

1 A Study of Rational Prescriptions of Penicillin and
2 Cephalosporin Antibiotics in a Secodary Health Care Facility in
3 South West Nigeria

Moses Kayode¹

⁵ ¹ University of Ibadan

Received: 15 February 2012 Accepted: 15 March 2012 Published: 25 March 2012

8 Abstract

The purpose of this study is to assess the prescriptions pattern of penicillin and cephalosporin antibiotics among physicians at Sacred Heart Hospital Lantoro Abeokuta and determine their conformity with standard guidelines and principles of antibiotic use. It was a retrospective study involving data obtained from outpatient case notes that were prescribed with cephalosporin and penicillin antibiotics during the 6 months period of January to June 2010. A total of six hundred and fourteen (614) case notes were randomly selected and used for the study. One hundred and sixty seven (167) (27

Index terms— Antibiotics, Penicillins, Cephalosporins, Rational, Prescriptions. Omole, Moses Kayode Pharm. D ? & Adeola Adebisi Michael M. Pharm ? ntibiotics are the most frequently prescribed and misused drugs and there are reported concerns about the continuous indiscriminate and excessive use of antibiotics leading to emergence of antibiotic-resistant organisms (N J McLellan2001) (Krivoy et al 2007). Despite the wide range of antibiotics available for treatment for infections, therapeutic failure has been increasingly experienced. This can largely be attributed to their irrational usage leading to development of resistant strains of bacteria. (N J McLellan2001).

Rational use of antibiotics means that right antibiotics should be prescribed for the right patient in adequate dose for the sufficient duration as appropriate to the clinical needs of the patient at the lowest cost ??WHO 1988). Many people are dying from infectious diseases that are curable but which no longer have the correct treatment. ??Gaash B.2008).

(Abdelsalam mohamed hamed Elfaki.2010) This is because certain bacteria are transforming themselves and developing increasing resistance to antibiotics. More than 80% of the most common bacteria, *Staphylococcus aureus* are now resistant to penicillin such as ampicillin ??Henry F chember.2004). The problem of irrational use of antibiotics is both complex and multi-faceted, but whatever its complexity, it should not be underestimated because it has a harmful influence on certain prevalent conditions such as caused by *Staphylococcus aureus* infections that can successfully be treated. Inappropriate drug prescriptions has been identified in many health facilities in Nigeria (Erah et al 2003) (Akande and Medubi 2009)., (Omole and Bello 2011).

The discovery of penicillin by Sir Alexander Fleming in 1928 ushered in the antibiotic era and transformed the practice of medicine (EH Decloedt et al 2008). It was however in 1940 that penicillin was produced in sufficient pure form to treat human infections. Many useful antibiotics have since been developed that belong to the penicillins. According to figures gathered during surveys by WHO in 2000, about 60% of antibiotics in Nigeria were prescribed unnecessarily. (Gaash B 2008 Both classes of antibiotics were prescribed most frequently for URTI. The cost of filling a prescription followed a normal curve distribution with the peak at the age group 35-49 years for both penicillins and cephalosporins antibiotics. Generic prescriptions were found to be 95(15.5%) for penicillins and 103(16.7%) cephalosporins. Prescriptions by proprietary names were 379(61.8%) for penicillins and 37(6.0%) for cephalosporins. Mean duration of prescription for penicillins was 6.65 1.95 days while it was 5.5 1.5 days for the cephalosporins. There was neither a case of microbial culture sensitivity test (MCS) nor a case of adverse effect documented.

1 RESULTS

46 The study showed that prescriptions pattern of penicillin and cephalosporin antibiotics were not completely
47 in line with standard guidelines of antibiotic therapy. Measures should be taken to detect and document adverse
48 drug reactions and consideration should be given to microbial culture sensitivity test.

49 The penicillins are classified as B-lactam drugs because of their four-membered lactam ring. They shared
50 features of chemistry, mechanism of action, pharmacologic, clinical effect and immunologic characteristics with
51 cephalosporins which are also Blactam compound.

