

1 Bacteriological Profile and Safety of Soured Milk in Uganda

2 Frank Kiwanuka¹

3 ¹ Clarke International University (formerly International Health Sciences University)

4 *Received: 6 December 2017 Accepted: 3 January 2018 Published: 15 January 2018*

5

6 **Abstract**

7 Background: Soured milk has an outstanding nutritional quality and highly consumed by
8 people in Kampala and Uganda. However, it is an excellent medium for pathogen bacterial
9 growth and an important source of bacterial infections when poorly handled. A cross sectional
10 study was carried out to assess for occurrence of pathological bacterial species in soured milk
11 sold in retail dairy shops in Makindye, Kampala, Uganda. A total of 174 soured milk samples
12 were purposively collected and analyzed using by standard bacteriological methods. 89.1

13

14 **Index terms**— soured milk, bacterial species, food safety, contamination, bacteriological profile.

15 **1 I. Introduction**

16 Globally, 550 million cases and 230,000 deaths happen every year due to consumption of fresh agricultural products
17 and dairy products contaminated by non Typhoidal salmonella, pathogenic Escherichia coli, Campylobacter and
18 Norovirus.

19 Diarrheal diseases account for more than half of the global burden of food-borne diseases more especially
20 among children below 5 years of age ??WHO, 2015). Milk has for long been a delicacy for many communities,
21 however, its complex biochemical composition, high water activity and nutritional value makes it an excellent
22 medium for growth and multiplication of many kinds of microorganisms when suitable conditions exist (Parkh
23 and Subhush, 2008).

24 Humans may be infected with milk-borne pathogens through consumption of infected raw or unpasteurized
25 milk and milk products (Belli et al., 2013). Unpasteurized milk sold to the public enters either directly from
26 producers, via informal markets or through dairy farmer cooperatives and resources are extremely limited,
27 yet retail production is underdeveloped with low levels of hygiene (Knight-jones et al., 2016). Some of the
28 pathogenic microorganisms commonly isolated from milk and milk products posing a serious threat to human
29 health include Escherichia coli, staphylococcus aureas, Salmonella species (spp), Listeria monocytogen, Brucella
30 abortus, Mycobacterium spp, campylobacter spp, Lyptospira spp, Clostridium spp, Pseudomonas arginosa and
31 Proteus spp (Kanyeka, 2014). According to a study that was done by Abel, 2016, Escherichia coli were found
32 to be the dominating coliform in soured milk. Specifically, a strain of Escherichia coli (E coli O157:H7) (CDC,
33 2016).

34 Cow's udder, barns, milk collection equipment and materials, various ingredients added to the dairy products
35 and dairy farm workers are some of the sources of bacterial contamination in soured milk (Abera et al., 2016).
36 Coliforms which are the target of the present study have been reported to contaminate soured milk mainly as a
37 result of using poorly sanitized utensils during milking, transportation and storage processes ??Garedew et al.,
38 2012).

39 In countries with poor milk production and distribution practices, one can expect a higher percentage of
40 bacterial contamination which poses a health hazards such as Typhoid fever by salmonella and bloody diarrhea
41 by E coli ??Garedew et al., 2012). In the current study area in particular and Uganda in general, there is lack of
42 published information on the extent of soured milk contamination by Salmonella species, and Enterohaemorrhagic
43 Escherichia coli, yet soured milk is favored over fresh milk in this setting (Knight-Jones et al., 2016).

44 In many of the low income countries, raw milk and its products is found to be contaminated with potentially
45 pathogenic E coli strains which impose a serious public health threat to humans ??Ombarak et al., 2016). In a

7 E) COLIFORM COUNTING

46 recent study done in Uganda by the Diary Development Authority (DDA) in Kasese district, milk sold to the
47 public was found to be adulterated and contaminated with pathogenic bacteria (DDA, 2017). If nothing is done
48 to improve the quality of dairy products sold in public centers, consumers will continuously be predisposed to
49 potentially pathogenic organisms that are usually present in contaminated milk.

