

1 Cytoprotective Effect of Biofield Energy Treated Test Item
2 against Tert-Butyl Hydroperoxide (T-BHP) -Induced Cell
3 Damage in Hepg2 Cell-Line

4 Snehasis Jana

5 *Received: 8 December 2017 Accepted: 31 December 2017 Published: 15 January 2018*

6 **Abstract**

7 Emerging data indicate that the mortality rate is rising due to liver disorders day-by-day in
8 the developed countries. The present study was conducted to evaluate the potential of the
9 Biofield Energy (The Trivedi Effect®) Treated test item (DMEM) in HepG2 cell-line. The test
10 item was divided into two parts. One part of the test item received Consciousness Energy
11 Healing Treatment by a renowned Biofield Energy Healer, Alice Branton and was labeled as
12 the Biofield Energy Treated DMEM and the other part defined as untreated DMEM, where no
13 Biofield Treatment was provided. Cell viability of the test items using MTT assay showed 113

15

16 **Index terms**— the trivedi effect®, HepG2, liver health, interleukin-8, ALT, cholesterol, albumin.

17 I. Introduction epatocellular carcinoma (HCC) is the fifth most common malignancy in the world. As per
18 global statistics it has been reported that the incidence of chronic liver cirrhosis is increasing worldwide ranging
19 from 3% to 9% per year [1]. Cancer, aging, coronary heart disease, neurodegenerative disorders (i.e., Alzheimer's
20 disease), diabetes, and liver damage are all associated with an increased level of reactive oxygen species (ROS)
21 formation. More selectively the mitochondrial electron transport chain is another main source of cellular ROS
22 generator [2,3]. For the assessment of hepatoprotective activity in vitro model is more advantageous than in vivo
23 [4]. Human hepatoma cell line (HepG2) has been widely used as an alternative model to human hepatocytes
24 in vitro for the assessment of hepatoprotectant activity of a test substances [5]. HepG2 cell line has many
25 advantages compared to others cell lines as it is an immortalized cell line, easily available and cryopreserved,
26 and even after cultivation the metabolizing ability not reduced [6]. Numerous experimental data reported
27 the useful effects of Biofield Energy Healing Treatment in cases of cancer patients via therapeutic touch [7],
28 massage therapy [8], etc. Biofield Therapy is one of the Complementary and Alternative Medicine (CAM)
29 therapies to enhance physical, mental, and emotional human wellness. The National Center of Complementary
30 and Integrative Health (NCCIH) has recognized Biofield Therapy as a CAM health care approach including
31 other therapies, medicines and practices such as natural products, chiropractic/osteopathic manipulation, deep
32 breathing, Tai Chi, yoga, meditation, relaxation techniques, Qi Gong, special diets, progressive relaxation,
33 massage, healing touch, homeopathy, guided imagery,rolfing structural integration, acupuncture, movement
34 therapy, hypnotherapy, pilates, mindfulness, acupressure, traditional Chinese herbs and medicines, Ayurvedic
35 medicine, Reiki, aromatherapy, naturopathy, essential oils, and cranial sacral therapy. The Biofield Energy can
36 be harnessed and transmitted by the Healers into living and non-living things via the process of Biofield Energy
37 Healing Treatment. The outcomes of The Trivedi Effect® -Consciousness Energy Healing Treatment has been
38 reported with a significant revolution in a wide spectrum of areas including materials science [9-11], agriculture
39 [12,13], microbiology [14-16], biotechnology [17,18], nutraceuticals [19,20], cancer research [21,22]. Apart from
40 this, The Trivedi Effect® also tremendously improved bioavailability of various low bio available compounds
41 [23-25], an improved overall skin health [26,27], bone health [28-30], human health and wellness. Based on
42 the excellent outcome of The Trivedi Effect® and importance of liver health authors intend to develop a new
43 treatment modality to study the impact of the Biofield Energy Healing Treated (The Trivedi Effect®) test item
44 (DMEM) on liver hepatocyte cells.

