XTT)

Days	Cell mediated immune response(XTT) (Mean of Absorbance)														Post Challenge		
	Post Vaccination																
	Day 0		Day 3		Day 5		Day 7		Day 10		Day 14		Day 21				
Vaccine Batches	F	20x	F	20x	F	20x	F	20x	F	20x	F	20x	F	20x	Challenge test in Sheep		
1-(2016)	0.075	0.076	0.370	0.421	0.518	0.600	1.035	1.052	1.320	1.420	1.041	1.061	0.501	0.635	0.832	0.864	
2-(2015)	0.071	0.073	0.365	0.410	0.517	0.590	1.032	1.048	1.290	1.400	1.036	1.058	0.490	0.580	0.820	0.859	
3-(2015)	0.074	0.073	0.366	0.413	0.516	0.611	1.033	1.050	1.300	1.415	1.039	1.058	0.498	0.621	0.822	0.861	
4-(2015)	0.072	0.074	0.369	0.419	0.515	0.632	1.031	1.052	1.315	1.421	1.040	1.060	0.500	0.610	0.825	0.860	
5-(2015)	0.075	0.076	0.370	0.410	0.516	0.607	1.030	1.049	1.310	1.412	1.039	1.059	0.490	0.609	0.830	0.856	
6-(2015)	0.073	0.073	0.370	0.411	0.517	0.590	1.036	1.050	1.321	1.420	1.042	1.061	0.501	0.612	0.823	0.858	
7-(2015)	0.072	0.075	0.368	0.412	0.514	0.570	1.030	1.051	1.291	1.391	1.038	1.060	0.940	0.609	0.824	0.862	
8-(2015)	0.074	0.072	0.372	0.420	0.518	0.622	1.037	1.053	1.325	1.429	1.042	1.067	0.507	0.617	0.830	0.856	
9-(2015)	0.075	0.077	0.371	0.418	0.516	0.608	1.035	1.051	1.320	1.421	1.041	1.063	0.503	0.614	0.829	0.863	
10-(2015)	0.070	0.071	0.370	0.423	0.517	0.633	1.032	1.054	1.326	1.416	1.040	1.064	0.508	0.610	0.833	0.857	
Mean of means	0.073	0.074	0.369	0.416	0.516	0.606	1.0331	1.051	1.312	1.415	1.040	1.061	0.544	0.612	0.827	0.860	
Controls	0.078		0.078		0.078		0.078		0.078		0.078		0.078		1.043		

* Cell mediated immune response of control animals (absorbance) not exceeded, just between 0.07 – 0.08 all over the time of study up to Challenge Test.

Humoral Immunoresponses

Table (6 and 7) showed the results of SNT and ELISA assays, expressed as mean NI and absorbance (Ab).

Table (6): Neutralizing antibody titers

Days	Humoral immunoresponse (mean results of Serological Examination)(NI)														Post Challenge		
	Post Vaccination																
	Day 0		Day 3		Day 5		Day 7		Day 10		Day 14		Day 21				
Vacc Batches	F	20x	F	20x	F	20x	F	20x	F	20x	F	20x	F	20x	Challenge Test in Sheep		
1-(2016)	0.3	0.2	0.5	0.7	0.8	1.1	1.2	1.6	1.5	1.9	1.9	2.3	2.3	2.6	2.0	2.2	
2-(2015)	0.4	0.4	0.6	0.9	0.9	1.0	1.4	1.4	1.8	2.0	2.0	2.4	2.4	2.7	2.1	2.3	
3-(2015)	0.2	0.3	0.4	0.8	0.7	1.2	1.4	1.4	1.7	1.9	1.9	2.3	2.3	2.6	2.0	2.2	
4-(2015)	0.3	0.3	0.5	0.8	0.8	1.0	1.3	1.4	1.6	1.9	1.9	2.3	2.3	2.6	2.0	2.2	
5-(2015)	0.4	0.4	0.6	0.9	0.9	1.2	1.4	1.4	1.6	1.9	1.9	2.3	2.3	2.6	2.0	2.2	
6-(2015)	0.2	0.3	0.4	0.8	0.7	1.1	1.3	1.4	1.5	2.1	2.1	2.5	2.4	2.7	2.1	2.3	
7-(2015)	0.3	0.3	0.5	0.8	0.8	1.2	1.4	1.4	1.6	2.1	2.1	2.4	2.4	2.6	2.1	2.2	
8-(2015)	0.4	0.4	0.6	0.9	0.9	1.3	1.5	1.4	1.6	2.1	2.1	2.4	2.4	2.6	2.1	2.2	
9-(2015)	0.3	0.4	0.5	0.9	0.8	1.2	1.4	1.4	1.5	2.1	2.1	2.3	2.4	2.5	2.1	2.1	
10-(2015)	0.4	0.3	0.6	0.8	0.9	1.0	1.3	1.4	1.6	1.9	1.9	2.4	2.3	2.6	2.0	2.2	
Mean of means	0.32	0.33	0.52	0.83	0.82	1.13	1.36	1.42	1.6	1.99	1.99	2.36	2.35	2.61	2.05	2.21	
Controls	0.2		0.2		0.3		0.4		0.4		0.3		0.4		1.00		

