

1 A Review on Huntington's Disease

2 Dharmender Jaglan

3 Received: 12 December 2017 Accepted: 2 January 2018 Published: 15 January 2018

4

5 Abstract

6 Neurodegenerative diseases exemplified by Alzheimer's and Huntington disease are
7 characterized by the progressive neuropsychiatric dysfunction and loss of specific neuronal
8 subtypes. Huntington's disease (HD) is a devastating neurodegenerative disorder that occurs in
9 patients with a mutation in the huntingtin or IT15 gene. Patients are plagued by early
10 cognitive signs, motor deficits, and psychiatric disturbances. Symptoms are attributed to cell
11 death in the striatum and disruption of cortical-striatal. Mechanisms of cell death are unclear,
12 but processes involving mitochondrial abnormalities, excitotoxicity, and abnormal protein
13 degradation have been implicated. Many factors likely contribute to neuron death and
14 dysfunction and this has made it difficult to systematically address the pathology in HD.
15 Pharmaceutical therapies are commonly used in patients to treat disease symptoms. These
16 have limited benefit and do not address the inexorable disease progression. Several
17 neuroprotective therapies are being evaluated in animal models of HD as well as in clinical
18 trials. Similarly, cell replacement strategies such as fetal transplantation have been used in the
19 clinic with minimal success, making future cell replacement strategies such as stem cell
20 therapy uncertain. This review describes the disease pathology and neurochemistry of HD and
21 addresses many of the past and emerging therapeutic strategies.

22

23 **Index terms**— huntington's disease; symptoms; therapies; cell death.

24 A Review on Huntington's Disease Dharmender Jaglan Abstract-Neurodegenerative diseases exemplified by
25 Alzheimer's and Huntington disease are characterized by the progressive neuropsychiatric dysfunction and loss
26 of specific neuronal subtypes.

27 Huntington's disease (HD) is a devastating neurodegenerative disorder that occurs in patients with a mutation
28 in the huntingtin or IT15 gene. Patients are plagued by early cognitive signs, motor deficits, and psychiatric
29 disturbances. Symptoms are attributed to cell death in the striatum and disruption of cortical-striatal.
30 Mechanisms of cell death are unclear, but processes involving mitochondrial abnormalities, excitotoxicity, and
31 abnormal protein degradation have been implicated. Many factors likely contribute to neuron death and
32 dysfunction and this has made it difficult to systematically address the pathology in HD. Pharmaceutical therapies
33 are commonly used in patients to treat disease symptoms. These have limited benefit and do not address the
34 inexorable disease progression. Several neuroprotective therapies are being evaluated in animal models of HD as
35 well as in clinical trials. Similarly, cell replacement strategies such as fetal transplantation have been used in the
36 clinic with minimal success, making future cell replacement strategies such as stem cell therapy uncertain. This
37 review describes the disease pathology and neurochemistry of HD and addresses many of the past and emerging
38 therapeutic strategies.

39 Keywords: huntington's disease; symptoms; therapies; cell death. Huntington's disease is a genetic, progressive,
40 neurodegenerative disorder characterized by the gradual development of involuntary muscle movements affecting
41 the hands, feet, face, and trunk and progressive deterioration of cognitive processes and memory (dementia).
42 Neurologic movement abnormalities may include uncontrolled, irregular, rapid, jerky movements (chorea) and
43 athetosis, a condition characterized by relatively slow, writhing involuntary movements (Novak MJ, et al.,
44 Huntington's disease. BMJ.2010). Dementia is typically associated with progressive disorientation and confusion,
45 personality disintegration, impairment of memory control, restlessness and

46 **1 Epidemiology**

47 Huntington's disease is currently found in many different countries and ethnic groups around the world. There
48 are varying rates of prevalence in different racial groups 2. HD has a worldwide prevalence of five to 288 eight per
49 100,000 people with no gender preponderance. The highest frequencies of HD are found in Europe and countries
50 of European origin. The lowest frequencies are documented in Africa, China, Japan, and Finland.

51 **2 physical emotional cognitive**

52 **3 Introduction a) Symptoms**

53 The symptoms of HD vary widely from person to person, even within the same family. For some, involuntary
54 movements may be prominent even in the early stages. For others, these may be less evident and emotional and
55 behavioral symptoms may be more obvious. The following are common features of HD:

56 **4 b) Motor Symptoms**

57 Motor Symptoms Physical symptoms may initially consist of "nervous" activity, fidgeting, twitching, or excessive
58 restlessness. Handwriting may change and facial grimaces may appear. Day-to-day skills involving coordination
59 and concentration, such as driving, become more difficult. These initial symptoms will gradually develop into
60 more marked involuntary movements of the head, trunk and limbs -which often lead to problems in walking and
61 balance. Speech and swallowing can become impaired.

62 Movements generally tend to increase during voluntary effort, stress or excitement, and decrease during rest
63 and sleep.

64 **5 d) Psychiatric//Behavioral Symptoms**

65 Depression, obsessive-compulsive disorders, anxiety, irritability, apathy, hyper sexuality (uncommon), psychosis
66 (uncommon), Some people can experience depression for a period of months or even years before it is recognized
67 to be an early symptom of Huntington's. Behavioral changes may include aggressive outbursts, impulsiveness,
68 mood swings, and social withdrawal. Often, existing personality traits will be exacerbated by HD, e.g., a person
69 who had a tendency to be irritable. Schizophrenia and other serious psychiatric problems are uncommon in HD
70 but do occur.

71 **6 e) Metabolic**

72 Weight loss, sleep disturbance

73 **7 III. Neuropathology of Huntington's Disease**

74 The specific symptoms and progression of HD can be related to its pathology, which is characterized by the loss
75 of specific neuronal populations in many brain regions. Motor dysfunction in HD results from the disruption of
76 basal ganglia-thalamocortical pathways regulating movement control (Garrett EA, et al., 1990 and). The primary
77 site of neuronal loss and atrophy in HD brain is in the caudate-putamen (Browne SE, 1999) Vulnerability in HD.
78 The striatum is composed of a variety of medium to large neurons that differ in their size and dendritic profile
79 as well as neurochemical content and output. Severe loss of medium sized striatal neurons was seen in the HD
80 brain. They have large dendritic tree and use GABA as their neurotransmitter (Hassel B, et al., 1995).

