

1 Transdermal Buprenorphine Induced Respiratory Acidosis in a 2 Post TKR Patient -A Rare Case

3 Vishnu S, Sukesh Rao¹

4 ¹ Arthroplasty Division, Sunshine Hospitals, Secundrabad.

5 *Received: 14 December 2017 Accepted: 2 January 2018 Published: 15 January 2018*

6

7 **Abstract**

8 Abstract- Post-operative pain management consists of a cocktail of drugs ranging from Nsaids,
9 Opioids and Nonopiods. Transdermal Buprenorphine patch is commonly used in pain
10 management of post-operative cases, musculoskeletal pain, cancerous and non-tumorous
11 conditions. Buprenorphine is safely used because of its partial intrinsic activity and slow
12 dissociation on Mu (?) receptor causing prolonged analgesic effect with a ceiling for
13 respiratory depression. Buprenorphine is commonly used in elderly patients and in patients
14 with chronic renal failure. We report a probable case of buprenorphine patch induced
15 respiratory depression and sedation leading to respiratory acidosis. Respiratory acidosis was
16 managed symptomatically with oxygen therapy and removal of transdermal buprenorphine
17 patch lead to the reversal of clinical condition. Awareness of this possible side effect of
18 buprenorphine patch and unwarranted use should be avoided.

19

20 **Index terms**— respiratory acidosis, buprenorphine, transdermal patch, respiratory depression.

21 **1 Introduction**

22 opioid analgesics play a vital role in pain management. Post-operative analgesia involves a cocktail of drugs like
23 NSAIDS, Anaesthetic blocks, Opioids and non-Opioids. Post-operative analgesia is also administered through
24 various routes of oral, Intra-muscular, Intravenous, Epidural catheters, Anaesthetic blocks, infiltrations and latest
25 one being the transdermal drug formulations [1]. Transdermal drug formulations provide a stable plasma drug
26 concentration ensuring long lasting and adequate pain relief. These formulations are long acting, non-invasive,
27 reduce morbidity and increased quality of life in patients [2].

28 Buprenorphine is a semi-synthetic derivative of the baine with a reactive alkaloid of morphine in it. It has a
29 molecular weight of 467 and chemically an opioid because of the inclusion of a C-7 side chain containing a t-butyl
30 group.

31 Pharmacological effects of buprenorphine are brought about by the binding of the molecule with μ (Mu), κ
32 (Kappa) and δ (Delta) receptors. [3]. Antagonist action on κ and delta receptors shows less sedation, spinal
33 analgesia and psychomimetic effects than morphine or fentanyl [4]. Pharmacokinetic profile of buprenorphine
34 is lipophilic and exhibits multiphasic clearance. It is highly protein bound mostly to alpha-globulin and
35 betaglobulin fractions. Since most drugs bind to albumin there is no competition for binding proteins with
36 less drug interactions. Oral Buprenorphine has low bioavailability of 15%. Buprenorphine has extensive first
37 pass metabolism in GI mucosa and liver, it is conjugated with glucuronic acid and metabolised by CYP3A4
38 into buprenorphine and nor-buprenorphine. Nor-Buprenorphine which exerts a weak analgesic action of minimal
39 significance. End stage renal failure doesn't affect the excretion of drug [5].

40 Transdermal delivery systems which comes in various dosages and company brands. They have many
41 advantages which primarily includes non-invasive administration and rate controlled delivery of drug [6]. They
42 maintain a steady state of plasma concentration of drug. They have good patient tolerability and efficacy,
43 commonly used in chronic pain states as cancer, noncancerous conditions, chronic musculoskeletal pain conditions

4 DISCUSSION

44 like osteoarthritis knee and low back ache. Clinical studies suggest that transdermal patch has increased the odds
45 of more than 10 in functional improvement after buprenorphine patch in chronic musculoskeletal pain scenario.
46 These transdermal systems have been designed to overcome the pharmacokinetic dis-advantages of oral and
47 parenteral administration of drug which include poor gastrointestinal absorption, first pass metabolism and low
48 bio-availability.

49 The increased analgesic potency of buprenorphine, lipophilic nature, low molecular weight and low addictive
50 potential makes it an ideal drug of choice through transdermal route in management of O post-operative analgesia
51 [7]. Transdermal buprenorphine doesn't have immunosuppressant effect at therapeutic analgesic doses unlike
52 morphine and fentanyl.

53 Transdermal buprenorphine patches are advocated in the elderly population by the American Geriatric society
54 for chronic pain conditions [8]. Society suggests buprenorphine patches as a first line management in chronic
55 pain conditions followed by NSAIDS only when acute exacerbations are present. Buprenorphine can be used in
56 renal failure and dose adjustment is not needed [9].