50 The dairy market in Uganda is mainly dominated by small-holder or retail dairy business holders with low
51 levels of hygiene. The information generated by this study will be used by relevant regulatory bodies such as the
52 Uganda Diary Development Authority to scale up monitoring and evaluation of operations of dairy businesses in
53 Uganda.

54 In addition, design interventions that can help to improve the quality of dairy products sold out to the public.
55 The study sought to assess for occurrence of selected common bacteria species associated with contamination of
56 soured milk sold out in retail dairy shops in Kampala city, Uganda.

57 2 II. Methods and Materials

58 Study Design and Setting: This was a cross sectional study that was carried out during the months of May
59 to July, 2017. The study was conducted in Makindye Division. Makindye division is one of the divisions that
60 make up Kampala capital city of Uganda. Sampling Method: The study population was soured milk and milk
61 retailers. Soured milk sellers in retail daily shops who sell soured milk at the time of sampling, and were residing
62 in Makindye division were included in the study. Sellers who declined informed consent were excluded.

63 Purposive sampling technique was used. In this case, only retail milk sellers were selected for participation in
64 study until the sample size was reached.

65 3 a) Data Collection Method and Tools

66 This study employed quantitative data collection. A Questionnaire and an Observational checklist was developed
67 using some of recommended general principles codex of food hygiene ??FAO, 2003) for the general hygiene of the
68 milk retailers and premises, washing processes, their knowledge and attitude towards proper handling of soured
69 milk, sources of water used and general upkeep of the soured milk. The organization of the questionnaire and
70 observation check list was in accordance with the specific objectives of the study.

71 4 b) Sample Collection

72 This involved collection of soured milk and performing laboratory analysis on the samples. A total of 174 soured
73 milk samples were collected from the diary retail shops in the selected markets and areas of Makindye division.

74 5 c) Soured Milk Sample Handling

75 Soured milk was collected into sterile containers, given lab numbers and immediately transferred in a courier cold
76 box with ice before being delivered to the school laboratory at International Health Sciences University. A guided
77 questionnaire/ observation check list was also checked during the process of collecting samples. Samples were then
78 aliquoted into sterile glass containers in the laboratory. Samples were then examined for the presence of selected
79 common bacterial species with main emphasis on Coliforms and specifically Enterohaemorrhagic Escherichia coli
80 O157:H7.

81 6 d) Microbiological Analysis

82 Laboratory analyses were carried out at the International Health Sciences University microbiology laboratory. In
83 the Laboratory, serial dilutions were made for each sample for coliform counting on MacConkey agar, and also
84 for identification lactose and non-lactose fermenters.

85 7 e) Coliform Counting

86 A total of 10 tubes were dispensed with 9 ml of sterile normal saline. Tenfold serial dilution of the sample from
87 10-1 to 10 -10 in sterile normal saline solution was done. Then, 1 ml of soured milk sample was added into the
88 9 ml normal saline (10-1 dilution); the 1 ml of resulting solution was transferred into a second tube containing
89 9 ml of normal saline (10-2 dilution) and the procedure was repeated for more dilutions as shown in figure ??.
90 The dilutions were mixed using a vortex mixer for 10 seconds.

91 0.1ml of each dilution was poured on a MacConkey agar plate, and spread with a sterile glass spreader on the
92 media. Plates were allowed to dry with their lids on and then they were inverted and incubated at 35 0 c under
93 aerobic conditions for 24 hours to allow bacterial growth.

94 A new sterile pipette was used for each dilution and the procedure was repeated as above with further dilutions
95 up to the last dilution and for the remaining test samples, where consecutive critical dilution steps were chosen
96 for the inoculation on plates. After incubation period, coliforms on MacConkey agar were counted manually and
97 findings were recorded (ISO4833-1:2013).

98 The cfu/ml of sample was determined using the formula below ??Ogot, Ochoudho and Machoka, 2015).

99 8 cfu/ml of Sample = Number of Colonies

100 Amount Plated x Dilution Factor

101 9 f) Identification of Bacteria on Different Media

102 Samples were incubated at 35 °C-37 °C for 24 -48 hrs, and colonies that appeared pink/red on MacConkey
103 were acknowledged to be lactose fermenters while the colorless colons were registered as non-lactose fermenters.
104 Isolated colonies were then sub-cultured on different bio-chemicals. These included the catalase test, coagulase
105 test, triple sugar iron agar (TSI), Cled, Citrate, Indole, BA for identification of Shigella spp, Enterobacter spp,
106 Klebsiella spp, Salmonella spp and E coli.