81 **8 a) Effect of HD on Basal Ganglia**

82 As these neurons degenerate in HD, the neurochemicals they contain, including glutamic acid decarboxylase
83 (GAD), substance-P, enkephalin, calcineurin, calbindin, adenosine receptors and dopamine receptors, also
84 decrease. Number of theories has been presented, to determine the exact events involved in the progression
85 of cell deaths caused by HD. One theory proposes that neurons die in HD because of an over-accumulation of
86 normal excitatory chemicals involved in nerve impulses. Excitatory neurotransmitters (mainly glutamate) are
87 normally present in the brain, but, if they are released in excessive amounts or if brain cells are weak, these
88 excitatory chemicals can cause cell damage and become chemicals known as "excitotoxins." Studies show that
89 when glutamate is injected into the basal ganglion region of brains of living rats, the rats exhibit symptoms of HD
90 (Reddy HP, et al., 1999). This first theory had to be modified when high levels of glutamate were not found in the
91 brains of all HD patients. The mitochondrial dysfunction plays a role in pathogenesis of HD. The mitochondria
92 of striatal cells may be damaged with the onset of HD. Scientists today believe that the damaged mitochondria
93 of people with HD make striatal cells unable to produce as much energy as they need, which then makes the cells
94 more susceptible to normal levels of glutamate. Another theory to explain the death of nerve cells postulates
95 that the cells actually kill themselves in response to chemical changes caused by HD. HD triggers the early death
96 of neurons by accelerating a normal process called apoptosis (Gutekunst AC, et al., 2000). 3-Nitropropionic acid
97 and malonate also induce apoptotic profiles and induce pro-apoptotic proteins (Hickey MA, et al., 2003). To sum
98 up, the neurobiological effects of HD appear to be the result of a number of different changes that ultimately go
99 out of control.

100 Many studies have shown that neurodegeneration is not confined to the basal ganglia but also occurs widely
101 in cortical and other sub cortical regions.

102 **9 b) Pathogenesis of Huntington's Disease and Huntington 103 Protein**

104 A Review on Huntington's Disease ?? 2005). Despite this, morphological evidence of apoptotic neuronal death
105 in human HD is scarce. Which pathways are involved in apoptosis remains unclear. In this thesis, we studied
106 apoptotic cell death and the expression of apoptotic markers in animal models of HD and in human HD brains
107 that may contribute to the slowly developing death of medium-sized spiny GABAergic projection neurons in the
108 striatum.

109 IV.

110 **10 Neurochemistry of Huntington's Disease**

111 Neurochemical alterations in HD have long attention from researchers. The pathological changes in HD are caused
112 by neurochemical. Neurochemical alterations are the essential mediators of Huntington's disease pathogenesis
113 which not only produce the characteristic clinical symptoms of HD but also accelerate the process of cell death
114 (Browne SE, et al., 1999). The pathogenesis of HD could well be multifactorial as is the huntingtin protein,
115 which may have many functions.

116 **11 c) Apoptosis and Huntington's Disease**

117 HD is caused by an abnormal expansion of a CAG-trinucleotide repeat in the huntingtin gene but the precise
118 mechanism of the selective neurodegeneration in HD neostriatum remains unclear. It has been suggested
119 that aberrant apoptosis is involved in the pathogenesis of Huntington's disease (HD) (Wellington, C.L. et al.,
120 1997; Petersén, Å. et al., 1999). Initial studies demonstrated an increase in DNA degradation and V.

121 **12 Genetics of HD**

122 The disease gene for HD, huntingtin, was identified in 1993 and it encodes a large protein (348kDa) with a
123 polyglutamine stretch named huntingtin (Htt) (Sawa A, et al., 2003 and The Huntington's Disease Collaborative
124 Research Group: 1993). Genetic defect in HD is an expansion of an unstable CAG repeats encoding
125 polyglutamines at the 5' end of a huntingtin [also termed "interesting transcript 15" (IT15)] gene on chromosome
126 (Hickey MA, et al., 2003). The biological function of the huntingtin protein is still unknown; it is known that
127 the alteration of this protein ultimately results in HD (Bao J, et al., 1996 and Reddy, 1999).

128 Estimates of the prevalence of HD range from 4.1-8.4 per 100,000 people. In the United States, it is estimated
129 that 25000 individuals have HD with another 125,000 individuals at risk ??Harper PS.1986). In India: A recent
130 study on the distribution of C-A-G repeats in the normal population suggests a higher prevalence of HD in India
131 closer to that seen in Western Europe. Based on the results, haplotype suggested the presence of a founder
132 mutation in a subset of families and provide evidences for multiple and geographically distinct origins for HD
133 mutation in India. One of the studies conducted on 124 (94 male and 30 female) elderly patients (aged more
134 than 60 years) in a teaching hospital in India reported that there were 2.4% cases of HD, Parkinson's disease in
135 India (Jha S, et al., 2004).

136 **13 VI.**

137 Neuropsychological and Neuropsychiatric Aspects of HD HD, an inherited neurodegenerative disease, damages
138 specific areas of the brain resulting in movement difficulties as well as cognitive and behavioral changes. The
139 cognitive changes in HD have traditionally been referred to as dementia. People with HD have specific and
140 characteristic cognitive difficulties, with other aspects of cognitive function remaining well preserved. Behavioral
141 changes are a characteristic feature of HD and are often the most distressing aspect of the condition for individuals
142 and families dealing with HD ??Harper PS.1986). Behavioral changes associated with HD Psychomotor function
143 -Early motor signs of HD typically include the gradual onset of clumsiness, balance trouble, tremor and brief
144 random, fidgeting movements. The primary involuntary movement abnormality and often the earliest symptom,
145 is chorea or choreoathetosis, continuous and irregular writhing and jerking movements (Van Raamsdonk JK, et
146 al., 2005). Many HD patients develop a distinctive manner of walking (gait) that may be unsteady, disjointed,
147 or lurching as disease progresses (Delval A, 2006 and Naarding et al., 2001). Frustration, Irritability, Aggression
148 & Anxiety-People suffering from HD may remain eventempered; others may lose the ability to control their
149 emotions. Emotional volatility may evident in increased irritability or episodes of explosiveness (Van Raamsdonk
150 et al., 2005). These individuals may become irritable, frustrated or aggressive if demands are not met. Anxiety, a
151 behavioral symptom of HD, is characterized by nervousness, restlessness, fidgeting, shallow breathing, sweating,
152 fear, and panic rapid heart rate (Klivenyi P, et al., 2006). For individuals with HD, continual life changes as HD
153 progresses can be a source of anxiety. Depression is often dismissed as an understandable reaction being diagnosed
154 with HD (Paulsen JS, et al., 2005). Altered Sexuality -A very common behavioral symptom of HD is altered
155 sexuality. Possible cause is that the delicate balance of hormones in the brain is disrupted by the progression

156 of HD causing changes in behaviors regulated by hormone levels. Most commonly, people with HD suffer from
157 a decreased sex drive. Increased sex drive and inappropriate sexual behavior are less common alterations of
158 sexuality resulting from HD (Cummings JL. 1995). Cognitive changes in HD, The term "cognitive" refers to
159 tasks of the brain that involve knowing, thinking, remembering, organizing and judging. Cognitive changes in
160 the HD may be due to the disruption of striatal -frontal circuits (Baudic S, et al., 2006) Memory and Visual
161 spatial ability an individual suffering from the cognitive symptoms of HD may have memory difficulties. Several
162 investigators have shown that memory recall is generally affected more than memory storage in HD (Baudic S, et
163 al., 2006). It is important to note that the memory problems that can occur in people with HD are different from
164 the memory difficulties that can occur in people with Alzheimer's disease (AD) (Lundervold AJ, et al., 1994).
165 Most commonly, the individual suffering from cognitive symptoms of HD is aware of his or her visual spatial
166 impairment. Reading difficulties may also be the result of visual spatial impairment; however, the inability to
167 maintain attention may be a contributing factor as well (Anderson KE, et al., 2005).

