

1 Formulation and Evaluation of Taste Masked Tablet of Sodium 2 Feredetate: Taste Masking Approach

3 M. B. Vyas¹ and M. B. Vyas²

4 ¹ Sardar Patel College of Pharmacy Bakrol Anand

5 *Received: 6 December 2017 Accepted: 3 January 2018 Published: 15 January 2018*

6

7 **Abstract**

8 Iron deficiency is the most common cause of anemia worldwide. In India, 30

10 **Index terms**— sodium feredetate, chewable tablet, taste masking, β -cyclodextrin, electronic tongue.

11 **1 Introduction**

12 Iron deficiency is the most common cause of anemia worldwide. In India, 30% adult males, 45% adult females, 13 80% pregnant females and 60% children Have iron deficiency. In our country important causes include poor 14 dietary intake and bioavailability (most common), increased requirement during pregnancy, lactation and growth 15 spurt, blood loss due to menstrual disorders and hook worm infestation. So, oral supplementation with iron 16 preparations is frequently required [1][2]. The oral route of drugs administration is the most important method of 17 administrating drugs for systematic effects. Except in case of insulin therapy, the parenteral route is not routinely 18 used for selfadministration of medication. It is possible that at least 90% of all drugs used to produce systemic 19 effects are administered by oral route. When a new is discovered, one of the first questions a pharmaceutical 20 company asks is whether or not the drug can be effectively administered for its intended effect by oral route. 21 If it cannot, the drug is primarily relegated to administration in a hospital setting or physician's office. If 22 patient selfadministration cannot be achieved, the sales of the drug constitute only a small fraction of what 23 the market would be otherwise [8][9][10] . These tablets are intended to disintegrate smoothly in mouth at a 24 moderate rate either with or without actual chewing; characteristically chewable tablets have a smooth texture 25 upon disintegration, are pleasant taste and leave no bitter or unpleasant taste [11] ??12] . Taste is the ability 26 to detect the flavor of substances like food, drugs etc. Taste is now becoming an important factor governing 27 the patient compliance. It gained importance as the most of the drugs are administered through oral route. 28 Administration of unpalatable drugs is hampered by their unpleasant taste particularly in case of pediatric and 29 geriatrics. Various methods like coating, inclusion complexes, microen capsulation, granulation, adsorption, prod 30 rug approach, addition of flavors and sweeteners, ion exchange resins are used for masking the taste of obnoxious 31 drugs. However, there is no universal method for taste masking. Each method offers specific advantages and 32 applications. One method is not suitable for taste masking all the obnoxious drugs. Several parameters like extent 33 of bitter taste, dose, dosage form and type of the patient influence, the method to be used for masking the taste 34 of the bitter drugs. Evaluation of taste masking by electronic tongue is a recent innovation. Advatab, Microcap, 35 Liquitard, Kleptose, Formulplex and Formulcoat are the new I taste masking technologies, which are found to be 36 better than existing ODT ??13] .Cyclodextrin are cyclic (β -1, 4)-linked oligosaccharides of β -D-glucopyranose, 37 containing a relatively hydrophobic central cavity and hydrophilic outer surface. Owing to lack of free rotation 38 about the bonds connecting the glucopyranose units, the cyclodextrin are not perfectly cylindrical molecules 39 but the toroidal or cone shaped. Based on this architecture, the primary hydroxyl groups are located on the 40 narrow side of the cone shape, while the secondary hydroxyl groups are located on the wider edge. During the 41 past two decades, cyclodextrin and their derivatives have been of considerable interest in the pharmaceutical 42 field because of their potential to form complexes with a variety of drug molecules. Cyclodextrin are used to 43 increase the solubility of water insoluble drug through inclusion complexes formulation. The hydrophobic cavity of 44 cyclodextrin is capable of trapping a variety of molecules within to produce inclusion complexes. Many advantages 45 of drugs complex with cyclodextrin have been reported in scientific literature which includes-increased solubility,

11 B) BULK DENSITY AND TAPPED DENSITY

46 enhanced bioavailability, improved stability, masking of bad taste or odor, reduced volatility, transformation of
47 liquid or gas into solid form reduced side effect, and the possibility of a drug release system etc ??19] ??20] ??21]
48 .