107 10 g) Organism Confirmation

108 This was done in compliance with standard biochemical tests including TSI, Sulfide Indole Motility (SIM), Citrate
109 agar and methyl red Voges Proskauer (MRVP), Urea and Cled agar (Pizarro et al., 2013). The presumptive EHEC
110 colonies were then confirmed using commercial E coli O157:H7 strains anti-sera (Oxoid Basingstoke, UK) based
111 on detection of EHEC antigens. Salmonella species were confirmed by sub culturing them on XLD, where the
112 colonies present with black centers.

113 11 Volume XVIII Issue I Version I

114 Year 2018 (D D D D) L h) Data Analysis

115 Samples collected, were given identification numbers, recorded and later stored in both soft and hard copies
116 in the laboratory manual. Data was cleaned, coded and entered into the statistical package for social sciences
117 (SPSS) version 20. All statistical tests were two-tailed and a P-value of less than 0.05 was considered significant.

118 12 i) Quality Control for Laboratory Methods

119 Prepared media was sterilized by autoclaving at a temperature of 121°C for 15 minutes. Complete sterilization
120 was confirmed by using autoclave tapes attached to conical flasks containing media for sterilization. Aseptic
121 methods were used during casting of culture media onto petri dishes to minimize contamination and the agar was
122 incubated for 16 to 18 hours to check for cases of contamination. The experiment was carried out in duplicates
123 and positive control strains of Salmonella species and Escherichia coli were obtained from Lancet laboratory
124 Uganda and used.

125 13 j) Ethical Considerations

126 The research protocol was cleared by the research and ethics review committee of the Institute of Allied Health
127 Sciences of International Health Science University. Permission was then granted by the Makindye division mayor
128 to proceed with data collection. The research was conducted while upholding the moral, tradition and customary
129 rules and regulations of the community in a manner that did not compromise the scientific inclinations of the
130 research. Scientific standards in the methods employed in the collection and analysis of data were maintained.
131 All study participants provided informed consent.

132 14 III. Results

133 A total of 174 samples of soured milk were examined to assess the occurrence of selected common bacteria species
134 and risk factors associated with contamination of soured milk sold out in retail dairy shops in Makindye division,
135 Kampala district-Uganda.

136 15 a) Common Bacterial Isolates in Soured Milk

137 Amongst the 174 samples, 89.1% (n=155) showed bacterial growth with total plate counts greater than 25 cfu/ml,
138 the limit acceptable by the East African standards (EACs, 2008). Only 10.9% (n=19) showed no bacterial growth
139 even after 48 hours of incubation. Of the 155 samples that had bacterial growth, the most commonly isolated
140 were E coli (47.1%); 44 samples (28.4%) had Klebsiella spp and 18 (11.6%) had Shigella spp. The other bacterial
141 species that were found in soured milk included Salmonella spp (7.1%) and Enterobacter faecalis (5.8%).

142 Notably, Enterohaemorrhagic E coli strains were not found in all the soured milk samples analyzed. Some
143 samples had more than one type of bacterial isolate, however the common ones were E coli and Klebsiella spp.

144 16 b) Demographic Factors Associated with Contamination of 145 Soured Milk

146 Majority (41.4%) were in the age group of 21-30 years; 81.6% were female while the rest were male. Kisugu had
147 the highest number of respondents (29.3%) and at least 125 (71.8%) of all respondents had attained secondary
148 education. Majority (98.3%) reported to have had formal training on milk handling mainly through radios

18 IV. DISCUSSION

149 (51.1%) and many of the respondents (85.7%) had an experience of 1 year and above in milk handling (Table
150 ??).