45 1 II. Materials and Methods

46 2 a) Chemicals and Reagents

47 Antibiotics solution (penicillin-streptomycin) was purchased from HiMedia. Dulbecco's Modified Eagle Medium
48 (DMEM) and fetal bovine serum (FBS) were obtained from Gibco, India. Alanine aminotransferase (ALT) 3-(4,
49 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide (MTT) and ethylenediaminetetraacetic acid (EDTA)
50 were obtained from Sigma Chemical Co. (St. Louis, MO). The positive controls silymarin and mevinolin were
51 procured from Sanat products ltd., India and Zliesher Nobel, respectively. All the other chemicals used in this
52 experiment were analytical grade procured from India.

53 3 b) Biofield Energy Healing Strategy

54 The test item (DMEM) was used in this experiment and one portion was considered as the untreated DMEM
55 group, where no Biofield Treatment was provided. Further, the untreated group was treated with "sham"
56 healer for comparison purpose. The sham healer did not have any knowledge about the Biofield Energy Healing
57 Treatment. The other portion of the test item was received Biofield Energy Treatment and defined as the Biofield
58 Energy Treated DMEM group. Biofield Energy Healing Treatment (known as The Trivedi Effect®) was received
59 under laboratory conditions for ~5 minutes through Alice Branton's unique Biofield Energy Transmission process.
60 Biofield Energy Healer was located in the USA; however the test items were located in the research laboratory
61 of Dabur Research Foundation, New Delhi, India. Biofield Energy Healer in this experiment did not visit the
62 laboratory, nor had any contact with the test samples. After that, the Biofield Energy Treated and untreated
63 test items were kept in similar sealed conditions and used for the study as per the study plan.

64 The cell viability was performed by MTT assay in HepG2 cell line. The cells were counted and plated in a
65 96-well plate at the density corresponding to 10 X 10³ cells / well / 180 µL in DMEM + 10% FBS. The cells
66 in the above plate(s) were incubated for 24 hours in a CO₂ incubator at 37°C, 5% CO₂, and 95% humidity.
67 Following incubation, the medium was removed and the following treatments were given. In the Biofield Treated
68 test item (DMEM) group, 200 µL of the Biofield Energy Treated test item (DMEM) was added to wells, and in
69 the untreated DMEM group, added 200 µL of untreated DMEM. Besides, in the positive control groups, added
70 180 µL of DMEM with 20 µL of positive controls were added from the respective 10X stock solutions. After
71 incubation for 48 hours, the effect of test items on cell viability was assessed by MTT assay. 20 µL of 5 mg/mL
72 of MTT was added to all the wells and incubated at 37°C for 3 hours. The supernatant was aspirated and 150
73 µL of DMSO was added to all wells to dissolve formazan crystals. The optical density (OD) of each well was
74 read at 540 nm using Biotek Reader.

75 Effect of the test items on viability of HepG2 cells was determined using Equation (??):% ???????
76 ????????????????? = (100 % ?????????????????????) ? ? ? ? . (1)

77 Where For test items and positive controls, concentrations resulting 70% cell viability were taken as safe /
78 non-cytotoxic concentration.

79 4 d) Evaluation of Cytoprotective Effect of the Test Item

80 Cells were trypsinized and a single cell suspension of HepG2 was prepared. Cells were counted on an
81 hemocytometer and seeded at a density of 10 X 10³ cells / well / 180 µL in DMEM + 10% FBS in a 96-
82 well plate. Cells were incubated in a CO₂ incubator for 24 hours at 37°C, 5% CO₂ and 95% humidity. After 24
83 hours, the medium was removed and the following treatments were given. In the test item groups, 180 µL of the
84 test items were added to wells. In the positive control group, 160 µL of serum free medium and 20 µL of positive
85 control from the respective 10X stock solution was added to wells. After 24 hours of treatment, cells were treated
86 with t-BHP at 250 µM (20 µL from the respective 10X stock) for 4 hours. After 4 hours, the protective effect of
87 the test items on cell viability was assessed by MTT assay as per study protocol.