49 2 II.

50 3 Material and Methods

51 4 a) Material

52 Sodium Feredetate, β -Cyclodextrin, Sodium Bicarbonate, Citric acid Anhydrous, Magnesium Stearate, Vanilla
53 Flavour, Aspartame, Mannitol, Talc, Microcrystalline Cellulose (Avicel 102) was obtained as a gift sample from
54 Pride drugs & Pharma (P)Ltd. Vododa, India, Lincoln pharmaceuticals Ltd. Ahmedabad, India. Other AR
55 grade chemicals were purchased.

56 5 III. Preparation Inclusion Complexes a) Physical mixture or 57 grinding method

58 Sodium Feredetate and β -Cyclodextrin were accurately weighed in different molar ratios viz. 1:1, 1:2, 1:3 and
59 1:5 separately. Then it was mixed and blended thoroughly by triturating in a mortar for about 10 minutes. The
60 powder mixtures were then pulverized through sieve no 80 and stored in desiccators till further use.

61 6 b) Kneading method

62 The inclusion complex of drug with β -Cyclodextrin was prepared by wetting the physical mixture of Sodium
63 Feredetate: β -Cyclodextrin in the different molar ratios viz. 1:1, 1:2, and 1:3 in a mortar with water. Then
64 kneaded the wet mixture thoroughly with a pestle to obtain a paste like consistency. The paste was then dried
65 under vacuum at room temperature, pulverized by passing through sieve no 80 and stored in a desiccator till
66 further use.

67 7 IV. Procedure of Evaluation of Taste by Electronic Tongue

68 The inclusion complexes were dissolved in purified water. All testing beakers contained 50ml of solution. When
69 the reference electrode and sensors were dipped into a beaker containing a test solution, a potentiometric difference
70 between each individually coated sensor with the Ag/Ag Cl reference electrode was measured and recorded by
71 the E-Tongue software. Each sample was analyzed for 20sec. The liquid sensors and the reference electrode were
72 then rinsed with purified water for 10sec after each sample analysis. Using well-conditioned sensors, each sample
73 was usually tested five times by the rotation procedure.

74 8 V. Formulation of Chewable Tablet

75 Containing a Complex of Sodium a) Feredetate with β -cyclodextrin i. Direct Compression Method Direct
76 compression technique was used to formulate chewable tablet of Sodium Feredetate. Formulations compositions
77 of chewable tablets are given in Table ??2. All raw materials used were passed through a sieve no. 60 prior
78 to mixing. Prepared drug: β -CD complex, sodium bicarbonate, citric acid, mannitol, MCC, was mixed for 15
79 minutes. Talc and magnesium stearate were added lastly before compression and mixed properly. The final
80 mixture, ready for compression was directly compressed into tablets using a singlepunch tablet machine equipped
81 with 16 mm flat punch.

82 9 VI. Evaluation of Tablets a) Pre-compression parameters

83 Prior to the compression, the powder blends of various batches were evaluated for their bulk and tapped density
84 and from these values compressibility index and Hausner's ratio were calculated. While the flow properties of the
85 powder blend were accessed from the angle of repose. The evaluation parameters were studied before and after
86 addition of lubricants to check and compare the inherent flow properties of powders.

87 10 Angle of repose (?)

88 The frictional forces in a loose powder or granules can be measured by the angle of repose. This is the maximum
89 angle possible between the surface of a pile of powder or granules and the horizontal plane. $\tan \theta = h/r$ $\theta =$
90 $\tan^{-1} (h/r)$ Where, θ is the angle of repose H is the height R is the radius The granules were allowed to flow
91 through the funnel fixed to a stand at definite height. The angle of repose was then calculated by measuring the
92 height and radius of the heap of granules formed.