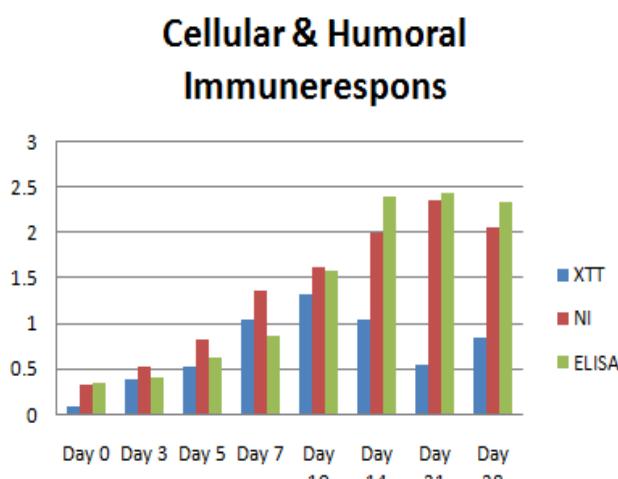
* Neutralization Index (NI) ≥ 1.5 considered protective mean against Capri pox viruses (Cottrial, 1978)

* Positive (NI) in Vaccinated and Safety groups starting from the 10th day post vaccination (about 2 weeks).

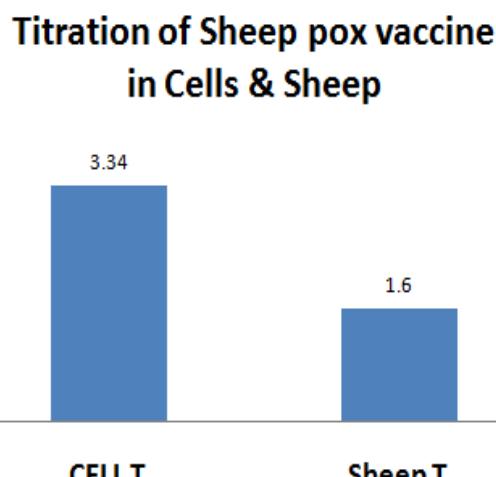
Table (7): ELISA Titer

Days	Humoral immune response (mean results of Serological Examination) (ELISA) (Mean of Absorbance)													
	Post Vaccination						Post Challenge							
	Day 0		Day 3		Day 5		Day 7		Day 10		Day 14		Day 21	
Challenge Test in Sheep														
Batches Of SHEEP POX Vaccine	F	20x	F	20x	F	20x	F	20x	F	20x	F	20x	F	20x
1-(2016)	0.36	0.44	0.43	0.73	0.54	1.02	0.68	1.60	1.50	2.20	2.30	2.50	2.55	2.55
2-(2015)	0.28	0.29	0.37	0.68	0.56	0.92	0.70	1.40	1.89	2.30	2.40	2.35	2.45	2.25
3-(2015)	0.46	0.28	0.41	0.65	0.60	0.90	0.83	1.09	1.60	1.90	2.35	2.40	2.45	2.35
4-(2015)	0.37	0.45	0.45	0.75	0.64	0.98	0.90	1.20	1.60	2.22	2.45	2.50	2.55	2.40
5-(2015)	0.28	0.35	0.36	0.70	0.62	0.92	0.98	1.30	1.70	1.98	2.40	2.45	2.50	2.35
6-(2015)	0.36	0.28	0.44	0.67	0.61	0.96	0.88	1.20	1.30	1.90	2.35	2.40	2.45	2.30
7-(2015)	0.25	0.45	0.35	0.75	0.59	0.97	0.90	1.50	1.60	2.20	2.40	2.50	2.45	2.55
8-(2015)	0.43	0.30	0.42	0.65	0.66	0.90	0.94	1.30	1.70	1.92	2.45	2.50	2.55	2.40
9-(2015)	0.26	0.38	0.36	0.70	0.67	0.94	0.97	1.50	1.80	1.94	2.45	2.50	2.55	2.40
10-(2015)	0.23	0.29	0.31	0.66	0.61	0.98	0.84	1.10	1.40	2.00	2.35	2.50	2.40	2.40
Mean of means	0.33	0.35	0.39	0.64	0.61	0.95	0.86	1.32	1.56	2.02	2.38	2.47	2.43	2.51
Controls	0.35		0.33		0.35		0.34		0.44		0.45		0.40	
													1.9	

* Mean of Absorbance \geq one considered positive (protective samples)


Table (8): Collective Immunoresponse Evaluation of Different Batches of SHEEP POX Vaccine

Days	Mean of means												Challenge Test in Sheep	
	Post Vaccination				Day 10				Day 21					
	Day 0	Day 3	Day 5	Day 7	F	20x	F	20x	F	20x	F	20x		
Exam Assay	F	20x	F	20x	F	20x	F	20x	F	20x	F	20x	Post Challenge Day 28	