52 Studies had confirmed that these two classes of antibiotics (penicillins and cephalosporins) are widely
53 prescribed. In a study (Palikhe N 2004) at pediatric hospital of Kathmada valley.,cephalosporins was the top most
54 frequently prescribed antibiotics followed by penicillins. Penicillins were found to be more frequently prescribed
55 than the cephalosporins in a study conducted at University of Ilorin teaching hospital (Akande et al 2009).
56 Penicillins and cephalosporins were prescribed in more than half of the estimated emergency department visits
57 for antibiotic-associated adverse events (E H Decloedt 2008). There is the need to prevent the age long antibiotics
58 (Penicillins and Cephalosporins) from loss of efficacy by ensuring that they are rationally prescribed.

59 Not many studies have been conducted on rational prescriptions of these two classes of antibiotics by the
60 Physicians in Nigeria. This study therefore examines the rational prescriptions of penicillin and cephalosporin
61 antibiotics at Sacred Heart Hospital Abeokuta in Ogun State of Nigeria and determine their conformity with
62 standard guidelines and principles of antibiotic use with the goal of providing and promoting pharmaceutical
63 care.

64 Sacred Heart Hospital (SHH) is a secondary mission healthcare institution situated in Abeokuta, Ogun State
65 in Nigeria. It was established in the year 1805 and currently attracts patients throughout the state and the
66 neighboring states.

67 The study was a retrospective study involving data obtained from outpatients case notes. The data were
68 collected from case notes of patients prescribed with either penicillin antibiotics or cephalosporin antibiotics or
69 both antibiotics during the six months period of January to June 2010.

70 A total of 626 outpatient's case notes were randomly selected from the outpatients medical record. Twelve
71 (12) patients' case notes were excluded from the study due to incomplete data. A total of 614 outpatient case
72 notes were therefore used for the study.

73 Information obtained from the case notes were demographic data including age, sex, presenting complaint,
74 laboratory investigations, penicillin and cephalosporin antibiotics prescribed in generic and proprietary names,
75 dosage regimen, change in therapy, educational status of patients, marital status, microbial culture sensitivity
76 (MCS) test, diagnosis made and adverse drug reactions.

77 The information obtained from each outpatient case note was entered using Epi info. Analysis was done
78 using the Statistical Package for Social Sciences (SPSS) Version XII (12). Results were presented in frequencies,
79 percentages, means and standard deviations. Two categorical variables were compared using the Chi-Square test
80 and two unrelated variables were compared using Pearson correlation. Statistical significance was decided at the
81 5% level (p<0.05).

82 The management of Sacred Heart Hospital Lantoro Abeokuta granted the ethics to carry out this study.

83 One hundred and sixty seven (167) (27%) patients were aged 0-9years, 31 (5%) patients aged 10 -19 years,
84 226 (37.0%) patients aged 20 -29 years, 111 (18%) aged 30 -39 years, 52 (8.5%) aged 40-49 years, 13 (2.2%) aged
85 50-59 years, 11 (1.8%) aged 60 -69 years and 3 (0.5%) patients aged 70 years and above. Four hundred and forty
86 (440) (71.7%) were males while 174 (28.3%) were females. (Table 1)

87 One hundred and eighty seven (187) (30.4%) patients aged 19 years and above had URTI. Patients aged 0 -9
88 years had no UTI and PID. Two hundred and seventy nine (279) (45.3%) patients were diagnosed of URTI while
89 pelvic inflammatory disease (PID) was diagnosed in 12 (2%) patients.(Table ??)

90 The penicillins and the cephalosporins were prescribed mostly for upper respiratory tract infection (URTI).
91 Amoxycillin (penicillin) was prescribed for 61(9.9%) patients, Ampiclox (Ampicillin + Cloxacillin) for 99 (16.1%)
92 patients and Amoxiclav for 30(4.8%) patients. The penicillins were not prescribed for pelvic inflammatory disease
93 (PID) but Amoxiclav (Amoxicillin + Clavuric acid) was prescribed for 2 (0.3%) patients with PID. Cefuroxime
94 the only cephalosporin was prescribed for all the conditions diagnosed. (Table ??)

95 The penicillins were prescribed for mean duration of 4.7 days for patients aged 0 -5 years and 8.6 days for
96 patients aged 18 -34 years. The mean duration for cephalosporins prescribed ranged between 4.0 days for patients
97 aged 0-5years and 7 days for patients aged 35-49 years.Both penicillins and cephalosporins were prescribed for
98 the longest mean duration for patients in the age group 19 -34 years and were prescribed for least mean duration
99 for patients in the the age group 0 -5 years. The average cost of filling each antibiotic prescription with the
100 cephalosporins was found to be N1400.00 for patient in the age group 0 -5 years. With the penicillins, the highest
101 mean cost was found to be N655.00 for patients in the age group 35-49 years (Table 4). Table 4 further showed
102 that the cost of filling each prescription followed a normal distribution with a peak at the age group 35 -49 for
103 both penicillins and cephalosporins.(Table 4)II.