57 Transdermal patches use matrix technology which homogenously incorporates the drug in a solid matrix patch
58 when applied to the skin and remained effective for a minimum duration of 72 hours to seven days [10].

59 Common side effects of transdermal buprenorphine are nausea, vomiting and less incidence of constipation
60 compared to other opioids [11]. Respiratory depression is a potential complication of opioids which commonly
61 includes Morphine, Methadone, hydromorphone, oxycodone and transdermal fentanyl [12]. Buprenorphine since
62 having partial Mu receptor agonist activity, respiratory depression can occur. Respiratory depression due to
63 buprenorphine is a rare complication which will have a slow onset and a longer duration compared to full Mu
64 agonists like morphine, hence reversal with naloxone is difficult and also requires higher doses of naloxone for
65 reversal. Buprenorphine has a ceiling effect or a bell shaped curve with regards to respiratory depression and
66 analgesia at doses $>1\text{mg/kg}$ and 0.1mg/kg . Ceiling effect on respiratory depression is not dependent doses used
67 for analgesic action and recent literature suggests a linear dose response without any evidence of a ceiling effect
68 in the therapeutic drug window. Ceiling effect provides safety profile for the drug which is not present with
69 morphine or fentanyl. Reports of fatal respiratory depression have been rarely reported in literature mostly
70 occurring in drug addicts [13].

71 In case of respiratory depression, management is to discontinue the drug delivery of buprenorphine, give oxygen
72 mask, IV naloxone 2 mg stat over 90sec, commence naloxone 4mg/hour intravenously, continue monitoring till
73 90 min, monitor patient for next 24 hour and restart dose when the patient condition is satisfactory at a reduced
74 dose [14].

75 Pharmaco -kinetically buprenorphine is metabolised in liver and its metabolism is not affected in patients
76 with renal failure. The major metabolite being nor-buprenorphine which has low potency and low affinity of this
77 metabolite to receptors and is less likely to cause toxicity in renal failure [15].

78 2 II.

79 3 Case Report

80 We describe a case of a 78 year old female with a weight of 72 kg and 146 cm in height. The patient was posted
81 for elective right total knee replacement. Preoperative her blood parameters were Hb-12.3 g/dl, urea-32 and
82 creatinine-1.1. She was a known hypertensive on Tab. Calcigard 10 mg OD with ASA grade 2. Her spirometry
83 report was in normal range.

84 She was operated for right total knee replacement and intra-operative period was uneventful. On post-operative
85 day-1, she was shifted to general wing from surgical ICU and was put on buprenorphine patch of strength 10
86 $\mu\text{g/h}$ for pain management near the incision site after dressing the wound. On POD-2, she became drowsy
87 and was talking irrelevantly. Her saturation in room air was 84%. Her blood parameters showed sodium-
88 138mmol/l and potassium-4.6mmol/l. Arterial Blood gas analysis from the femoral artery showed elevated PCO₂
89 suggesting respiratory acidosis due to sedation effect and her respiratory inhalation wasn't strong. Patient was
90 started on oxygen mask with 4L of oxygen and serial values of Arterial blood gas analysis were measured. The
91 buprenorphine patch also was removed in view of suspicion of buprenorphine induced respiratory depression and
92 respiratory acidosis.

93 The patient had a back ground of chronic renal failure with elevated creatinine with a value of 1.1-1.3 which
94 could have added a metabolic component to the respiratory acidosis. Patient improved after the removal of patch.
95 After two days, patient was mobilised and started on chest physiotherapy with deep breathing exercises. She was
96 shifted to ward and discharged on day 5. The serial blood gas analysis values are showed in Table 1.

97 4 Discussion

98 Transdermal buprenorphine patches are commonly used in the post-operative period for pain management along
99 with other analgesics [8]. In our patient, in view of her pre-operative elevated borderline creatinine values, she
100 was only put on paracetamol injection through intra-venous route for pain. Her pain wasn't relieved and started
101 on Buprenorphine patch. Buprenorphine being a semi-synthetic analogue of morphine have a partial mu receptor
102 action causing analgesia with a ceiling effect for respiratory depression [9]. Transdermal buprenorphine patch
103 causing respiratory depression in an adult is rarely reported in English literature.

104 We report a probable case of buprenorphine patch induced sedation and mild respiratory depression with
105 a background of underlying chronic renal pathology. Old age with pain adding as a catalyst to the base line
106 situation leading to respiratory acidosis and falling oxygen saturation values. The patient returned back to her
107 physiological state after starting on oxygen, IV fluids, Input-output monitoring and removal of buprenorphine
108 patch.