Cellular immune. (XTT).	0.073	0.074	0.369	0.416	0.516	0.606	1.033	1.051	1.312	1.415	1.040	1.061	0.544	
Controls	0.078		0.078		0.078		0.078		0.078		0.078		0.827	
Humoral immune. (NI).	0.32	0.33	0.52	0.83	0.82	1.13	1.36	1.42	1.6	1.99	1.99	2.36	2.61	
Controls	0.2		0.2		0.3				0.4		0.4		2.05	
Humoral immune. (ELISA)	0.33	0.35	0.39	0.64	0.61	0.95	0.86	1.32	1.56	2.02	2.38	2.47	2.51	
Controls	0.35		0.33		0.35		0.34		0.44		0.45		3.41	
													1.9	


Table (9): Collective virus Titeration for all vaccine Batches

Mean of	Virus Titer of Vaccine	Batches	CONCLUSION
Titer for all Batches in cells (TCID ₅₀ /dose)	3.34	10 Batches	Satisfactory
Virus Control	2.1	---	control
Titer for all Batches in Sheep (Challenge Test)	1.6	10 Batches	Satisfactory (as deference: 5.3 – 1.6 = 3.7 > 2.5)
Virus Control	5.3	--	control

1- Immuneresponse Assays

2- Titration in cell Line (Cell T) & Sheep (Sheep T)

Fig. (1): Collective Evaluation Methods of Live Attenuated Sheep Pox Vaccine

IV. DISCUSSION

Immunity to sheep pox involves both humoral and cellular responses (26). Antigens on the envelope and on the tubular elements of the virion surface stimulate protective antibodies. Even though it is the cell mediated immune response which eliminates the infection, antibodies limit the spread of the infection within the body. Neutralizing antibodies do play a significant role in the immunity as they have been shown to be an essential component of the protective immune response against sheep pox as the same was found to be absent in unvaccinated and pre-vaccinal serum samples (27). Current evaluation of animal vaccines still focuses on the potency of final products in a batch-wise manner. All recent researches go in way to shafting from in-vivo to in-vitro for replacement the animal models, to ensure relevant quality attributes of vaccine batches by in-vitro evaluation of vaccines rather than by in-vivo potency tests on the final product (28).