168 14 VII.

169 15 Management of HD

170 Huntington's disease is a devastating neurological disorder without effective treatment. There is an urgent need
171 for developing effective therapies for HD.

172 16 VIII.

173 17 Treatment of Chorea

174 Dopamine blocking or dopamine depleting medications Increase dopamine level plays a major role in the
175 pathogenesis of HD. On the basis of these reports dopamine-depleting drug like Tetrabenazine was also used for
176 the treatment of chorea in clinical trial (Hannan JA. 2004). But due to lot of side effects the FDA did not approve
177 this drug. Glutamate antagonism Excitotoxicity is the major cause of death of neurons in the HD. Increase in
178 glutamate release activate the NMDA receptors and increase the level of Ca 2+ and cause neurotoxicity. The
179 drugs, which block the NMDA receptors, may be useful to decrease the symptoms of HD (Verhagen ML, et
180 al., 2002). GABAergic modulation GABA an inhibitory neurotransmitter is decreased in the HD brain and
181 cerebrospinal fluid. Indeed the GABA mimetic drugs and GABA transminase inhibitors are also be used in the
182 clinical trial for the treatment of HD (Bonelli MR, et al., 2004). Cannabinoids receptor agonists In the brain the
183 cannabinoids and their receptors behave as neurotransmitters or neuromodulators in a variety of processes, such
184 as the regulation of motor behaviour, cognition, learning, memory and antinociception. It is also reported that
185 the cannabinoid receptors are destroyed in the basal ganglia (Becker LI, et al., 2003). Therefore the treatment
186 with cannabinoids could be beneficial for HD. Antioxidants One component of excitotoxicity in HD is oxidative
187 stress and antioxidants may therefore have therapeutic utility. A novel antioxidant, BN-82451 improved motor
188 ability and survival and ameliorated neurodegeneration in R6/2 HD mice (The Huntington's Disease Collaborative
189 Research Group: 1993 and Hannan JA. 2004).

190 18 a) Neurodegeneration and Huntington's Disease

191 Neurodegeneration diseases have been characterized by progressive dysfunction and death of cells that affect
192 specific neural systems. Neuronal loss is associated with misfolding and aggregation of proteins leading to
193 accumulation of abnormal extracellular and intracellular filamentous deposits in specific cells types, mainly
194 neurons and glia, representing the features of many neurodegeneration disorder ??Mattson, 2006). Common
195 pathogenic mechanism which cause neurodegeneration disorders are:

196 1. Oxidative stress and formation of free radicals / reactive oxygen species (ROS). On the other hand
197 proteasomal inhibition reduced mitochondrial complex 1 and 11 activities, increased mitochondrial reactive
198 oxygen species (ROS) production and increased the presence of damage production in autophagosomes (Sullivan
199 P,2004).

200 19 IX.

201 20 Inflammation and Huntington's Disease

202 Inflammation in the brain and the rest of the central nervous system (CNS) is a key factor in neurodegenerative
203 diseases. Inflammation plays a significant role in the progression of HD. The previous Studies of the HD
204 brain indicate that long-term inflammation plays a significant role in the progression of HD. It is suggested
205 that excitotoxic amino acids such as glutamate induce a direct activation and proliferation of cells involved
206 in inflammation. Since glutamate activity is also implicated in the progression of HD, it is possible that the
207 glutamate molecules in the HD brain induce an inflammatory response (Arzberger T, et al., 1997). One of
208 the first steps in excitotoxic neuronal damage involves the hyperstimulation of N-methyl-D-aspartate (NMDA)
209 receptors leading to a massive calcium influx that activates, among other processes, the calcium dependent
210 phospholipase A2 (PLA2). Further, PLA2 cleaves membrane phospholipids to yield arachidonic acid (AA), a free

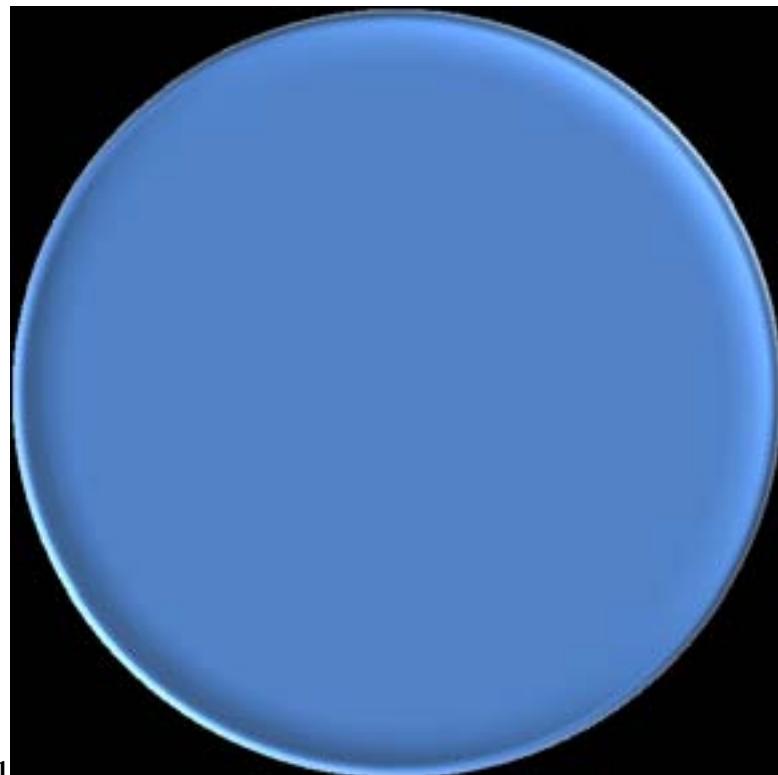
211 fatty acid, which is converted by cyclooxygenases (COX) into prostaglandins (PGs). The inflammatory response
212 results in the activation of various types of cells and the production of different molecules that can lead to cell
213 death (Kukreja RC, et al., 1986).

214 An example of cells activated by the inflammatory response is the microglia (a type of immune cell), which
215 have been found to be highly activated in the HD brain. Research has shown that there is an activated microglia
216 is found along the vicinity of nerve cells that contain neuronal inclusions (NIs) accumulation of the huntingtin
217 protein. This finding suggests that the huntingtin protein accumulation influences the activation of reactive
218 microglia. Nerve cell injury due to excitotoxins such as glutamate also induces long-term microglial activation in
219 the brain (Arzberger T, et al., 1997 and Kukreja RC, et al., 1986).