88 5 e) Estimation of Interleukin-8 (IL-8)

89 HepG2 cell suspension in DMEM containing 10% FBS was plated at a density of 0.3 X 10⁶ cells / well / 1 mL
90 in a 12-well plate. Cells were incubated in a CO₂ incubator for 24 hours at 37°C, 5% CO₂, and 95% humidity.
91 Cells were sera starved by replacing the medium with DMEM + 10% FBS for 24 hours. After 24 hours of
92 sera starvation, medium was removed and pre-treatment were provided to the different treatment groups. After
93 24 hours of treatment, cells were stimulated with inflammatory stimulus TNF-α at a final concentration of 10
94 ng/mL. After treatment, cells were incubated in a 5% CO₂ incubator for 24 hours.

95 After 24 hours of incubation, culture supernatants were collected from each well and stored at -20°C until
96 analysis. The level of cytokine (IL-8) in culture supernatants of HepG2 cells was determined using ELISA as per
97 manufacturer's instructions.

98 6 f) Estimation of ALT

99 Cells were trypsinized and a single cell suspension of HepG2 was prepared and counted on an hemocytometer.
100 Cells were seeded at a density of 10 X 10³ cells / well / 180 µL in DMEM + 10% FBS in a 96-well plate. Cells
101 were incubated in a CO₂ incubator for 24 hours at 37°C, 5% CO₂, and 95% humidity. After 24 hours, medium

102 was removed and different treatments were given as per study plan. After incubation for 24 hours, cells were
103 treated with 250 μ M of t-BHP. After 4 hours of incubation, culture supernatants were collected from each well
104 and stored at -20°C until analysis. The level of ALT in culture supernatants of HepG2 cells was determined using
105 commercial kit as per manufacturer's instructions.

106 **7 g) Estimation of Cholesterol**

107 Cells were trypsinized and a single cell suspension of HepG2 was prepared. Cells were counted using an
108 hemocytometer and seeded at a density of 1 million cells / well / mL in DMEM + 10% FBS in a 6-well plate.
109 Cells were incubated in a CO 2 incubator for 24 hours at 37°C, 5% CO 2 and 95% humidity. After 24 hours,
110 medium was removed and treated with different treatment groups. After 24 hours of incubation, cell lysates were
111 prepared in the following manner.

112 Lysis buffer containing chloroform: isopropanol: IGEPAL CA630 in the ratio of 7:11:0.1 was prepared. Medium
113 was removed from each well and 400 μ L of the above buffer was added to each well, which led to detachment of
114 cells and formation of white layer. Cells were scrapped off and transferred into a labeled centrifuge tubes. The
115 cells were homogenized in ice using a tissue homogenizer for 4-5 minutes until the solution was turned turbid
116 in appearance. After homogenizing, the cells were centrifuged at 13000g for 10 minutes. The supernatant was
117 collected in a prelabeled centrifuge tube and the pellet was discarded. The tube containing the supernatant
118 was kept at 37°C for 24 hours for evaporation of buffer. After 24 hours, the tube was removed from 37°C and
119 the dried lipids (small yellow colored pellet) were obtained, which was stored at -20 °C until analysis. The
120 level of cholesterol in cell lysates of HepG2 cells was determined using a commercial kit as per manufacturer's
121 instructions.

122 **8 h) Estimation of Albumin**

123 Cells were trypsinized and a single cell suspension of HepG2 was prepared. Cells were counted using an
124 hemocytometer and seeded at a density of 0.25 million cells / well / 1 mL in DMEM+10 % FBS in a 24-
125 well plate. Then, the cells were incubated in a CO 2 incubator for 24 hours at 37°C, 5% CO 2 , and 95%
126 humidity. Further, the cells were sera starved by replacing the medium with DMEM + 10% FBS for 24 hours.
127 After 24 hours, medium was removed and various treatments were given. After 48 hours of incubation, culture
128 supernatants were collected from each well and stored at -20°C until analysis. The level of albumin in culture
129 supernatants of HepG2 cells were determined using a commercial kit as per manufacturer's instructions.