For evaluating veterinary vaccines challenge studies were widely used under controlled conditions and sero-conversion studies, but the potency test in animals requires a large number of animals and involves unrelieved pain and suffering. A relevant in-vitro assay should provide a more accurate, reproducible, rapid, safe, vaccine potency test (29).

So, this study was performed for evaluation of live attenuated sheep pox vaccine by using different immuneresponse assays as alternatives to challenge test.

Table (2): Shows the titer values of live sheep pox virus of the ten different Batches of vaccine using

Vero cell line (T.C) which calculated as ($TCID_{50}$) . The titer values were ($\geq 2.5 TCID_{50}/$ dose) for all batches in comparing with used control sheep pox virus ($2.1 TCID_{50}/ 0.1ml$) so all vaccine batches were considered Satisfactory on the level of tissue culture and these results agree with protocol of live attenuated sheep pox vaccine evaluation (30) and (31).

Table (3-1) Shows the post vaccinal body temperature changes (thermal response) of all vaccinated animals and control ones through different follow up intervals of experiment and till application of challenge test. The body temperature elevated only in sheep groups of batches (2, 6 and 10) at 5th days post vaccination, while at 7th and 10th days the thermal reaction recorded in all sheep groups as the result of using the live attenuated vaccine. Also there was a mild thermal reaction for all vaccinated groups while control unvaccinated group showed severe thermal reaction post challenge due to the development of protective humoral and cellular immuneresponse of vaccinated sheep as shown in Tables (5,6 and 7) these results agree with (32).

Clinical examination of all sheep groups explained in Table (3-2) Showed that small post vaccinal lesions or reactions in inner side of tail fold for sheep vaccinated with batches (1, 6 and 9) only that disappeared within 3 days (salve regeration) , and there were no lesions or reactions in other groups. While after 7 days of challenge test few numbers of intradermal buttons shaped lesions were observed in both body sides of vaccinated sheep groups in comparing to huge number of buttons shaped lesions showed in control unvaccinated sheep group. .The mild post challenge

reactions appeared on the previously vaccinated animals, are due to the circulating antibodies derived through vaccination, which limits spread virus in animals (33) and (34), the results also were agreement with (35).

Table (4): Shows the titration of Vaccine Batches using Challenge Test in Sheep after being challenged with different dilutions of virulent field strain of sheep pox virus, then calculated as SID₅₀ and the difference between the values SID₅₀ of used control animal group and vaccinated groups were more than (2.5) for the vaccines and all batches considered satisfactory, these method of calculation and results were agree with (30) and (31).

It is known that sheep pox immunity depends mainly on the cell-mediated immune response in comparison to the humoral immune response (12) and (33).

The results of cell mediated immune response (XTT) expressed as the mean of absorbance in Table (5) showed the gradual increasing in lymphocyte proliferation as reached its peak on the 10th day (1.312 and 1.415) then decrease to lowest level at 21th day post vaccination (0.544 and 0.612) and re-increased to (0.827 and 0.860) post application of challenge test. These results agree with those of (36) and (37). Our results were in agreement with, (38) and (39) who reported the increase of lymphocyte activity by the 3rd day post vaccination and reached its peak on the 10th day then decreased.

Table (6 & 7) showed the results of SNT and ELISA assays. The humeral immune response increased gradually to be detected by the 10th day post vaccination as the mean NI was (1.6 and 1.99) more than protective level (>1.5) and mean absorbance of ELISA was (1.56 and 2.02) also more than protective level (> 1) then reached to the highest level mean of NI (2.35 and 2.61) and mean absorbance of ELISA (2.43 and 2.51) at the 21st day. These results also documented by (10) that reported neutralizing Index (NI) ≥ 1.5 considered protective mean against Capri pox viruses and were found by (27) and (40), mentioned that serum neutralizing antibodies develop on the 2nd day and a significant rise of antibody titer was detected from the 21st to 42nd day post inoculation. Neutralization is very specific for almost all viruses (39). Results also harmonize with (41) and (42) who concluded that the serum neutralizing antibodies do play a significant role in the immunity against sheep pox and agree with (43) pox vaccines is the most effective immunogenic available and provide strong humoral immune response.