220 Neuro-inflammation is mediated by soluble proinflammatory molecules such as cytokines, prostaglandins
221 and nitric oxide (N.O) ??Silvestroni et al., 2009). While some mediators such as IL, TNF-? were increased
222 in striatum and some mediators such as IL-6, IL-8 were also upregulated in cortex .Microglia, the resident
223 immune cells of the CNS, play a critical role in inflammation-mediated neurodegeneration. An example of cells
224 activated by the inflammatory response is the microglia, which has been found to be activated in the HD brain.
225 Normally, microglia cells in their resting state vigilantly monitor the health of neurons. In brain damage or
226 infection, microglia cells become activated and may secrete a variety of inflammatory mediators and neurotoxic
227 factors. Activated microglia cells trigger and maintain an inflammatory response, deluging neurons with a
228 whole host of inflammatory mediators that may ultimately lead to neuronal cell death. Neurodegenerative CNS
229 diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic
230 lateral sclerosis (ALS), and age-related macular degeneration (ARMD), are all associated with chronic neuro-
231 inflammation and elevated levels of several cytokines. Microglial activation and chronic inflammation thereafter is
232 the starting point for elevated levels of a wide array of potentially neurotoxic molecules including pro-inflammatory
233 cytokines, proteinases, and reactive oxygen species (ROS) ??Boje, K et al., 1992 ?? Chao et al., 1995 ?? Chao
234 et al., 1992 ?? Jeohn et al., 1998 ??nd Xie et al., 2002). Suppression of microglial production of neurotoxic
235 mediators will result in neuroprotection ??Glass et al., 2010 and ??anshoff, R et al., 2009).

236 **21 a) Oxidative Stress in HD**

237 HD is an autosomal dominantly inherited progressive neurodegenerative disorder, affecting people in middle age.
238 HD is characterized by the progressive development of involuntary choreiform movements, cognitive impairment,
239 neuropsychiatric symptoms, and premature death. The etiology of HD is unknown, but increasing evidence
240 suggests important roles of altered gene transcription, mitochondrial dysfunction, excitotoxicity, and oxidative
241 stress (Gardian, G, et al., 2004) Oxidative stress is defined as the imbalance between biochemical processes which
242 are responsible for the production of reactive oxygen species (ROS) and those responsible for removal of ROS
243 ??Browne S et al., 1997). Oxidative Stress is the common denominator of the disease. HD is widely distributed
244 in both neurons and extraneuronal tissues. Oxidative Stress plays an important role in HD pathogenesis. In
245 Huntington's disease, the damage caused by oxidative stress includes lipid peroxidation, protein oxidation and
246 DNA oxidation. 8-hydroxydeoxyguanaine (8-OHdn), an oxidized DNA marker which increased in the caudate of
247 the HD patients ??Browne S et al., 1997). The increased level of 8-OHdn in mitochondrial DNA of the parietal
248 cortex was found in late stage of HD ??Polidori M, et al., 1999). Several studies have documented increased
249 oxidative damage to DNA outside the brain of Huntington's disease patients by demonstrating increased 8-OHdn
250 in HD peripheral blood ??Chen C, et al., 2007 and ??ersch S et al., 2006). Oxidative stress caused by N-
251 terminal fragments of mutant htt which can be suppressed by over-expression of heatshock proteins in a HD
252 cellular model.Oxidative stress could promote htt aggregation and mutant htt induced cell death by impairing
253 proteosomal function. Oxidative damage has been associated with neuronal loss in HD ??Goswami A et al.,
254 2006). These data indicate a role for oxidative stress in mediating HD and this may be alleviated by antioxidant
255 therapy.


256 **22 X. Development of Novel Therapeutics for HD**

257 HD is a progressive disorder with fatal outcome. At present there are no effective treatments. Since the
258 identification of the HD gene in 1993, great advancement in the understanding of the molecular biology and
259 pathophysiology of the disorder has been occurred. The advances have suggested a new therapeutics strategy
260 aimed at slowing disease progression or forestalling the onset of this devastating neurodegenerative disease. The
261 treatment option available for HD are symptomatic which focus on neurological and psychiatric symptoms and
262 aim to improve quality of life (Boneli and Hoffman, 2007). Agents that inhibit mutant huntingtin aggregation
263 and Transglutaminase inhibitors. The huntingtin aggregates and inclusions play a major role in the pathogenesis
264 of HD. Inhibit mutant huntingtin from aggregation would provide a way to prevent the progression of the disease
265 (Aiken CT, et al., 2004). Transglutaminase (TGase) can use huntingtin as a substrate to cross-link huntingtin
266 molecules. TGase activity was found to have increased in HD postmortem brains (Karpur MV, et al., 2002).
267 Cystamine is an inhibitor of TGase and showed a small but significant neuroprotective effect with improvement of
268 motor function, survival and loss of bodyweight. Protease inhibitors Recent findings showed that huntington could
269 be cleaved by proteases, including caspases, calpain, and aspartyl protease. Caspase and calpain-mediated partial
270 cleavage of mutant huntingtin promotes huntingtin aggregation and cellular toxicity, inhibitors of huntingtin

271 partial cleavage might have therapeutic values. Caspase inhibitors, z-VAD-fmk and z-DEVD-fmk, can prevent
272 cleavage of huntingtin by caspases and reduce cytotoxicity caused by expanded polyglutamine tract (Chen M,
273 et al., 2000). Caspase inhibitor minocycline was able to inhibit huntingtin aggregation, retard disease progress
274 and prolong the lifespan of HD mice. Protease inhibitors could reduce Nhtt fragments and in turn, prevent or
275 delay disease progression (Wang X, et al., 2003). Histone deacetylase (HDAC) inhibitors Inhibitors of histone
276 deacetylase (HDAC) can increase gene transcription and have been examined as a potential therapy in both HD
277 Drosophila and transgenic R6/2 HD mice. Suberoylanilide hydroxamic acid (SAHA), a selective HDAC inhibitor,
278 reduced neurodegeneration in HD Drosophila (Steffan JS, et al., 2001).

279 **23 a) Other Neuroprotective Approaches Gene Therapy**

280 Intracellular antibodies (intrabodies) and RNA interference (RNAi) are two potential methods that could be
281 used for gene therapy of HD. Mitochondria dysfunction has been implicated in HD pathogenesis. Therefore,
282 compounds enhancing energy metabolism have been evaluated for treatment of HD. Coenzyme Q10 and creatine
283 are neuroprotective, putatively via enhancing cerebral energy metabolism (Browne SE, et al., 1999;Qin ZH, et al.,
284 2004). Neural cell transplantation is also under development for the treatment of HD. Brain derived Neurotrophic
285 factors: Brain derived neurotropic factor (BDNF) expression is reduced in the caudate and putamen of patients
286 with HD. That enhanced expression of neurotropic factors may mitigate the effects of neurotoxins and thus be
287 a potential therapeutic strategy was explored in animal and cell models (Bemelmans AP, et al., 1999 andDavis
JD, et al., 2001).