151 Age ($\chi^2 = 55.3$; P value <0.001), level of education ($\chi^2 = 30.9$; P value<0.001), sources of information on
152 milk handling ($\chi^2 = 4.5$; P value=0.001) and work experience ($\chi^2 = 21.6$; P value <0.001) were significantly
153 associated with microbial contamination of soured milk. There was no statistically significant difference in the
154 level of bacterial contamination of soured milk obtained from female or male retail milk sellers. Also, there was
155 no statistically significant difference in bacterial contamination of soured milk collected from milk sellers who
156 reported having been formerly trained in milk handling and those that never received formal training ($\chi^2 = 0.35$;
157 P value=0.110) (Table ??).

158 Notably, milk sellers of age 21-30 years and those between 31-40 years were 18 and 31 times respectively more
159 likely to have bacterial contamination of soured milk than those of 41 years and above.

160 With respect to the level of education, retail milk sellers who had reached the primary and secondary levels
161 were 1.6 and 13.5 times respectively more likely to have bacterial contamination of soured milk than those who
162 had reached the university level.

163 The level of contamination of soured milk collected from milk sellers who obtained knowledge about milk
164 handling from radios and those trained by community health workers was almost similar (OR=1.03; 95% CI=0.3-
165 3.4); while working experience had a significant impact on the level of bacterial contamination of soured milk. In
166 this study, milk sellers who had 1 to 5 years of working experience were 6.5 times more likely to have contamination
167 of soured milk than those whose working experience was more than 5 years (Table ??).

168 17 c) Hygienic Related Factors Associated with Contamination 169 of Soured Milk

170 All respondents had at least a refrigerator for storage of soured milk. The main source of water for soured milk
171 preparation reported by the majority (88.5%) was tap water followed by wells (9.2%). Most of the soured milk
172 was sold off between the second and third day after preparation. Majority of the respondents (89.7%) didn't
173 have hand washing equipment and didn't wear protective gears (97.7%). There was also presence of pests (house
174 flies) in some areas. All in all the general cleanliness was regarded as poor (Table ??I).

175 In this study, longevity of soured milk ($\chi^2 = 10.2$; P value=0.004), availability of hand washing equipment
176 ($\chi^2 = 2.3$; P value <0.001), presence of pests at facility ($\chi^2 = 2.8$; P value=0.001) and general cleanliness
177 ($\chi^2 = 12.6$; P value=0.005) were significantly associated with contamination of soured milk. There was only
178 slight association between wearing protective gears and contamination of soured milk ($\chi^2 = 0.5$; P value=0.052);
179 whereas no statistically significant differences in the level of contamination of soured milk were observed when
180 tap water or other source of water was used in soured milk preparation (Table ??I).

181 Notably, for most of the hygienic related factors under consideration, it was not possible to derive an odds
182 ratio because some of the cells included in the 2x2 contingency tables had zero integers. The only odds ratio that
183 was calculated was for estimating the relation between having pests at the facility and contamination of soured
184 milk. Surprisingly, milk sellers who had pests at the retail facility were less likely than those who did not have
185 pests at the facility to have had contamination of their soured milk (OR=0.38; 95%CI=0.14-2) (Table ??I).

186 18 IV. Discussion

187 80% of milk sold in Uganda goes through informal markets and such milk may pose a health hazard due to
188 contamination with pathogens. Generally, it was found that soured milk was highly contaminated with pathogenic
189 bacteria exceeding the recommended 25 cfu/mL of total aerobic count as per the East Africa community standards
190 ??EACs, 2008) This calls for an urgent need for improvement of milk handling protocols among the milk
191 distributors and handlers in Uganda. Soured milk is popular delicacy in Uganda. Therefore, the high bacterial
192 contamination pose a considerable threat to public health.

193 Findings of this study could reflect poor levels of hygiene displayed in preparation and handling of soured milk,
194 since coliforms are mainly of faecal origin. This contamination could occur during harvesting, storage or during
195 distribution of milk to the customers at the diaries. Microbial quality of food is very important measure of the
196 safety of the food for human consumption. The presence of *Salmonella* spp, *E coli*, *Shigella* spp, *Enterobacteria*,
197 *Klebsiella pneumoniae* indicate that the food is hazardous and is not fit for human consumption. On the other
198 hand, presence of non-pathogen bacteria in food doesn't necessitate unfitness for consumption, but may indicate
199 the hygiene status of the preparation and processing. However, certain levels may indicate a serious case of poor
200 hygiene and the food becomes unfit for consumption.