Table (8 & 9) and fig . (1) Showed the collective results obtained from all methods used for evaluation of live attenuated sheep pox vaccine either in-vivo or in-vitro. The pattern of these results indicated the presence of co-relation between different vaccine evaluation assays with the same value and accuracy to

overcome and solve the safety problems and precautions of Challenge Test. (14), (15) and (16).

So the positive concordance found between the antibody levels and protection in tested lambs indicates that using immuneresponse assays as method for evaluation of live attenuated sheep pox vaccine appears to be as accurate as challenge test and presents several advantages in terms of costs and speed of issue of results.

We conclude that NI and ELISA as immuneresponse assays can be reliable measure of the efficacy of vaccine batches, provided that a good correlation has been demonstrated between protective immunity and resistance to challenge in vivo. So NI and ELISA can be used as alternatives to challenge test.

REFERENCES REFERENCIAS REFERENCIAS

1. Buller, RM, Arif, BM, Black, DN (2005): Poxviridae. In: Virus Taxonomy: Eighth Report of the International Committee on the Taxonomy of Viruses. Elsevier Academic Press, Oxford; pp 117.
2. Kitching, R.P. (2004): Sheep pox and goat pox. In: Coetzer JAW, Tustin RC (Eds). Infectious Diseases of Livestock Second Edition, Volume 2, pp.1277-81. Oxford University Press Southern Africa, Capetown.
3. Rao ,T.V. and Bandyopadhyay, S.K. (2000): A comprehensive review of goat pox and sheep pox and their diagnosis. Anim Health Res Rev.;1(2): 127-36.
4. Kallesh, D.J.; Hosamani, M.; Balamurugan, V.; Bhanuprakash, V.; Yadav, V. and Singh, R.K. (2009): Quantitative PCR: A quality control assay for estimation of viable virus content in live attenuated goat pox vaccine. *Ind. J. Exper. Biol.*; 47: 911-915.
5. Bhanuprakash, V.; Indrani, B.K.; Hosamani, M. and Singh, R.K. (2006): The current status of sheep pox disease. *Comp. Immuno. Microbiol. and Infect. Dis.*; 29(1): 27-60.
6. Alan, D.T.B. and Lawrence, R.S. (2009): Vaccines for biodefense and emerging and neglected diseases. Elsevier inc.
7. Bhanuprakash V, Venkatesan G, Balamurugan V (2010): Pox outbreaks in Sheep and Goats at Makhdoom (Uttar Pradesh), India: Evidence of Sheeppox Virus Infection in Goats. *Transboundary and Emerging Diseases*, 57: 375-382.
- CLEVB
8. Kitching, R.P. (1986): The control of sheep and goat pox. *Rev Sci Tech.*;5:503-11.
9. Mirzaie Kamran, Seyed Mohammad Barani and Saeid Bokaie (2015): A review of sheep pox and goat pox: perspective of their control and eradication in Iran. *J. Adv. Vet. Anim. Res.*, 2(4): 373-381.