288 Figure 1: Fig. 1 :

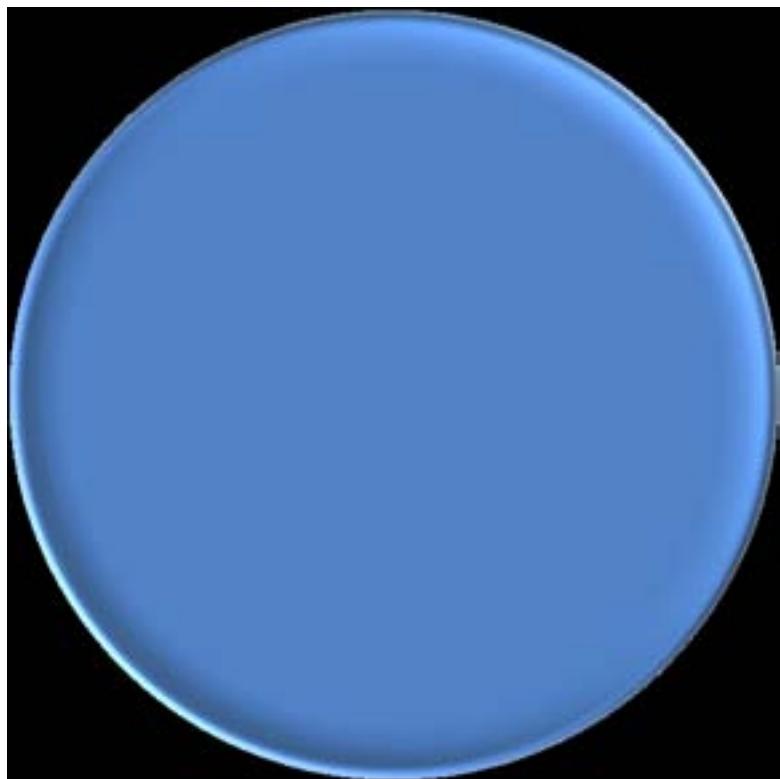
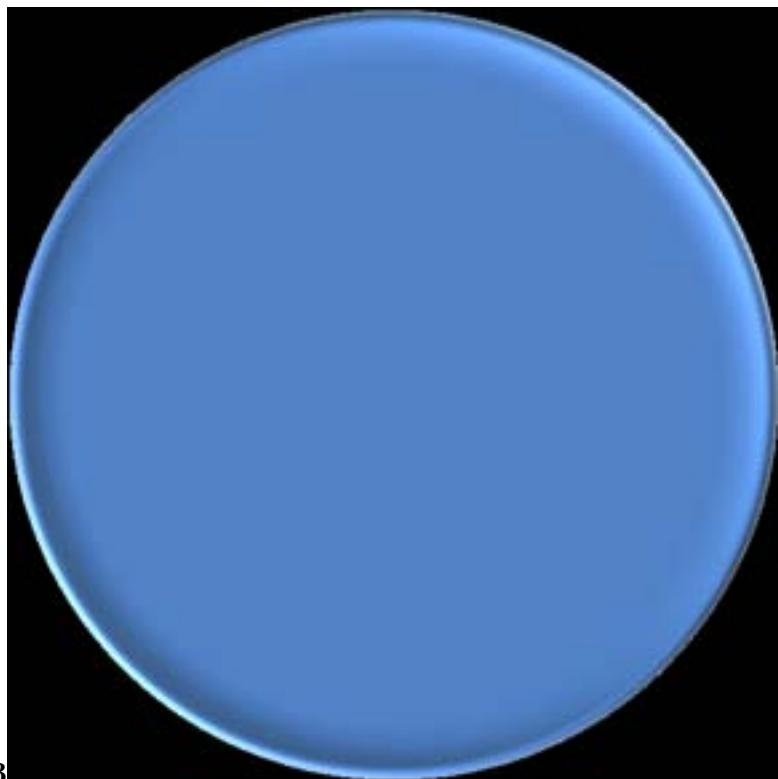



Figure 2:

223

Figure 3: 2 .Fig. 2 :Fig. 3 :

type huntingtin protein is found mainly in the cellular cytoplasm.

Year
2018
9
Volume
XVIII
Issue
I
Ver-
sion
I
D D
D D
) B
(
Medical
Re-
search
Global
Jour-
nal
of

Huntington's disease is caused by the abnormal expansion of a CAG-trinucleotide repeat in the N-terminal exon 1 of the huntingtin gene, which is located on the short arm of chromosome 4 (4p16.3) (The Huntington's Disease Collaborative Research Group. 1993; Brouillet, E. et al., 1999; Brennan, W.A. et

al., 1985). In the translated protein, huntingtin, this repeat encodes an expanded polyglutamine repeat sequence. Asymptomatic individuals have the wild type huntingtin gene with 29 or fewer CAG repeats, while HD is caused by expansions of 36 or more repeats (Rubinsztein, D C, et al., 2002; Rubinsztein, D.C. et al., 1996). There is an inverse relationship between the genomic CAG repeat size of the mutant huntingtin gene and the age of onset of signs. The larger the number of CAG repeats, the earlier the age of disease onset. Most adult-onset cases have CAG repeat sizes ranging from 40-50, whereas expansions of more than 55 repeats frequently cause the juvenile form of the disease (Vonsattel, J.P. et al., 1998). Since the discovery of the huntingtin gene, an explosion of research has led to many insights into the normal function of huntingtin and the molecular basis of the disease. The normal or wild

© 2018 Global Journals

[Note: structures, results in toxic protein aggregates that also recruit other proteins (Gutekunst, C.A. et al., 2002; Ona, V. et al., 1999; Wellington, C.L. et al., 2000; Hackam, A.S. et al., 1998; Li, S.H. et al., 2000; Mende-Mueller, et al., 2001). These huntingtin aggregates can be found in any part of a neuron, but primarily in the nucleus ()]

Figure 4:

A Review on Huntington's Disease

Year 2018

10

Volume XVIII Issue I Version I

D D D D)

(

Medical Research

Global Journal of

© 2018 Global Journals 1

[Note: B (Harjes, P. et al., 2003; Li, S.H. et al., 2004).]

Figure 5:

Cells normally have enzymes and coenzymes that act as antioxidant. These are able to neutralize ROS and prevent them from causing damage (Heales et al., 2002). ROS include the superoxide anion (O_2^-),

hydrogen peroxide (H_2O_2), nitric acid (NO) and hydroxyl radicals (OH^-) (

Figure 6:

289 [Vonsattel et al. ()] , J P Vonsattel , M Difiglia , Huntington Disease . *J Neuropathol Exp Neurol* 1998. 57 p. .

290 [Huntington's Disease ()] , Huntington's Disease . *Seminar in Neurology* 1999. 19 p. .

291 [Aiken et al. ()] 'A cell-based screen for drugs to treat Huntington's disease'. C T Aiken , A J Tobin , E S Schweitzer . *Neurobiol Dis* 2004. 16 p. .

292 [Jelliffe ()] 'A contribution to the history of Huntington's chorea: a preliminary report'. S E Jelliffe . *Neurographs* 1908. 1 p. .