201 These findings are similar with findings from many others studies that were done in Africa and Uganda that
202 reported exceedingly high bacterial contamination (Knight-Jones et al., 2016; ??elli et al., 2012;Kanyeka, 2014).
203 Elsewhere, similar studies have also demonstrated that milk products such as soured milk commonly contain
204 similar bacterial isolates to the ones identified in this study ??Lu et al., 2013). however percentages of bacteria
205 isolated was not given. Only in a longitudinal study that was carried out in Khartoum state in South Sudan
206 during the dry and rainy seasons in April 2008 to February, 2009 where more than half of the milk (51.3%)
207 sold for direct consumption by vendors and shops in Khartoum state conformed to the internationally accepted
208 standards for total coliform counts (<100 cell/ml). The difference in the level of contamination in comparison

209 to the present study could relate to the season in which samples were collected since samples that were used in
210 the present study were collected during the dry season. High bacterial contamination rates of milk are usually
211 observed more in dry season than in rainy or wet seasons (Adjlane-Kaouche et al., 2014).

212 Although few studies have investigated the relationship between demographic factors and bacterial contam-
213 ination of milk, the findings from this study show that age, level of education, source of information on milk
214 handling and work experience were statistically associated with contamination of soured milk. Majority of the
215 soured milk samples were obtained from the informal milk sector that is to say from diaries which employ persons
216 with low education and usually in family businesses. Notably, milk sellers in the age bracket of 21-30 years and
217 31-40 years were more likely to have contamination of soured milk than those above 40 years. The effect of age
218 on milk contamination may correlate to the level of training and working experience. Usually young people have
219 worked for fewer years and probably have achieved little training on the aspects of their work yet learning and
220 attaining expertise may come with experience. This may explain why more contamination of soured milk was
221 evident in samples that were collected from the young retail milk sellers. This is also in line with the findings
222 from the present study in which milk sellers with fewer years of working experience (1-5 years) reflected more
223 bacterial contamination than those who had working experience of more than five years.

224 Regarding the level of education, milk sellers of lower academic levels (primary and secondary) were more likely
225 to have contamination of their soured milk than those who had reached university level. Again this observation
226 may relate to the level of knowledge regarding milk handling and hygiene demonstrated by the University retailers
227 as compared to the primary and secondary level milk retailers. More likely, those with lower education levels may
228 not have additionally obtained sufficient training on milk handling, thus the higher chances of milk contamination.
229 Even though majority of the respondents reported to have received some formal training in milk handling and
230 had knowledge about bacterial contamination of milk, given the fact that they elaborated that "they boil the
231 milk to kill of the bacteria after purchasing the milk", the high level of microbial contamination found reflects
232 poor practices of handling milk leading to bacterial contamination. Presumably, the procedure that they use to
233 make soured milk, the utensils and water used could be the source of contamination. This is also in line with a
234 study by Salman and Hamad (2011) in which the lack of knowledge regarding clean milk production, and potable
235 water for cleaning purposes were some of the factors which contributed to the poor hygienic practices that led
236 to contamination of milk. Another study that was done in Mbarara district also reported a significantly high
237 proportion of farmers who had never received formal training on best milk handling practices ??Kagoro et al.,
238 2016).

239 In this study, there was no difference in the level of soured milk contamination sold by female or male
240 retail sellers. Even though relationship between sex and contamination of milk in the Mbarara study was not
241 investigated, it was noted that majority of the milk handlers (74.9%) were female and rest being male (Kagoro
242 et al., 2016).

243 Notably, the fact that the present study noted significant relationships between demographic factors and soured
244 milk contamination, yet there is very limited information on the subject; the present findings highlight the need
245 for thought and further exploration of the influence of demographic factors on soured milk consumption. This
246 may provide more insights into understanding the risk factors of contamination of milk besides the hygienic
247 related factors.