130 **9 i) Statistical Analysis**

131 All the values were represented as Mean \pm SEM (standard error of mean) of three independent experiments. For
132 two groups comparison student's t-test was used. For multiple group comparison, one-way analysis of variance
133 (ANOVA) was used followed by post-hoc analysis by Dunnett's test. Statistically significant values were set at
134 the level of p<0.05.

135 **10 III. Results and Discussion**

136 **11 a) Cell Viability Assay (MTT)**

137 The results of the cytotoxicity using MTT cell viability assay after treatment with the positive controls (silymarin
138 and mevinolin), untreated DMEM, and the Biofield Energy Treated DMEM in HepG2 cells are shown in Figure
139 1. Silymarin showed more than 136% cell viability upto 25 μ g/mL and mevinolin showed greater than 97% cell
140 viability upto 20 μ g/mL. Further, the untreated and Biofield Energy Treated DMEM groups showed 113% and
141 129.9% cell viability, respectively (Figure 1). Therefore, the positive controls and the test items were found more
142 than 97% cell viability, which indicated a safe and nontoxic profile in the tested concentrations.

143 **12 b) Cytoprotective Activity**

144 The cytoprotective activity of the Biofield Energy Treated test items on the protection of cell viability in HepG2
145 cells was determined against t-BHP induced cell damage after 4 hours of treatment is presented in Figure
146 2. Silymarin showed 4.9%, 38.4% (p<0.001), and 66.1% (p<0.001) cellular protection at 1, 5, and 25 μ g/mL,
147 respectively compared to the t-BHP induced group. Besides, the Biofield Energy Treated test item (DMEM)
148 showed significant (p<0.001) restoration of cell viability by 15%, while untreated DMEM group showed 0.4%
149 protection under the t-BHP induction (Figure 2). t-BHP is known to generate ROS and induce lipid peroxidation
150 in cells and simultaneously reduced the primary antioxidant of cells i.e., glutathione (GSH) [31,32] . In this
151 experiment from Figure 2, it was observed that Biofield Energy Treated Test item effectively restored cellular
152 function by 15%. The findings showed that Biofield Energy Treatment has the significant cytoprotective and
153 antioxidant activities, which could be due to the effect of The Trivedi Effect ® -Energy of Consciousness. Thus,
154 The Trivedi Effect ® Treated test item (DMEM) could be utilized against liver disorders.

155 **13 c) Estimation of Interleukin-8 (IL-8)**

156 Interleukin-8 (IL-8) is a potent chemoattractant for neutrophils and causes acute liver inflammation [33,34]. The
157 effect of the test items on IL-8 is shown in Figure 3.

158 Increase level of oxidative stress causes increase secretion of IL-8, and ultimately recruit the inflammatory
159 cells causes' localized inflammation [35]. In this experiment, after treatment with TNF- α at 10 ng/mL can
160 significantly induced oxidative stress and the proinflammatory cytokines IL-8, because oxidative stress and TNF-
161 alpha are the mediators in IL-8 response [36]. The level of IL-8 in the untreated DMEM group was 964.4 ± 40.65
162 pg/mL. On the other side, the Biofield Energy Treated DMEM group showed significant ($p < 0.01$) reduction of
163 IL-8 by 32.15% compared to the untreated DMEM group under the stimulation of TNF- α at 10 ng/mL (Figure
164 3).

165 **14 d) Estimation of Alanine Aminotransferase (ALT)**

166 The effect of the test items on alanine aminotransferase (ALT) is shown in Figure 4. The positive control,
167 silymarin showed 8.4%, 25.6%, and 79.2% ($p < 0.01$) reduction of ALT level at 1, 5, and 25 μ g/mL, respectively with
168 respect to the untreated DMEM group. Besides, the Biofield Energy Treated DMEM group showed a significant
169 ($p < 0.01$) reduction of ALT by 53.2% compared to the untreated DMEM group (Figure 4). The aminotransferase
170 enzymes catalyze the reversible transformation of α -ketoacids into amino acids. Increased serum level of ALT is
171 directly proportional to the severity of the diseases like hepatocellular injury and death [37]. Thus, the elevation
172 of serum ALT enzyme chances of liver disorders [38]. Here, the Biofield Energy Treated test item (DMEM) has
173 significantly protect liver hepatocytes in terms of reducing the level of transaminase enzyme, ALT compared to
174 the untreated DMEM group.