93 11 b) Bulk density and Tapped Density

94 Both loose bulk density (LBD) and tapped bulk density (TBD) were determined. The accurately weighed amount
95 of sample taken in a 25ml measuring cylinder of Borosil measured/recorder the volume of packing and tapped

96 100 times on a plane hard wooden surface and tapped volume of packing recorded and LBD and TBD calculated
97 by following formula:

98 **12 ii. Uniformity of thickness**

99 Three tablets were picked from each formulation randomly and thickness was measured individually. It is
100 expressed in mm and standard deviation was also calculated. The tablet thickness was measured using dial-
101 caliper iii.

102 **13 Hardness test**

103 Hardness indicates the ability of a tablet to withstand mechanical shocks while packaging, handling and
104 transportation. The hardness of the tablets was determined using Monsanto hardness tester. It is expressed
105 in kg/cm². Three tablets were randomly picked and analyzed for hardness. The mean and standard deviation
106 values were calculated.

107 **14 iv. Friability test**

108 It is the phenomenon whereby tablet surfaces are damaged and/or show evidence of lamination or breakage when
109 subjected to mechanical shock or attrition. The friability of tablets was determined using Roche Friabilator. It
110 is expressed in percentage (%). Ten tablets were initially weighed (Initial) and transferred into friabilator. The
111 friabilator was operated at 25 rpm for 4 minutes or run up to 100 revolutions. The tablets were weighed again
112 (Final). The % friability was then calculated by,

113 **15 Percentage friability = Initial weight**

114 Initial weight -Final weight × 100 v. Weight variation test Ten tablets were selected randomly from each batch
115 and weighed individually to check for weight variation. U.S. Pharmacopoeia allows a little variation in the weight
116 of a tablet. The following percentage deviation in weight variation is allowed.

117 vi. Drug content uniformity Three tablets were randomly sampled from each formulation batch, finely pow-
118 dered and individually estimated for the drug content after suitable dilution, using UV-Visible spectrophotometer
119 at 511.2nm after suitable dilution with distilled water or 0.1N HCL. Mean percentage drug content was calculated
120 as an average of three determinations.

121 **16 vii. In vitro disintegration time**

122 The process of breakdown of a tablet into smaller particles is called as disintegration. The in vitro disintegration
123 time of a tablet was determined using disintegration test apparatus as per I.P. specifications. Disintegration test
124 was carried out by using Disintegration test apparatus. One tablet is placed in each tube, and the basket rack
125 was positioned in a 1litre beaker of water, at 37°C ±2°C. A standard motordriven device is used to move the
126 basket assembly containing the tablets up and down through a distance of 5 to 6cm at a frequency of 28 to 32
127 cycles per minutes. The time taken for the tablet to disintegrate completely was noted.

128 **17 viii. In Vitro Dissolution Studies**

129 The in vitro drug release studies were performed using USP dissolution apparatus Type II (paddle) using 900ml
130 of 0.1N hydrochloric acid as the dissolution medium. The temperature of the dissolution medium was maintained
131 at 37±0.5 o C and the paddle was rotated at 50 rpm. Aliquots were withdrawn at different time intervals of
132 5,10,15,25 and 35,45 minutes and replaced by adding equal volume of fresh dissolution medium. The samples
133 were suitably diluted and absorbance of the solutions was determined at the wavelengths 511.2nm in a UV-visible
134 spectrophotometer.

135 **18 VII. Result & Discussion**

136 **19 a) Characterization of Sodium Feredetate Inclusion Complex** 137 **i. Drug content estimation**

138 Inclusion complexes of sodium feredetate with ?-CD were prepared by physical mixture, and kneading method.
139 The results are shown in the Table ???. The percentage drug content for all the prepared complex were found to
140 be in the range of 97.76 ± 0.43 to 99.65 ± 0.32indicating uniform drug distribution.
141 ii.

142 **20 Result of Taste Masking by Electronic Tongue**

143 The metallic taste of the Sodium Feredetate was masked by kneading method in ratio of 1:2 (drug: ?-CD). The
144 effect of a sweetener Aspartame, on masking Sodium Feredetate metallic taste was evaluated by e-Tongue and
145 a PCA map was configured to determine the system discrimination power between the samples using the data
146 generated (Figure 1 & 2). Sample 1-4 consist of pure drug, Sample 5-8 consist of 1:1 ratio of drug:?-CD, Sample

31 F) WEIGHT VARIATION TEST

147 9-12 consist of 1:2 ratio of drug:?-CD, Sample 13-16 consist of 1:3 ratio of drug:?-CD, it shows that the Electric
148 potential was decreases with decreasing the metallic taste of the drug.