293 [Klein and Guthrie ()] *A life*, J Woodie Klein , Guthrie . 1981. London: Faber and Faber.

294 [Davis et al. ()] 'A possible role of the striatum in linear and nonlinear category learning: evidence from patients with Huntington's disease'. J D Davis , J V Filoteo , W T Maddox . *Behav Neurosci* 2001. 123 p. .

295 [Starling et al. ()] 'Alterations in N-methyl-Daspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease'. A J Starling , Andre V M Cepeda , C De Lima , M Chandler , S H Levine , MS . *J Neurosci Res* 2005. 82 p. .

296 [Qrbeck ()] 'An early description of Huntington's chorea'. A L Qrbeck . *Medical History* 1959. 3 p. .

297 [Friedlander ()] 'Apoptosis and caspases in neurodegenerative diseases'. R Friedlander . *N Engl J Med* 2003. 348 p. .

298 [Hickey and Chesselet ()] 'Apoptosis in Huntington's disease'. M Hickey , M Chesselet . *Prog Neuropsychopharmacol Biol Psychiatry* 2003. 27 p. .

299 [Hickey and Chesselet ()] 'Apoptosis in Huntington's disease'. M Hickey , M Chesselet . *Prog Neuropsychopharmacol Biol Psychiatry* 2003. 27 p. .

300 [Hickey and Chesselet ()] *Apoptosis in Huntington's disease. Progress in Neuro-Psypharma & Bio Psych*, M A Hickey , M F Chesselet . 2003. 27 p. .

301 [Cummings ()] 'Behavioral and psychiatric symptoms associated with Huntington's disease'. J L Cummings . *Adv Neurol* 1995. 65 p. .

302 [Anderson and Marshall ()] 'Behavioral symptoms associated with Huntington's disease'. K E Anderson , F J Marshall . *Adv Neurol* 2005. 96 p. .

303 [Klivenyi et al. ()] 'Behaviour changes in a transgenic model of Huntington's disease'. P Klivenyi , Z Bende , Z Hartai . *Behav Brain Res* 2006. 169 p. .

304 [Teunissen et al. ()] 'Behavioural correlates of striatal glial fibrillary acidic protein in the 3-nitropropionic acid rat model: disturbed walking pattern and spatial orientation'. C E Teunissen , H W Steinbusch , M Angevaren . *Neuroscience* 2001. 105 p. .

305 [Bemelmans et al. ()] 'Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington's disease, as demonstrated by adenoviral gene transfer'. A P Bemelmans , P Horellou , L Pradier , I Brunet , P Colin , J Mallet . *Hum Gene Ther* 1999. 10 p. .

306 [Sanchez ()] 'Caspase-8 is required for cell death induced by expanded polyglutamine repeats'. I Sanchez . *Neuron* 1999. 22 p. .

307 [Sanchez ()] 'Caspase-8 is required for cell death induced by expanded polyglutamine repeats'. I Sanchez . *Neuron* 1999. 22 p. .

308 [Manyam et al. ()] 'Cerebrospinal fluid acetylcholinesterase and choline measurements in Huntington's disease'. B V Manyam , E Giacobini , J A Colliver . *J Neurol* 1990. 237 p. .

309 [Arzberger et al. ()] 'Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington's disease—an in situ hybridization study'. T Arzberger , K Krampf , S Leimgruber , A Weindl . *J Neuropathol Exp Neurol* 1997. 56 p. .

310 [Lundervold et al. ()] 'Characteristic patterns of verbal memory function in patients with Huntington's disease'. A J Lundervold , I Reinvang , A Lundervold . *Scand J Psychol* 1994. 35 p. .

311 [Goldberg ()] 'Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract'. Y Goldberg . *Nat Genet* 1996. 13 p. .

312 [Jha et al. ()] 'Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington's disease'. S Jha , R ; Patel , J M Van Raamsdonk , J Pearson , E J Slow , Hossain S M Leavitt , B R Hayden , MR . *Neurol India* 2004. 2005. 52 p. . (J Neurosci)

313 [Baudic et al. ()] 'Cognitive Impairment Related to Apathy in Early Huntington's disease'. S Baudic , P Maison , G Dolbeau . *Dement Geriatr Cogn Disord* 2006. 21 p. .

314 [Kiechle ()] 'Cytochrome C and caspase-9 expression in Huntington's disease'. T Kiechle . *Neuromolecular Med* 2002. 1 p. .

315 [Paulsen et al. ()] 'Depression and stages of Huntington's disease'. J S Paulsen , C Nehl , K F Hoth . *J Neuropsychiatry Clin Neurosci* 2005. 17 p. .

344 [Thomas ()] 'DNA end labeling (TUNEL) in Huntington's disease and other neuropathological conditions'. L B
345 Thomas . *Exp Neurol* 1995. 133 p. .

346 [Panov ()] 'Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines'. A
347 V Panov . *Nat Neurosci* 2002. 5 p. .

348 [Beal ()] 'Energetic in the pathogenesis of neurodegenerative disease'. M F Beal . *Trends in Neuroscience* 2000.
349 23 p. .

350 [Beal ()] 'Energetics in the pathogenesis of neurodegenerative diseases'. M F Beal . *Trends Neurosci* 2000. 23 p. .

351 [Portera-Cailliau et al. ()] 'Evidence for apoptotic cell death in Huntington disease and excitotoxic animal
352 models'. C Portera-Cailliau , J C Hedreen , D L Price , V E Koliatsos . *J Neurosci* 1995. 15 p. .

353 [Bao et al. ()] 'Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving
354 calmodulin'. J Bao , A H Sharp , M V Waster . *Proc Natl Acad Sci* 1996. 93 p. .

355 [Vis ()] 'Expression of apoptosis-related markers in human HD brains'. J C Vis . *Acta Neuropathol* 2005. 109 p. .

356 [Garrett and Crutcher ()] 'Functional architecture of basal ganglia circuits: Neuronal substrate of parallel
357 processing'. E A Garrett , M D Crutcher . *Trends in Neuroscience* 1990. 13 p. .

358 [Kleppner and Tobin ()] 'GABA signalling: therapeutic targets for epilepsy, Parkinson's disease and Hunting-
359 ton's disease'. S R Kleppner , A J Tobin . *Expert Opin Ther Targets* 2001. 5 p. .

360 [Metzler ()] 'HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein
361 2'. M Metzler . *J Biol Chem* 2001. 276 p. .

362 [Steffan et al. ()] 'Histone deacetylase inhibitors arrest polyglutamine dependent neurodegeneration in
363 Drosophila'. J S Steffan , L Bodai , J Pallos , M Poelman , A Mccampbell , Bl0 Apostol . *Nature* 2001.
364 413 p. .

365 [Bates ()] 'Huntingtin aggregation and toxicity in Huntington's disease'. G Bates . *Lancet* 2003. 361 p. .

366 [Landles and Bates ()] 'Huntingtin and the molecular pathogenesis of Huntington's disease. Fourth in molecular
367 medicine review series'. C Landles , G P Bates . *EMBO Rep* 2004. 5 p. .