104 Patients and MethodS III.

105 1 Results

106 Total prescriptions by proprietary names 416 (67.8%) were higher than generic prescriptions 198(32.2).
107 Prescriptions by proprietary 379 (61.7%) were higher than the generic prescriptions 95 ??15.4) for the penicillins
108 whereas it was found to be lower 37(6%) than generic prescriptions 103 (16.7%) for the cephalosporins.(Table 5)

109 The number of male patients that were prescribed with penicillin and cephalosporin antibiotics was higher
110 440(71.7%) than female patients 174(28.3%). There was a significance association between drugs prescribed and
111 sex (P= 0.00393) (p<0.05) (Table 1). This result was similar to the study conducted by Palikhe in 2004 in
112 Kathmandu medical college, and study conducted at the university of Ilorin teaching hospital by Akande et al
113 in 2009 which showed higher antibiotics prescriptions for males to be 54.0%. Patients in the age group 0 -9 years
114 were prescribed antibiotics 167 (27.0%) more frequently than older children aged 10 -19 years 31(5.0%) There
115 was a significance association between drugs prescribed and age. (P = 0.00393) (p<0.05). This was similar
116 to the result obtained by Marlies et al in 1999 which showed that patients aged below ten years were treated
117 with antibiotics more frequently 25% than those above ten years (11%) (P = 0.0256) (p<0.05) and the study
118 conducted by Palikhe in 2004 which showed that patients below one year received antibiotic treatment more
119 frequently than older patients.(Table 1).

120 Cephalosporins and penicillins were prescribed mostly for upper respiratory tract infections (URTI) 279(45.3%)
121 and least prescribed for pelvic inflammatory disease (PID) 121(2.0 %). There was no definite diagnosis made
122 in 45 patients (7.4%) (Table ??). This study showed that patients in the age group 0 -9 years presented more
123 frequently with upper respiratory tract infection 77 (12.5%) than for other infections. This may be due to
124 the fact that infants have less developed respiratory organs and may be more prone to respiratory infections.
125 There were no cases of pelvic inflammatory disease (PID) and urinary tract infection in this group of patients.
126 PID and UTI were only presented by patients in the age group 18 years and above (Table ??) Ampiclox®
127 (Ampicillin + cloxacillin) 99(16.1%) was the most frequently prescribed penicillins. (Table ??) for URTI while
128 Amoxiclav (Amoxycillin + clavulanic acid) 30(4.8%) was the least prescribed penicillins for the same condition.
129 Cefuroxime in the form of suspension and tablet was the only cephalosporin prescribed in this study. Cefuroxime
130 was prescribed mostly for URTI and least prescribed for PID. This was similar to the pattern seen with the
131 penicillins. All the conditions were treated with single cephalosporin antibiotics (Table ??). This was similar to
132 the study conducted by Palikhe in 2004 who reported that 93% of the patients studied were prescribed only with
133 one antibiotics. He also reported that 75% cases of enteric fever was treated with single antibiotics. Other studies
134 showed lower percentage treatment with single antibiotics 60.6% (Josefina and Caminal et al 2005) and 36%
135 ??Marlies et al 1991). In the study conducted, penicillins were more frequently prescribed 474 (77.2%) than the
136 cephalosporins 140 (22.8%). (Table ??). A study conducted at University of Ilorin Teaching Hospital (Akande et
137 al 2009) reported higher prescription for penicillins (72%) than cephalosporins (28%). Another study reported
138 by Palikhe in 2004 indicated higher prescription for cephalosporins. The prescriptions of antibiotics in this study
139 which was based mainly on clinical judgment (empirical treatment) without microbial culture sensitivity (MCS)
140 test was similar to study conducted by Palikhe 2004. There was also a similar study conducted by Suping
141 Hu et al 2002 which showed collection of specimen for culture to be only 8.4% among the patients prescribed
142 with antibiotics. In all the cases considered in this study specimen for culture were not obtained. It is very
143 necessary to ensure that specimen are obtained and cultured before initiating antibiotic therapy in some of the
144 cases. Measures should be taken to avoid the inappropriate use of antibiotics to prevent antibiotics resistance,
145 high health care costs and possible side effect including gastrointestinal side effect (Sneha et al 2006) (Saping
146 2009). Among the penicillins, the mean duration of prescription for penicillins was 6.3 days and 5.1 days for
147 the cephalosporins (Table 4). This differed from mean duration of prescription 10.59 days reported by study
148 conducted at University of Ilorin Teaching Hospital (Akande et al 2009).