149 21 VIII. Evaluation Parameters for

150 Chewable Tablets of Sodium Feredetate: ?-CD

151 22 a) Pre-compression Parameters Angle of repose (?)

152 Table ?? shows the results obtained for angle of repose of all the formulations. The values were found to be in
153 the range of 30 0 .00' to 32 0 .93'. All formulations showed the angle of repose within 32 0 , which indicates a
154 good flow property of the blend.

155 23 b) Bulk density and tapped density

156 Both loose bulk density (LBD) and tapped bulk density results are shown in Table ???. The loose bulk density
157 and tapped bulk density for all the formulations varied from 0.50 gm/cm3 to 0.57gm/cm 3 and 0.59 gm/cm3 to
158 0.65 gm/cm3 respectively. The values obtained lies within the acceptable range and not large differences found
159 between loose bulk density and tapped bulk density. This result helps in calculating the % compressibility of the
160 powder.

161 24 c) Hausner's ratio

162 Table ??, shows the result obtained for Hausner's ratio of all formulations. The values were found to be in the
163 range of 1.15 -1.19. All formulations showed the Hausner's ratio within the range, which indicates a good flow
164 property of the granules.

165 25 d) Percentage compressibility

166 This percent compressibility of powder mix was determined by Carr's compressibility index. Table ??, shows
167 the results obtained for percentage compressibility. The percent compressibility for all the nine formulations lies
168 within the range of 12.88to 20.00. All formulations are showing good compressibility.

169 26 IX. Post Compression Parameters a) Post-compression pa- 170 rameters

171 All the tablet formulations were subjected for evaluation according to various official specifications and other
172 parameters. Shape, thickness, hardness, friability, weight variation, in vitro disintegration time, drug content, in
173 vitro dissolution studies.

174 27 b) Shape and color of tablets

175 Randomly picked tablets from each formulation batch examined under lens for shape and in presence of light for
176 color. All tablets of all the batches showed flat, circular in shape and pale yellowish in color.

177 28 c) Uniformity of thickness

178 The thickness of the tablets was measured by using dial caliper by picking the tablets randomly. The mean values
179 are shown in Table ???. The values are almost uniform in all formulations. Thickness was found in the range of
180 2.43 mm to 2.62 mm respectively.

181 29 d) Hardness test

182 Table ??, shows results of hardness. Hardness test was performed by Monsanto hardness tester. Hardness was
183 found to be within 5.13kg/cm 2 to 7.00 kg/cm 2 as these tablets are chewable tablet. The lower standard
184 deviation values indicated that the hardness of all the formulations were almost uniform inspecific method and
185 possess good mechanical strength with sufficient hardness.

186 30 e) Friability test

187 The study results are tabulated in Table ??, was found well within the approved range (<1%) in all the
188 formulations. Formulation F1 to F9 possesses good mechanical strength.

189 31 f) Weight variation test

190 The percentage weight variation for all the formulation is tabulated in Table ???. All the tablets passed weight
191 variation test as the % weight variation was within the pharmacy opoeial limits of \pm 10 %. It was found to be
192 from 950.33 to 1199.66mg. The weight of all the tablets was found to be uniform.

193 **32 g) Drug content uniformity**

194 Three tablets were randomly sampled from each formulation batch, finely powdered and individually estimated
195 for the drug content after suitable dilution, using UV-Visible spectrophotometer at 511.2nm after suitable
196 dilution with distilled water or 0.1N HCL mean percentage drug content was calculated as an average of three
197 determinations.

198 **33 h) In vitro dissolution studies**

199 In vitro drug dissolution studies were carried out using Electro Lab dissolution tester USP type II (Model TDT
200 06PS).