368 [Landles and Bates ()] 'Huntingtin and the molecular pathogenesis of Huntington's disease. Fourth in molecular
369 medicine review series'. C Landles , G P Bates . *EMBO Rep* 2004. 5 p. .

370 [Landles and Bates ()] 'Huntingtin and the molecular pathogenesis of Huntington's disease. Fourth in molecular
371 medicine review series'. Landles , G P Bates . *EMBO Rep* 2004. 5 p. .

372 [Qin and Zhen ()] 'Huntingtin processing in pathogenesis of Huntington's disease'. Z H Qin , Lgu Zhen . *Acta
373 Pharmacol Sin* 2004. 25 p. .

374 [Li and Li ()] 'Huntingtin-protein interactions and the pathogenesis of Huntington's disease'. S H Li , X J Li .
375 *Trends Genet* 2004. 20 p. .

376 [Li and Li ()] 'Huntingtin-protein interactions and the pathogenesis of Huntington's disease'. S H Li , X J Li .
377 *Trends Genet* 2004. 20 p. .

378 [Li and Li ()] 'Huntingtin-protein interactions and the pathogenesis of Huntington's disease'. S H Li , X J Li .
379 *Trends Genet* 2004. 20 p. .

380 [Wellington et al. ()] 'Huntington disease: new insights on the role of huntingtin cleavage'. C L Wellington , B
381 R Leavitt , M R Hayden . *J Neural Transm Suppl* 2000. 58 p. .

382 [Wellington et al. ()] 'Huntington disease: new insights on the role of huntingtin cleavage'. C L Wellington , B
383 R Leavitt , M R Hayden . *J Neural Transm Suppl* 2000. 58 p. .

384 [Bates and Murphy (ed.) ()] *Huntington's disease*, G P Bates , K P Murphy . Bates, G.P., Harper, P.S. & Jones,
385 A.L. (ed.) 2002. Oxford, UK: Oxford University Press. p. .

386 [Novak and Tabrizi ()] 'Huntington's disease'. M J Novak , S J Tabrizi . *BMJ* 2010. 340 p. 3109. (PubMed:
387 20591965)

388 [Huntington's disease chromosomes Cell ()] 'Huntington's disease chromosomes'. *Cell* 1993l. 72 p. .

389 [Verhagen et al. ()] 'Huntington's disease: a randomized, controlled trial using the NMDAantagonist amanta-
390 dine'. M L Verhagen , M J Morris , C Farmer , M Gillespie , K Mosby , J Wuu . *Neurology* 2002. 59 p.
391 .

392 [Naarding et al. ()] 'Huntington's disease: a review of the literature on prevalence and treatment of neuropsy-
393 chiatry phenomena'. P Naarding , Hph Kremer , F G Zitman . *Eur Psychiatry* 2001. 16 p. .

394 [Rangone et al. ()] 'Huntington's disease: how does huntingtin, an antiapoptotic protein, become toxic?'. H
395 Rangone , S Humbert , F Saudou . *Pathol Biol* 2004. 52 p. .

396 [Gardian and Vecsei ()] 'Huntington's disease: patho-mechanism and therapeutic perspectives'. G Gardian , L
397 Vecsei . *J. Neural Transm* 2004. 111 p. .

398 [Bonelli et al. ()] *Huntington's disease: present treatments and future therapeutic modalities*. *International*
399 *Clinical Psychopharmacology*, M R Bonelli , K W Gregor , P H Kapfhammer . 2004. 19 p. .

400 [Hannan ()] *Huntington's disease: which drugs might help patients? I Drugs*, J A Hannan . 2004. 7 p. .

401 [Dragunow ()] 'In situ evidence for DNA fragmentation in Huntington's disease striatum and Alzheimer's disease
402 temporal lobes'. M Dragunow . *Neuroreport* 1995. 6 p. .

403 [Ona ()] 'Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease'. V Ona .
404 *Nature* 1999. 399 p. .

405 [Ona ()] 'Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease'. V Ona .
406 *Nature* 1999. 399 p. .

407 [Nucifora and Jr ()] 'Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to
408 cellular toxicity'. F C Nucifora , Jr . *Science* 2001. 291 p. .

409 [Li et al. ()] 'Intranuclear huntingtin increases the expression of caspase-1 and induces apoptosis'. S H Li , S Lam
410 , A L Cheng , X J Li . *Hum Mol Genet* 2000. 9 p. .

411 [Rubinsztein ()] 'Lessons from animal models of Huntington's disease'. D C Rubinsztein . *Trends Genet* 2002. 18
412 p. .

413 [Rubinsztein ()] 'Lessons from animal models of Huntington's disease'. D C Rubinsztein . *Trends Genet* 2002. 18
414 p. .

415 [Zuccato ()] 'Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease'. C Zuccato . *Science*
416 2001. 293 p. .

417 [Sawa et al. ()] 'Mechanisms of neuronal cell death in Huntington's disease'. A Sawa , T Tomoda , B I Bae .
418 *Cytogenet Genome Res* 2003. 100 p. .

419 [Chen et al. ()] 'Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic
420 mouse model of Huntington disease'. M Chen , Ona Vo , M Li , R J Ferrante , K B Fink , S Zhu . *Nat Med*
421 2000. 6 p. .

422 [Chen ()] 'Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse
423 model of Huntington disease'. M Chen . *Nat Med* 2000. 6 p. .

424 [Chen ()] 'Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse
425 model of Huntington disease'. M Chen . *Nat Med* 2000. 6 p. .

426 [Wang et al. ()] 'Minocycline inhibits caspaseindependent and -dependent mitochondrial cell death pathways in
427 models of Huntington's disease'. X Wang , S Zhu , M Drozda , W Zhang , I G Stavrovskaya , E Cattaneo .
428 *Proc Natl Acad Sci* 2003. 100 p. .

429 [Bossy-Wetzel et al. ()] 'Molecular pathways to neurodegeneration'. E Bossy-Wetzel , R Schwarzenbacher , S A
430 Lipton . *Nat Med* 2004. 10 p. . (Suppl)

431 [Graybiel ()] 'Neurotransmitters and neuro modulators in the basal ganglia'. A M Graybiel . *Trends in*
432 *Neuroscience* 1990. 13 p. .

433 [Graybiel ()] 'Neurotransmitters and neuromodulators in the basal ganglia'. A M Graybiel . *Trends in Neuro-*
434 *science* 1990. 13 p. .

435 [Browne et al. ()] 'Oxidative stress in Huntington's disease'. S E Browne , R J Ferrante , M F Beal . *Brain Pathol*
436 1999. 9 p. .

437 [Kukreja et al. ()] 'PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH'.
438 R C Kukreja , H A Kontos , M L Hess , E F Ellis . *Circ Res* 1986. 59 p. .

439 [Rubinsztein ()] 'Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease
440 (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats'.
441 D C Rubinsztein . *Am J Hum Genet* 1996. 59 p. .