149 Except for few conditions, the optimum duration of antibiotic treatment is unknown. Many antibiotics are
150 often prescribed for duration of 5-7 days (Krivoy et al 2007) (Lim V Ket al 2009). Nevertheless it is reasonable to
151 discontinue therapy even after a shorter period if patients' symptoms have resolved. There are however certain
152 infections where prolonged treatment is necessary. In some conditions such as uncomplicated cystitis in women
153 and gonococcal urethritis in males, single dose regimen have been shown to be effective for shorter duration.

154 Duration of therapy depends on the site and severity of infection such as tonsillitis -10 days, bronchitis 5-7
155 days, urinary tract infection single shot to 21 days, lung abscess 2-8 weeks and tuberculosis 6-24 months. The
156 frequency of administration was found to range from six-hourly of four times in twenty four hours to twelve-
157 hourly of two times in twenty four hours with the penicillins and from twelve -hourly to once daily of one dose
158 in twenty four hours with the cephalosporin. These are concurrent with the recommended standard Frequency
159 of administration could be increased in cases of severe, deep seated and sequestered infections and reduced in
160 cases of renal failure. Only 198(32.2%) of the prescribed penicillins 95(15.5%) and cephalosporins 103(16.7%)
161 were in generic names (Table 5). This is similar to 37.2% generic prescription reported by Abdel Salam in 2010.
162 A similar study conducted at the teaching hospital Ilorin reported generic antibiotic prescription to be 45.6 %.
163 (Akande et al 2009). There was a similar report in some African Countries where generic prescription of drugs
164 is not a popular practice (Akande et al 2009).

165 Proprietary prescription was relatively high (67.8%) (Table5). Generic prescription however, is the interna-
166 tionally accepted method of prescription. It follows therefore that the choice of either the cephalosporins or the
167 penicillins was based on the discretion of the physicians. Oral route was used in all the cases considered for both

1 RESULTS

168 penicillins and cephalosporins. This is expected as the patients were out patients and were able to tolerate oral
169 medications. Exactly 6.1% of the antibiotics prescriptions were for common cold and catarrh. This is unnecessary
170 as antibiotics are not appropriate for viral infections. In a Kentucky study, 60% of patients were prescribed
171 antibiotics for common cold (Marlies A. Van 1999) (Sharm Rashimi et al 2005) (Sujit J Chandy 2008). There
172 was no case of adverse drug reaction documented. This may be that there was no adverse drug reaction or that
173 the case was not reported or documented. In a similar study by Palikhe in 2004, only 9% cases of adverse drug
174 reaction were reported.

175 Antibiotic monotherapy was found to be high. Cases where combination therapy was used include Ampiclox
176 (Ampicillin + cloxacillin). This combination displays synergy against some B-lactamase producing organisms
177 since cloxacillin potentiates ampicillin antibacterial activity (Emdex 2006). Amoxiclav (Amoxycillin + clavulanic
178 acid) was another combination therapy prescribed. Although clavulanic acid is not an antibiotic, it protects
179 amoxicillin from enzymatic destruction by binding to them resulting in potentiation or synergistic effect.

180 There was no case of change in therapy probably because most of the cases might not have warranted antibiotics
181 prescription in the first instance and due to the fact that culture sensitivity test was not done.

182 The use of antibiotics in the outpatient department (OPD) of Sacred Heart Hospital was not completely in
183 line with the standard guidelines of antibiotic therapy as regards the generic prescriptions, cost and frequency of
184 use. There is need in some cases to carry out a culture sensitivity test before prescribing antibiotics especially in
185 children as their organs are not fully developed and they can easily suffer from toxic and adverse effects of drugs.