201 **34 i) Method**

202 Dissolution medium: 0.1N HCL solution Dissolution volume: 900mL RPM : 50 RPM Temperature : 37 0 ± 0.5
203 0 Samples withdrawn: 5, 10, 15,20,30,40 mins

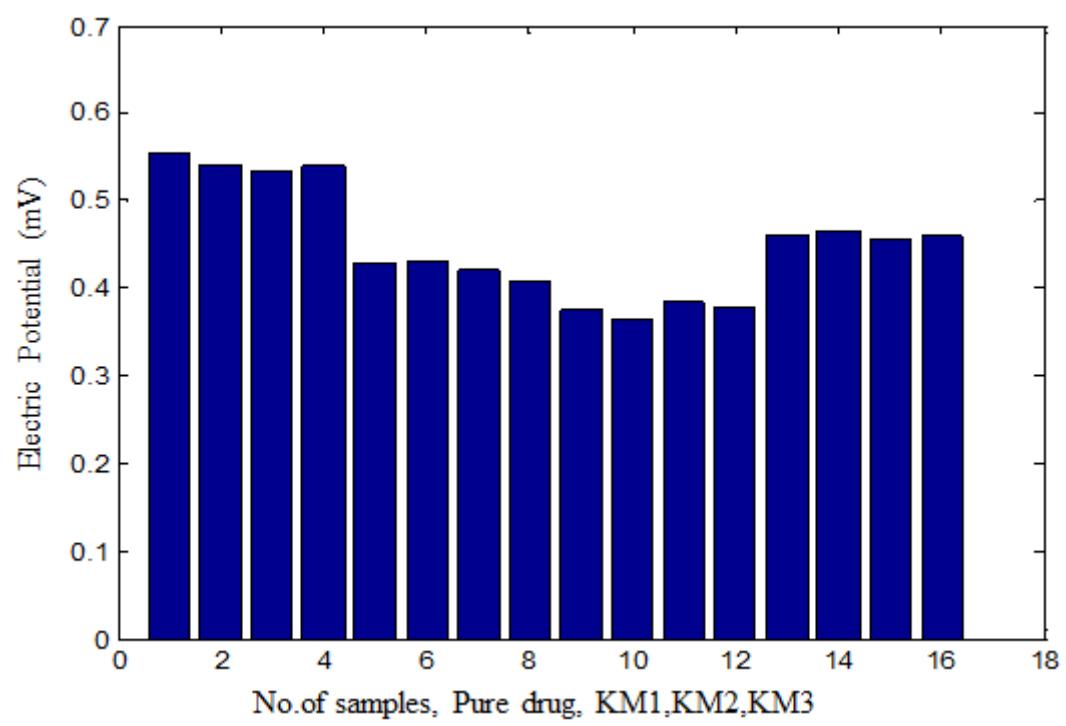
204 The formulation F1, F2 & F3 the concentration of mannitol was less & showed improper hardness with %
205 in vitro drug release up to 80% in 40 mins (Table ??& Figure ??). But with a view to get better table ting
206 properties further formulation was prepared with addition of MCC.

207 In formulation F4, F5 & F6 (Table ??& Figure ??), MCC was added in same concentration and mannitol in
208 different concentration, the result showed better hardness and better drug release but the disintegrating time of
209 tablet was less and such a large amount of powder leads to inconvenient thus further formulation was developed
210 with higher concentration of mannitol by omitting MCC.

211 In formulation F7, F8 & F9 (Table 8& Figure ??), mannitol concentration was increased and that formulations
212 showed better hardness, good % in vitro drug release and disintegration time was increased up to the limit. From
213 these formulations F8 had shown better properties.

214 **35 X. Conclusion**

215 In the present study attempt has to mask the metallic taste of Sodium Feredetate. Taste masking has been
216 carried out by using two different method i.e. physical mixture and kneading method, it was found that the
217 metallic taste of the drug masked by kneading method in ratio of 1:2 (drug:?-CD). The evaluation of taste was
218 performed by E-tongue on the basis of electronic potential. Fizzy chewable tablets containing Sodium Feredetate
219 was successfully formulated using suitable excipients to delivery drug via oral route. Further, by varying in
220 amount of sweetener, binder and super disinter grant, nine formulations were prepared and coded as F1-F9. All
221 the formulation has shown both pre-compression and post-compression characters within acceptable limits. The
222 chewable tablets were prepared by the method of direct compression using 16 mm curved flat punches.