10. OIE Terrestrial Manual (2010): Chapter 2.7.14 Sheep pox and goat pox in manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 1-12.
11. Tuppurainen, E. S. M. ;Venter, E. H.; Shisler, J. L.; Gari, G. ; Mekonnen,G. A.; Juleff, N.; Lyons, N. A.;K. De Clercq, Upton, C.; Bowden, T. R. ; Babiuk, S. and. Babiuk, L. A. (2017): Review: Capripoxvirus Diseases: Current Status and Opportunities for Control.Transboundary and Emerging Diseases, 64(3): 729–745.
12. Stokes, W. S. k; Kulpa-Eddy , J .; Brown, K.; Srinivas, G and McFarland, R. (2012) : Recent Progress and Future Directions for Reduction, Refinement, and Replacement of Animal Use in Veterinary Vaccine Potency and Safety Testing. *Dev Biol (Basel)* 134, 9-21. 2012.
13. Aparna Madhavan, G. Venkatesan and Amit Kumar (2016): Capripoxviruses of Small Ruminants: Current Updates and Future Perspectives.*Asian J.Anim.Vet.Adv.*,11(12):757-770.
14. Jungbäck. C. (2012): Potency Testing of Veterinary Vaccines for Animals: The Way From in Vivo to in Vitro. International Alliance for Biological Standardization *Dev Biol (Basel)* ; 134:149-52.
15. Gibert, R.; Alberti, M.; Poirier, B.; Jallet, C.;Tordo, N. and Morgeaux S.(2013): A relevant in vitro ELISA test in alternative to the in vivo NIH test for human rabies vaccine batch release.*Vaccine* 5; 31(50):6022-9.
16. Horvath, E.; Czifra, G.; Nagy, E.; Engstrom, B. and Merza M.(1999): Potency test of inactivated Newcastle disease vaccines by monoclonal antibody blocking ELISA. *Vaccine* 1999; 17: 2969-73.
17. Kubiak, V.(2012): In vitro antigen measurement and potency tests: challenges encountered during method development...and lessons learned. International Alliance for Biological Standardization *Dev Biol (Basel)* ;134:83-91.
18. Maas , P.A.; Winter, M.P.M.; Venema,S. ; Oei, H.L. and. Claassen, I.J.T M (2000): Antigen quantification as in vitro alternative for potency testing of inactivated viral poultry vaccines, *Veterinary Quarterly*, 22:4, 223-227.
19. Kamphuis, E.; Krämer,B.; Schildger,H.; and Duchow,K.(2012):Potency Testing of Inactivated Rabies Vaccines Using a Serological Method *Dev Biol (Basel)* ;134:23-7.
20. Sabban, M.S. (1960): Sheep pox and its control in Egypt. *Bull. Off. Int. Epiz.*, 53: 1527-1539.
21. Rai-El-Balhaa, C.; Pellerin, J.L.; Bodin, G.; Abdullah, A. and Hiron, H. (1985): Lymphocyte transformation assay of sheep peripheral blood lymphocyte a new rapid assay to read technique. *Commp. Immunol., Microbiol. Infect. Dis.*, 8(3/9): 311-318.
22. Alvero, O.; Parlak, C. and Senyel, M. (2006): FT-IR and NMR investigation of 1- phenylpiperazine: Acombined experimental and theoretical study. *Spectochim Acta A Mol. Biomol. Spectrosc.*
23. Rossiter P.B., Jessett D.M& Taylor W.P (1985): Micro neutralization systems for use with different strains of PPR virus and rinderpest virus. *Trop.Anim.Hlth.prad*, 17, 2, 75-81.
24. Martin W.B., Erhan M & Onar B (1975): Studies on sheep pox vaccine, serum – virus neutralization test. *Pendik Veteriner Kontrol Ve Arastirm Institusu Dergisi*, 8(1):26-47.
25. Anderson J., Rowe L.W., Taylor W.P & Crowther J.B (1982): An enzyme linked immunosorbant assay for the detection of IgG, IgA and IgE antibodies. *Res. Vet. Sci.*, 32 (2):242-247.
26. Kalra S.B. & Sharma U.R. (1984): Cell-mediated and humoral immune response of sheep to attenuated sheep pox-virus. *Indian J. Anima Sci.* 54: 450-456.
27. Amitha, R. Gomes; Raveendra Hegde, Byregowda, S.M.; Vijayashree Varadarajan, Yeshwant , S.L.; Giridhar, P. and Renukaprasad, C. (2010): of Evaluation of humoral immune response to sheep pox vaccine. *J. Veterinary & Animal Sciences* 6 (5) 236-238.
28. Romberg, J. ; Lang, S.; Balks, E.; Kamphuis, E.; Duchow, K.; Loos, D.;Rau, H.; Motitschke. A. and Jungbäck, C.(2012): Potency testing of veterinary vaccines: the way from in vivo to in vitro. *Biologicals*.;40(1):100-6.
29. Lewis, C.E .; Fry, A.M.; Hermann, J.R.; Siev, D.; Dusek, D.M and Gatewood, D.M.(2012): Potency testing of veterinary rabies vaccines: replacement of challenge by in vitro testing: considerations for development of alternative assays. *Dev Biol (Basel)* ;134:29-33.
30. Code of Regulation of Egypt (CLEVB) (2017): Published by Central Laboratory for Evaluation of Veterinary Biologics.
31. OIE Terrestrial Manual (2017): Chapter 2.7.13 Sheep pox and goat pox in manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 1-12.
32. Mahmood, M. A., A. Sajid, M. Ahmad, Z. Hassni and M. S. Khan (1989): Preparation of live goat pox tissue culture vaccine. *Pakistan. J. Vet. Res.* 2: 31-37.
33. Zineb Boumart; Samira Daouam; Imane Belkourati; Lamya Rafi; Eeva Tuppurainen; Khalid Omari Tadlaoui, and Mehdi El Harrak(2016): Comparative innocuity and efficacy of live and inactivated sheeppox vaccines. *BMC Vet Res.*; 12: 133.
34. Yogisharadhy,R.; Bhanuprakash ,V.; Hosamani,M.; Venkatesan ,G.; Balamurugan ,V.; Bora,D.P.; Bhanot,V.; Prabhu,M. and Singh,R.K. (2011): Comparative efficacy of live replicating sheeppox vaccine strains in Ovines *Biologicals*, 39: 417-423.
35. Carn V.M (1993): Control of capripox viruses infections. *Vaccine*, 11: 1275- 1279.