248 In this study, longevity of soured milk, availability of hand washing equipment, presence of pests at facility
249 and general cleanliness were significantly associated with contamination of soured milk. Unsafe practices such as
250 not washing hands, sell of expired milk and access of pests to containers of soured milk leads to introduction of
251 microorganisms to the milk. Food borne pathogens can be carried by the hands of the milk handlers, pests or
252 they may develop over time as the milk is kept longer in the storage (WHO, 2015).

253 In the current study, respondents were observed preparing and storing soured milk in Jerri cans and polyethene
254 bags, a similar case that was reported by Tumushabe, (2013). Similar findings were also reported from studies that
255 were done in Gambia, Senegal and Guinea in which raw and soured milk were found to be highly contaminated. In
256 these studies, the high microbial contamination was attributable to the poor hygiene arising from poor handling
257 at the farm, at collection centers, during transportation and at retail points and more often by faeces (of animal
258 or human origin), personnel, water and containers that are not properly sterilized. More often milk is packaged
259 in discarded vegetable oil jerry cans for easy transportation; yet such jerry cans are difficulty to clean since the
260 opening is too small to enter with hands or cleaning tools. Additionally, it was observed that some milk men and
261 milk traders use cloth to strain out the flies and dirt, but those cloths are not thoroughly washed. Usually, milk
262 vendors at the markets use spoons or cups as measuring tool, which also are not cleaned properly during the day
263 but rather simply wiped with some piece of cloth (Hempen et al., 2004), a similar practice seen in the present
264 study.

265 Additionally, one of the respondents kindly explained that to quicken the process of making soured milk, "a
266 left over soured milk is added to fresh milk so that it can ferment faster". Similar techniques have also been
267 reported by Tumushabe, (2013) in ghee processing in western Uganda. This method is so hazardous since the
268 fresh milk will also be contaminated by bacteria carried from the previous batch of soured milk. In this regards
269 use of artificial acidifier such as citric acid would be recommended.

270 Also in the recent study done in Kasese by DDA similar observations where reported (DDA, 2017) however
271 they never went into the details to confirm which common pathogen was predominate in milk.

272 Many of the selling points had a lot of pests in particular house flies which aid in the contamination of
273 soured milk and food in general and of recent, studies demonstrated that adults house flies that feed on food
274 contaminated with various levels of food borne bacteria were able to transmit those pathogens to their eggs and
275 in the process mitigate the spread of food borne pathogens ??Monica et al., 2015).

276 Furthermore, other studies in Zimbabwe, Tanzania and Ghana reported that unhygienic practices along the
277 milk value chain predisposed milk to high bacterial load and recently it was noted by Knight-Jones et al., (2016)
278 upon arrival at point of sale, poor hygiene led to high bacterial load with almost all samples culture positive for
279 *Staphylococcus aureas* and *E coli*. This is also in line with some other studies that demonstrated poor hygiene
280 practices such hand washing and pests in the milk stores as compared to those at the production levels (Abera et
281 al., 2016). Disassa (2017) observed that in Asosa town Ethiopia milk samples were produced and handled under
282 poor hygienic conditions and Bonaventure et al., ??2015) found that milk samples had added water to them in
283 a study done in Zambia ??Bonaventure et al., 2015).

284 Overall, the risk of food borne diseases is most severe in low-and middle income countries and is linked to
285 preparing food with unsafe water, poor hygiene and inadequate conditions for food production and storage, lower
286 levels of literacy and education and insufficient food safety legislation and implementation of such legislation
287 (WHO, 2015) and in the current study the poor levels of hygiene were found to predispose the soured milk to
288 bacterial contamination; the water used in preparation, the selling site/ residence and storage container among
289 others were shown to have a direct relationship with the bacterial status in the soured milk.

290 This study had some limitations that need to be mentioned; sampling of milk was not done at farm level,
291 during transportation, from milk collectors and whole sellers and thus the probable bacterial contamination at
292 all these check points was not evaluated. This has a limitation on determining the point of contamination by
293 selected common bacteria species, since some of the milk might be contaminated before it reaches the distribution
294 point. The authors recommend routine mandatory assessment of milk quality in order to safeguard the public
295 from milk-borne infections. In addition, periodic surveillance visits to dairy retail shops and health education on
296 milk handling practices is needed to prevent milk contamination. Milk supply chains should be regulated in a
297 way that certified, trained and licensed suppliers by DDA should distribute milk to the retail shops.