186 We hereby acknowledge the technical support and cooperation of the members of staff of Sacred Heart Hospital,
Lantoro Abeokuta Ogun State, Nigeria. ^{1 2 3 4}

A Study of Rational Prescriptions of Penicillin and Cephalosporin Antibiotics in a Secondary Health Care Facility in South West Nigeria

Abstract -The purpose of this study is to assess the prescriptions pattern of penicillin and cephalosporin antibiotics among physicians at Sacred Heart Hospital Lantoro Abeokuta and determine their conformity with standard guidelines and principles of antibiotic use. It was a retrospective study involving data obtained from outpatient case notes that were prescribed with cephalosporin and penicillin antibiotics during the 6 months period of January to June 2010. A total of six hundred and fourteen (614) case notes were randomly selected and used for the study.

29
years

One hundred and sixty seven (167) (27%) patients were of the age group 0 -9 years, 31(5%) patients were aged 10 -19 years and 226(37%) patients were of age group 20 -

[Note: Four hundred and forty (440) (71.7%) patients were males while 174 (28.3%) patients were females. Among diagnosis studied were upper respiratory tract infection (URTI) 238 (38.8%) and lower respiratory tract infection (LRTI) (21.0%) ($p = 0.00393$) ($p < 0.05$). There was no definite diagnosis (NDD) made in 37 (6.02%) cases. Penicillins were prescribed for 474 (77.2%) patients and cephalosporins were prescribed for 140 (22.8%) patients.]

Figure 1:

187

¹© 2012 Global Journals Inc. (US) © 2012 Global Journals Inc. (US)

²© 2012 Global Journals Inc. (US)

³A Study of Rational Prescriptions of Penicillin and Cephalosporin Antibiotics in Sacred Heart Hospital, Lantoro Abeokuta, Nigeria IV.discussion

⁴A Study of Rational Prescriptions of Penicillin and Cephalosporin Antibiotics in Sacred Heart Hospital, Lantoro Abeokuta, Nigeria

1

Volume XII Issue IV Version I
Medical Research
Global Journal of

Figure 2: Table 1 :

4

Figure 3: Table 4 :

5

AGE GRP.(yrs)	MEAN DURATION OF ANTIBIOTCS PRESCRIPED (DAYS)		MEAN COST OF ANTIBIOTICS PRESCRIBED Naira (Dollar)		CEPHALOSPORINS	
	PENICILLINS	CEPHALOSPORINS	PENICILLINS	CEPHALOSPORINS	GENERIC	GENERIC PROPRIETARY
0 -5	4.7	4.0	410(2.6)	1400(8.8)		
6 -10	5.1	6.0	430(2.7)	1125(7.0)		
11 -18	8.2	5.1	565(3.5)	950(5.9)		
19 -34	8.6	5.1	600(3.8)	950(5.9)		
35 -49	6.8	7	655(4.1)	1100(6.9)		
50 -69	5.2	4.3	450(2.8)	485(3.0)		
70 -abv	5.0	4.1	420(2.6)	475(3.0)		
MEAN %			20.40(0.1)	36.87(0.2)		
PENICILLINS						
GENERIC		GENERIC		GENERIC PROPRIETARY		
	freq	%	freq	%	freq	%
Amoxycillin susp.	44	7.2	26	4.3	Cefuroxime susp.	41
Amoxycillin caps	51	8.3	43	7.0	Cefuroxime tab	62
Ampiclox susp			201	32.7		
Ampiclox caps	-	-	22	3.6		
Amoxiclav susp.			35	5.7		
Amoxiclav tablet	-	-	52	8.5		
Total %	95	15.5	379	61.8		
					103	16.7

Figure 4: Table 5 :