36. Bachh A.S., G.C.Ram., J. Hopkins & M.P Bansal (1997): Observation on cellular response in experimentally sheep pox – infected lambs. Indian. J. Anim .Sci, 64:263-266.
37. Mohamed A.A., Mukhtar M.M., Elhussein A.M., Tageldin A.M.N & Fadol M.A (2007): Immune response of sheep vaccinated with capripox vaccine. Vet.Res. 1(1): 12-16.
38. Olfat, E. Nakhla; Samir, S.S.; Manal, Awad; Soad, M. Soliman and Daoud, A.M. (2002): Studies on cell mediated immune response of Goats vaccinated with Goat pox vaccine. 6th *Vet. Med. Zag. Conference.*, 139-151.
39. Heba A. Khafagy, Mohamed G. Abdelwahab, Abdelmoneim M. Mustafa, Mohamed A.Saad (2016): Preparation and field evaluation of live attenuated sheep pox vaccine for protection of calves against lumpy skin disease. Benha Vet. Med. J., 31(2):1-7.
40. Agag, B.I., Mousa, S., Hassan, H.B., Saber, M.S., El-Deghidhy, N.S., Abdel Aziz, A.M., (1992): Clinical serological and biochemical studies on LSD. Lumpy Skin Veterinary Sciences 33, 58-66.
41. Rashwan, S.M.; Al Khalaf, H.N.; Al Hammad, M.I. and Abdel-Baky, M.H.(2001): Determination of sheep pox circulating neutralizing antibodies in immunized sheep and goats in the north region of the kingdom of Saudi Arabia. J. Appl. Anim. Res. 19: 233-235.
42. Zeidan S.M, Namaa A. Mohamed, HananM.S.ELZawahry, Saad M.A.A, Olfat E. Nakhla, Afaf A.Abdel-wahab, Abeer A. Tammam, El-Dakhly A.T(2016): Preliminary study for preparation of combined attenuated vaccine against sheep pox and PPR viruses. International Journal of Advanced Research, 4 (4) , 212-219.
43. Fakri,F.; Ghzal,F.; Daouam,S.; Elarkam,A.; Douieb,L.; Zouheir,Y.; Tadlaoui,K. and Fassi-Fihri,O.:(2015): Development and field application of a new combined vaccine against Peste des Petits Ruminants and Sheep Pox. Trials in vaccinology, Volume 4, 33-37.