442 [Difiglia ()] 'Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant
443 cerebellar ataxias'. M Difiglia . *Nat Neurosci* 1995. 2002. 1995. 14 p. . (Nature)

444 [Karpuj et al. ()] 'Prolonged survival and decreased abnormal movements in transgenic model of Huntington
445 disease with administration of the transglutaminase inhibitor cystamine'. M V Karpuj , M W Becher , J E
446 Springer . *Nat Med* 2002. 8 p. .

447 [Gutekunst et al. ()] 'Recent advances in Huntington's disease'. A C Gutekunst , N Francine , M S Hersch .
448 *Current Opinion in Neurology* 2000. 13 p. .

449 [Reddy et al. ()] *Recent advances in understanding the pathogenesis of Huntington's disease*. *Trends in Neuro-*
450 *science*, H P Reddy , W Maya , A T Danilo . 1999. 22 p. .

451 [Petersén et al. ()] 'Recent advances on the pathogenesis of Huntington's disease'. Å Petersén , K Mani , P
452 Brundin . *Exp Neurol* 1999. 157 p. .

453 [Leavitt et al. (2007)] 'Recent insights into the molecular pathogenesis of'. R B Leavitt , L C Wellington , R M
454 Hayden . *Indian J. Pharm. Educ. Res* Oct -Dec, 2007. 41 (4) p. 294.

455 [Brennan et al. ()] 'Regional mitochondrial respiratory activity in Huntington's disease brain'. W A Brennan ,
456 Jr , E D Bird , J R Aprille . *J Neurochem* 1985. 44 p. .

457 [Brouillet et al. ()] 'Replicating Huntington's disease phenotype in experimental animals'. E Brouillet , F Conde
458 , M F Beal , P Hantraye . *Prog Neurobiol* 1999. 59 p. .

459 [Caboche and Charvin ()] 'Role of dopamine in Huntington's disease'. J Caboche , D Charvin . *Med Sci* 2006.
460 22 p. .

461 [Delval et al. ()] 'Role of hypokinesia and bradykinesia in gait disturbances in Huntington's disease-A biome-
462 chanical study'. A Delval , P Krystkowiak , J L Blatt . *J Neurol* 2006. 253 p. .

463 [Hassel and Sonnewald ()] 'Selective inhibition of the tricarboxylic acid cycle of GABAergic neurons with 3-
464 nitropropionic acid in vivo'. B Hassel , U Sonnewald . *J Neurochem* 1995. 65 p. .

465 [Jones (ed.) ()] *The cell biology of Huntington's disease*, L Jones . Bates, G.P., Harper, P.S. & Jones, A.L. (ed.)
466 2002. Oxford, UK: Oxford University Press. p. .

467 [Faull et al. ()] 'The distribution of GABA A-benzodiazepine receptors in the basal ganglia in Huntington's
468 disease and in quinolinic acid lesioned rats'. Rlm Faull , H J Waldvogel , Lfb Nicholson , Bjl Synek . *Prog
469 Brain Res* 1993. 99 p. .

470 [Becker et al. ()] *The endocannabinoid system and Huntington's disease. Current Drug Targets-CNS & Neuro-
471 logical Disorders*, L I Becker , R D Miguel , Jjf Ruzi . 2003. 2 p. .

472 [Harper ()] 'The epidemiology of Huntington's disease'. P S Harper . *Hum Genet* 1986. 89 p. .

473 [Harjes and Wanker ()] 'The hunt for huntingtin function: interaction partners tell many different stories'. P
474 Harjes , E E Wanker . *Trends Biochem Sci* 2003. 28 p. .

475 [Harjes and Wanker ()] 'The hunt for huntingtin function: interaction partners tell many different stories'. P
476 Harjes , E E Wanker . *Trends Biochem Sci* 2003. 28 p. .

477 [Waelter ()] 'The huntingtin interacting protein HIP1 is a clathrin and alpha-adaptin-binding protein involved
478 in receptor-mediated endocytosis'. S Waelter . *Hum Mol Genet* 2001. 10 p. .

479 [The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and un-
480 'The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat
481 that is expanded and unstable on Huntington's disease chromosomes'. *Cell* 1993. 72 p. .

482 [The Huntington's Disease Collaborative Research Group: Novel genes containing a trinucleotide repeat that is expanded and un-
483 'The Huntington's Disease Collaborative Research Group: Novel genes containing a trinucleotide repeat that
484 is expanded and unstable on,

485 [Hackam ()] 'The influence of huntingtin protein size on nuclear localization and cellular toxicity'. A S Hackam
486 . *J Cell Biol* 1998. 141 p. .

487 [Hackam ()] 'The influence of huntingtin protein size on nuclear localization and cellular toxicity'. A S Hackam
488 . *J Cell Biol* 1998. 141 p. .

489 [Ho ()] 'The molecular biology of Huntington's disease'. L W Ho . *Psychol Med* 2001. 31 p. .

490 [Gutekunst et al. (ed.) ()] *The neuropathology of Huntington's disease*, C A Gutekunst , F Norflus , S M Hersch
491 . Bates, G.P., Harper, P.S. & Jones, A.L. (ed.) 2002. Oxford, UK: Oxford University Press. p. .

492 [Gutekunst et al. (ed.) ()] *The neuropathology of Huntington's disease*, C A Gutekunst , F Norflus , S M Hersch
493 . Bates, G.P., Harper, P.S. & Jones, A.L. (ed.) 2002. Oxford, UK: Oxford University Press. p. .

494 [Glass et al. ()] 'The pattern of neurodegeneration in Huntington's disease: A comparative study of cannabinoid,
495 dopamine, adenosine and GABA A receptors alterations in the human basal ganglia in Huntington's disease'.
496 L Glass , M Dragunow , Rlm Faull . *Neuroscience* 2000. 97 p. .

497 [Mende-Mueller et al. ()] 'Tissue-specific proteolysis of Huntingtin (htt) in human brain: evidence of enhanced
498 levels of N-and C-terminal htt fragments in Huntington's disease striatum'. L M Mende-Mueller , T Toneff ,
499 S R Hwang , M F Chesselet , V Y Hook . *J Neurosci* 2001. 21 p. .

500 [Wellington et al. ()] 'Toward understanding the molecular pathology of Huntington's disease'. C L Wellington ,
501 R R Brinkman , J R O' Kusky , M R Hayden . *Brain Pathol* 1997. 7 p. .

502 [Sugars and Rubinsztein ()] 'Transcriptional abnormalities in Huntington disease'. K L Sugars , D C Rubinsztein
503 . *Trends Genet* 2003. 19 p. .

504 [Rigamonti ()] 'Wild-type huntingtin protects from apoptosis upstream of caspase-3'. D Rigamonti . *J Neurosci*
505 2000. 20 p. .

506 [Rigamonti ()] 'Wild-type huntingtin protects from apoptosis upstream of caspase-3'. D Rigamonti . *J Neurosci*
507 2000. 20 p. .

508 [Leavitt ()] 'Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo'. B R Leavitt . *Am
509 J Hum Genet* 2001. 68 p. .