109 Awareness of such a pharmacological side effect of buprenorphine patch when used as a modality of pain
110 management in elderly population. Buprenorphine patch induced respiratory depression has been reported in
111 paediatric age but not in adults. We want to emphasize in our report, the careful use of morphine or buprenorphine
patches in elderly population to avoid complications.

1

Parameter	Arterial gas Admission(ICU)	Blood values at discharge(Ward)	Arterial Gas discharge(Ward)	Blood Values at discharge(Ward)	Normal Values
PH	7.19		7.30		7.350-7.450
PCO2	55		40		32.0-48.0 mmHg
PO2	88		95		83.0-108 mmHg
HCO3-	20.9		24.3		21.0-28.0mmol/L
SPO2	84%		98%		98%

Figure 1: Table 1 :

112

4 DISCUSSION

113 .1 Consent: Obtained

114 Conflict of interest: None Acknowledgements: None

115 [Taiwanica ()] , Actaanaesthesiologica Taiwanica . 2015. 53 p. .

116 [Raffa and Jr ()] ‘A modern analgesics pain ‘pyramid’’. R B Raffa , Pergolizzi Jr , JV . *J Clin Pharm Ther* 2014.
117 39 p. .

118 [Bach et al. ()] ‘Buprenorphine and sustained release morphineeffect and side-effects in chronic use’. V Bach , M
119 Kamp-Jensen , N-H Jensen . *The Pain Clinic* 1991. 4 p. .

120 [Budd ()] ‘Buprenorphine and the transdermal system: the ideal match in pain management’. K Budd . *Int J
121 ClinPractSuppl* 2003. 133 p. . (Discussion 23e4)

122 [Budd ()] ‘Buprenorphine: a review’. K Budd . *Evidence based medicine in practice* 2002. Hayward Medical
123 Communications. p. .

124 [Kress ()] ‘Clinical update on the pharmacology, efficacy and safety of transdermal buprenorphine’. G H Kress .
125 *European Journal of Pain* 2009. 13 p. .

126 [Likar et al. ()] ‘Comparable analgesic efficacy of transdermal buprenorphine in patients over and under 65 years
127 of age’. R Likar , E M Vadlau , C Breschan , I Kager , M Korak-Leiter , G Ziervogel . *Clin J Pain* 2008. 24
128 p. .

129 [Pergolizzi et al. ()] ‘Current knowledge of buprenorphine and its unique pharmacological profile’. J Pergolizzi ,
130 A M Aloisi , A Dahan , J Filitz , R Langford , R Likar . *Pain Pract* 2010. 10 p. .

131 [Steiner et al. ()] ‘Efficacy and safety of the seven-day buprenorphine transdermal system in opioid-naïve patients
132 with moderate to severe chronic low back pain: an enriched, randomized, double-blind, placebocontrolled
133 study’. D J Steiner , S Sitar , W Wen . *J Pain Symptom Manage* 2011. 42 p. .

134 [Budd ()] ‘High dose buprenorphine for postoperative analgesia’. K Budd . *Anaesthesia* 1981. 36 p. .

135 [Andrew and Robert ()] *Journal of Pain and symptom management*, Wilcock Andrew , Twycross Robert . 2013.
136 45 p. . (Therapeutic Reviews)

137 [Berner and John ()] ‘Pharmacokinetic characterization of transdermal delivery systems’. B Berner , V A John
138 . *ClinPharmacokinet* 1994. 26 p. .

139 [Desai et al. ()] ‘Safety and efficacy of transdermal buprenorphine versus oral tramadol for the treatment of post-
140 operative pain following surgery for fracture neck of femur: A prospective, randomised clinical study’. S N
141 Desai , S V Badiger , S B Tokur , P A Naik . *Indian J Anaesth* 2017. 61 p. .

142 [Pergolizzi et al.] *The Unique role of transdermal buprenorphine in the global chronic pain epidemic*, V Pergolizzi
143 , Scholten Joseph , Willem , J Smith , Scott Leighton Kevin , James , C Wills , Henningfeild Jenna , Jack .

144 [Likar ()] ‘Transdermal buprenorphine in the management of persistent pain-safety aspects’. R Likar . *Thera-
145 peutics and Clinical Risk Management* 2006. 2 (1) p. .

146 [Davis ()] ‘Twelve reasons for considering buprenorphine as frontline analgesic in the management of pain’. M P
147 Davis . *J Support Oncol* 2012. 10 p. .