1 RESULTS

188 .1 May

189 [References Références Referencias PROPRIETARY] , *References Références Referencias PROPRIETARY*
190 [Kathmandu University Medical Journal] , *Kathmandu University Medical Journal* 2 p. .
191 [Caminnal and Rovira ()] , Josefina Caminnal , Joan Rovira . 2005.
192 [Abdelsalam Mohamed Hamad Elfaki ()] , *Abdelsalam Mohamed Hamad Elfaki* 2010.
193 [Obi () /09]. *EMDEX. Drug formulary for Nigeria's Health Professionals. Penicillins -Betalactam drugs*, Chris
194 C Obi . 2008. p. .
195 [Rashimi and Chamanlai ()] 'Antibacterial resistance: current problems and possible solutions' Sharm Rashimi
196 , Sharma Chamanlai . *Indian journal of medical sciences* 2005. 59 p. .
197 [Decloedt and Maartens ()] 'Antibiotic prescribing in respiratory tract infections: first do no harm' E H Decloedt
198 , G Maartens . <http://findarticles.Com/p/articles/mi-6811/is-11-26/ai-2339836/?tag=content?2/26/2011> SA journal of CPD 2008.
200 [Khan ()] 'Antibiotic prescribing pattern in department of dermatology of a teaching hospital in Tamil Nadu' N
201 Khan . *Indian journal of pharmacy practice* 2010. 3 p. .
202 [Akande and Medubi ()] 'Antibiotic prescription pattern and cost at University of Ilorin Teaching hospital: Int'
203 M Akande , F Medubi . *Journal of Tropical Medicine* 2009. 4 p. .
204 [Marlies and Van H And Klarieke ()] 'Antibiotic utilization for hospitalized paediatric patients' A Marlies , L
205 Van H And Klarieke . *International Journal of Antimicrobial Agents* 1999. 10 p. .
206 [Krivoy and Hadad ()] 'Antibiotics prescription and cost patterns in a general intensive care unit' N W Krivoy
207 , S Hadad . *Pjarm. Pract* 2007. 5 (2) p. .
208 [Antimicrobial prescription in primary health care: clinical and economic perspective. The European journal of public health]
209 *Antimicrobial prescription in primary health care: clinical and economic perspective. The European journal*
210 *of public health*, 15 p. .
211 [Hu et al. ()] 'Assessment of antibiotic Prescriptions in Hospitalized Patients at a Chinese University Hospital'.
212 Suping Hu , Xiuheng Liu , Yam Peng . *Journal of infection* 2009. 46 p. .
213 [Moses Kayode and Bello Damilola Ebuoluwa ()] 'Assessment with case studies the rational use of drugs among
214 patients with ischemic heart disease at a tertiary hospital in south west Nigeria' Omole Moses Kayode , Bello
215 Damilola Ebuoluwa . *J. pham. Biomed. Scl* 2011. 1 (6) p. .
216 [Henry and Chambers ()] *Beta-lactam antibiotics and other inhibitors of cell wall synthesis in textbook of Basic*
217 *Clinical pharmacology*, F Henry , Chambers . 2004. Betram G K. p. 9T.
218 [Sujit and Chandy ()] 'Consequences of irrational uses of antibiotics' J Sujit , Chandy . <http://www.Issuesinmedicalethics.org/164> India journal of medical ethics 2008. 11 p. .
219 [Yousif and Dass ()] 'Drug utilization and antibiotic use in primary health care centres' Mohamed Yousif ,
220 Mandiera Dass . *Eastern Mediterranean Health Journal* 1997. 3 p. .
221 [Drugs used in parasitic diseases ()] *Drugs used in parasitic diseases*, 2005. p. . (4th Ed)
222 [V K Lim and Foo ()] 'Expert committee on rational use of antibiotics' O V K Lim , Foo . *General principles*
223 *and guidelines in the use of antibiotics*, 1996. 1996.
224 [Khor ()] 'Irrational drug use causing rise of antimicrobial resistance' Martin Khor . <http://www.twinside.org/title2/health.info/twininfohealth009.htm3/11/2010> TWN info service on health issue No
225 2005. 9.
226 [Gaash ()] *Irrational use of antibiotics. Indian journal for the practicing Doctor*, B Gaash . <http://www.indmedica.com/> 2008. 5 p. .
227 [Lim et al. ()] *Pattern of antibiotic usage in hospitals in Malaysia. Singapore medical journal*, V K Lim , Y M
228 Cheong , A B Suleiman . <http://www.ncbi.nlm.nih.gov/> 2009. 34 p. .
229 [Erah and Ohamef ()] 'Prescribing pattern in two health care facilities in Warri, Southern Nigeria' P O Erah ,
230 O Ohamef . *Tropical journal pharm* 2003. 2 p. .
231 [Palikhe ()] *Prescribing pattern of antibiotics in paediatric hospital of Kathmandu Valley*, N Palikhe . 2004.
232 [Sneha and Mathur ()] *Rational drug use. Health administrator .xix*, A Sneha , K Mathur . 2006. 1 p. .
233 [Mclellan ()] 'The rational use of antibiotics in bacteria infection' N J Mclellan , J , Gray . *Journal of current*
234 *pediatrics* 2001. 11 p. .