298 19 Volume XVIII Issue I Version I

2

Year 2018
Volume XVIII Issue I Version I
D D D D) L
(

Figure 1: Table 2 :

300 .1 Acknowledgement

301 We would like to thank the Institute of Allied Health of International Health Sciences University for their
302 assistance.

303 .2 Areas of Further Research

304 There is limited information regarding assessment of risk factors for soured milk contamination; thus other studies
305 investigating the risk factors here in mentioned in other settings is highly recommended.

306 .3 Conflicts of Interest

307 The authors declare that they have no competing interests.

308 .4 Funding Disclosure

309 The Authors received no funding for this project.

310 .5 Ethical Publication Statement

311 We confirm that we have read the Journal's position on issues involved in ethical publication and affirm that this
312 report is consistent with those guidelines.

313 .6 Practical Application

314 All the bacteria isolated were coliforms indicating probable faecal contamination of the soured milk as a result
315 of poor hygiene. This indicates that soured milk sold by small retail diary shops is highly contaminated with
316 pathogenic bacteria. There is a need for improvement in soured milk handling so as to ensure that the quality of
317 soured milk sold out to the public is acceptable and safe for human consumption.

318 [Thesis and Sou Agriculture] , Msc Thesis , Sou Agriculture . Morogoro, Tanzania.

319 [Bacteriological Profile and Safety of Soured Milk in Uganda Global Journal of Medical Research] , *Bacterio-*
320 *logical Profile and Safety of Soured Milk in Uganda Global Journal of Medical Research* 7.

321 [Kanyeka ()] , H B Kanyeka . 2014.

322 [Grimaud and Serunjogi ()] 'An evaluation of milk quality in Uganda: Value chain assessment and recommendations'. P Grimaud , M L Serunjogi , GrilletN . *African Journal of Food, Agriculture, Nutrition and Development* 2007. 7 (5) p. .

325 [Bancalari et al. ()] 'Application of impedance microbiology for evaluating potential acidifying performances of
326 starter lactic acid bacteria to employ in milk transformation'. E Bancalari , V Bernini , B Bottari , E Neviani
327 , M Gatti . *Frontiers in Microbiology* 2016. 7.

328 [Shitandi and Kihumbu ()] 'Assessment of California mastitis test usage in smallholder dairy herds and risk of
329 volatile antimicrobial residues'. A Shitandi , G Kihumbu . *Journal of Veterinary Science*, 5 2004. (1) p. .

330 [Karimuribo et al. ()] 'Assessment of drug usage and antimicrobial residues in milk on smallholder farms in
331 Morogoro'. E D Karimuribo , R H Mdegela , L J M Kusiluka , D M Kambarage . *Tanzania. Bulletin of*
332 *Animal Health and Production in Africa* 2005. 53 p. .

333 [Mwangi et al. (2000)] 'Assurance of marketed milk quality in Kenya'. A Mwangi , S M Arimi , S Mbugua , E K
334 Kangethe , A O Omore . *Beinnial Scientific Conference*, (Nairobi, Kenya) 2000. August 2000. p. .

335 [Donkor and Aning ()] 'Bacterial contaminations of informally marketed raw milk in Ghana'. E S Donkor , K G
336 Aning , QuayeJ . *Ghana Medical Journal* 2007. 41 (2) p. .

337 [Kunda et al. ()] 'Composition and sanitary quality of raw milk produced by small holder dairy farmers in Lusaka
338 province of Zambia'. B Kunda , G S Pandey , J B Muma . *Livestosk Research for Rural Development* 2015.
339 (10) p. 27.