223 **36 XI.**

224 **37 Summary**

225 The use of conventional oral tablets may pose major problem due to large dose size and decreased patient
226 compliance. Therefore, to overcome this drawback, chewable tablets were prepared with suitable sweetener, flavor
227 for better patient acceptance. Apart from that chewable tablets have an added advantage that effectiveness of
228 the therapeutic agent is improved by the reduction in size that occurs during mastication of the tablet before
229 swallowing and also better bioavailability through by-passing disintegration. In the present work an attempt was
230 made to design a chewable tablet containing Sodium Feredetate with suitable excipients for the treatment of iron
231 deficiency anemia. The objective of the present research work was to select suitable excipients, which should
232 show good pre-compression and post-compression parameters, and also chewable tablets with good acceptable
233 property like flavor, taste and mouth feel. The drug is having metallic taste so taste masking of drug becomes
234 an important step prior to formulating these drugs into an oral dosage form. Hence the aim of the project is
235 to enhance and mask the taste of drugs and formulate them into an orally chewable tablet. So, with a view to
236 enhanced the patient compliance, and provide a quick onset of action, May increase the solubility and masking
237 its metallic taste. Among the various inclusion complexes prepared, formulation i.e., the inclusion complex of
238 sodium Feredetate with ?-CD (1:2 molar ratio) prepared by kneading method shows good dissolution rate. So,
239 it was decided to use to formulate fizzy chewable tablets .Further, preliminary work for selection of suitable
240 excipients was done and a final formula was developed with acceptable precompression and post-compression
241 evaluation parameters.

Figure 1:

1

Figure 2: Figure 1 :

Figure 3: Figure 2 :

8

TIME (mins)	% CDR		
	F7	F8	F9
0	0	0	0
5	31.72	35.35	38.30
10	48.97	57.53	60.76
15	55.49	72.52	73.27
20	66.76	79.74	81.51
30	72.35	87.73	87.51
40	89.60	96.33	93.81

Figure 4: Table 8 :

242 [Brittenham et al. ()] , G Brittenham , R Hoffman , E J Benz , L E Silberstein , H E Heslop , J I Weitz .
243 *Hematology: Basic Principles and Practice* 2012. (6th edition)

244 [Abdel et al. ()] 'Chewable Tablets: Is this Dosage Form Well Evaluated by Palestinian Health Professionals'. N
245 Abdel , O Abeer , A Ghosh , Al-Jabi S Jaradat , N . *The Islamic University Journal*2007.

246 [Ramakrishnan and Yip] 'Experiences and challenges in industrialized countries:Control of iron deficiency in
247 industrialized countries'. U Ramakrishnan , R Yip . *J Nutr*2002 p. .

248 [Debjit and Chiranjib ()] 'Fast Dissolving Tablet: An Overview'. B Debjit , B Chiranjib , Krishnakanth ,
249 MargretC . *Journal of Chemical and Pharmaceutical Research*2009. 1 (1) p. .

250 [Patil and Vishwajith ()] 'Formulation Development and evaluation of chewable tablets containing non-sedating
251 Antihistamin'. J Patil , V Vishwajith , GopalV . *Journal of Pharmaceutical and Scientific Innovation* 2012.

252 [Mehta ()] 'Iron deficiency anemia'. B C Mehta . *Shah SN, API Textbook of Medicine. 7 th ed. Mumbai, the
253 Association of Physicians of India*, 2003. p. .

254 [Lachmann et al.] *Pharmaceutical Dosage Forms: Tablets*, Leon Lachmann , A Herbert , Joseph B Liberman ,
255 Schwartz . 1989. (2nd edition)

256 [Lachman et al. ()] *The Theory and Practice of Industrial Pharmacy*, L Lachman , H A Lieberman , J L Kanig
257 . 1987. p. . (Third Indian edition)