340 [Fakudze and Dlamini ()] 'Compositional and hygienic quality of consumer milk from shops in Swaziland'. F M
341 Fakudze , A M Dlamini . *UNISWA Research Journal of Agriculture* 2001. 5 (2) p. . (Science and Technology)

342 [Salman and Hamad ()] 'Enumeration and identification of coliform bacteria from raw milk in Khartoum state'.
343 A M A Salman , I M Hamad . *Sudan. Journal of Cell and Animal Biology* 2011. 5 (7) p. .

344 [Kivaria et al. ()] 'Evaluation of the hygienic quality and associated public health hazards of raw milk marketed
345 by smallholder dairy producers in Dar es Salaam region'. F M Kivaria , J P T M Noordhuizen , A M Kapaga
346 . *Tanzania. Tropical Animal Health and Production* 2006. 38 p. .

347 [Dadie et al. ()] 'Isolation of enteric pathogenic agents in Côte d'Ivoire: Escherichia coli O157:H7 and enteroag-
348 gregative Escherichia coli'. A Dadie , T Karou , N Adom , A Kette , M Dosso . *Bull Soc. Pathol. Exot* 2000.
349 93 p. .

350 [Ogot et al. ()] 'Microbial analysis of raw and boiled milk sold at Baraton center in Nandi County' H A Ogot ,
351 H O Ochuodho , R Machoka . *Kenya. Baraton interdisciplinary research journal* 2079-4711. 2015.

352 [Knight-Jones et al. ()] 'Microbial contamination and hygiene of fresh cow's milk produced by small holders in
353 western Zambia' T J D Knight-Jones , M B Hang'ombe , M M Songe , Y Sinkala , D Grace . *International*
354 *Journal of Environmental Research and Public Health* 2016. 13 (737) p. .

355 [Addo et al. ()] 'Microbial quality and antibiotic residues in informally marketed raw milk within the coastal
356 Savannah zone of Ghana' K K Addo , G I Mensah , K G Aning , N Nartey , G K Nipah , C Bonsu , M L
357 Akyeh , H L Smits . *Tropical Medicine and International Health* 2011. 16 (2) p. .

358 [Belli et al. ()] 'Microbiological survey of milk and dairy products from a small scale dairy processing unit in
359 Maroua (Cameroon)' P Belli , A F A Cantafora , S Stella , S Barbieri , C Crimella . *Food Control* 2013. 2013.
360 32 p. .

361 [Adjlane-Kaouche et al. ()] 'Nutritional and hygienic quality of raw milk in the Mid-Northern region of Algeria:
362 Correlations and risk factors' S Adjlane-Kaouche , R Benhacine , F Ghozlane , A Mati . DOI: 10:1155. *The*
363 *Scientific World Journal* 2014. 2014/131593.

364 [Caine et al. ()] 'Occurrence of virulence genes associated with diarrheagenic Escherichia coli isolated from raw
365 cow's milk from two commercial dairy farms in the Eastern Cape Province, South Africa' L Caine , U Nwodo
366 , A Okoh , R Ndip , E Green . *International Journal of Environmental Research and Public Health* 2014. 11
367 p. .

368 [Abera and Yitayew ()] 'Salmonella serotype Typhi, Shigella, and intestinal parasites among food handlers at
369 Bahir Dar University' B Abera , G Yitayew , AmareH . *Ethiopia. The Journal of Infection in Developing*
370 *Countries* 2016. (02) p. 10.

371 [Crum-Cianflone ()] 'Salmonellosis and the gastrointestinal tract: More than just peanut butter' N Crum-
372 Cianflone . *Current Gastroenterology Reports* 2008. 10 (4) p. .

373 [Table 1: Demographic Information of the Study Respondents Characteristics of the Respondents and Occurrences of Isolated Ba
374 *Table 1: Demographic Information of the Study Respondents Characteristics of the Respondents and*
375 *Occurrences of Isolated Bacterial Species in Makindye, Kampala, Uganda.*

376 [Hempen et al. ()] 'The hygienic status of raw and sour milk from smallholder dairy farms and local markets and
377 potential risk for public health in the Gambia, Senegal and Guinea' M Hempen , F Unger , S Münstermann
378 , M T Seck , V Niamy . *Animal Health Research* 2004. p. 54. (Working Paper 3. ITC (International
379 Trypanotolerance Centre)