175 **15 e) Estimation of Cholesterol**

176 The effect of the test items on cholesterol in shown in Figure 5. Mevinolin (positive control) showed 17.45%, 25%,
177 and 80.19% ($p < 0.001$) reduction of cholesterol at 5, 10, and 20 μ M, respectively compared to the untreated DMEM
178 group. On the other side, cholesterol level was significantly ($p < 0.001$) reduced by 37.35% in the Biofield Energy
179 Treated DMEM group compared to the untreated DMEM group (Figure 5). Cholesterol, its metabolites, and
180 immediate biosynthetic precursors of cholesterol plays a vital role in salt and water balance, calcium metabolism,
181 and stress responses [39]. Over accumulation of cholesterol leads to nonalcoholic fatty liver disease (NAFLD)
182 [40].

183 **16 f) Estimation of Albumin**

184 The effect of the test items on albumin concentration is shown in Figure 6. The level of albumin was significantly
185 increased by 29.65%, 69.51%, 100.21% ($p < 0.001$), and 142.78% ($p < 0.001$) at 0.5, 1, 5, and 20 μ M, respectively
186 in the positive control (silymarin) group compared to the untreated DMEM group. Besides, the Biofield Energy
187 Treated DMEM group showed 43.13% increase the level of albumin compared to the untreated DMEM group
188 (Figure 6). From literature it has been reported that albumin plays a multiple physiological effects like volume
189 expansion, anti-oxidation [41,42], and endothelial protection [43], hence was recommended for the management
190 of liver cirrhosis patients and in acute/chronic liver failure [44,45]. In this experiment, the Biofield Treated
191 DMEM significantly increased the level of albumin, which could be due to The Trivedi Effect \circledR -Energy of
192 Consciousness Healing Treatment.

193 **17 IV. Conclusions**

194 The study results showed that the test items were safe and non-toxic based on MTT cell viability assay.
195 The Biofield Energy Treated test item (DMEM) showed significant ($p < 0.001$) protection of cells by 15%
196 from the oxidative damage induced by t-BHP, while untreated DMEM group showed 0.4% protection. The
197 proinflammatory cytokine, IL-8 was significantly ($p < 0.01$) reduced by 32.15% in the Biofield Energy Treated
198 DMEM group compared to the untreated DMEM group. Moreover, ALT enzyme activity was significantly
199 ($p < 0.01$) reduced by 53.2% in the Biofield Energy Treated DMEM group compared to the untreated DMEM
200 group. Cholesterol level was significantly ($p < 0.001$) reduced by 37.35% in the Biofield Energy Treated DMEM
201 group compared to the untreated DMEM group. Further, Biofield Energy Treated DMEM group showed 43.13%
202 increased the level of albumin compared to the untreated DMEM group. In conclusion, The Trivedi Effect \circledR -
203 Consciousness Energy Healing Treatment significantly protect hepatocytes cells oxidative stress and it can be used
204 as a complementary and alternative treatment for the prevention of various types of hepatobiliary disorders viz.
205 acute hepatitis A, B, C, D, and E, chronic viral hepatitis, portal hypertension in schistosomiasis, toxoplasmosis,
206 hepatosplenic schistosomiasis, liver abscess, autoimmune hepatitis, primary biliary cholangitis (primary biliary
207 cirrhosis), phlebitis of the portal vein, granulomatous hepatitis, cholestasis, necrosis, cirrhosis, etc. Further,
208 it could be useful to improve cell-to-cell messaging, normal cell growth and differentiation, cell cycling and
209 proliferation, neurotransmission, skin health, hormonal balance, immune and cardiovascular functions. Moreover,
210 it can also be utilized in organ transplants (i.e., kidney, liver, and heart transplants), hormonal imbalance,
211 aging, and various inflammatory and immune-related disease conditions like Alzheimer's Disease (AD), Ulcerative

212 Colitis (UC), Dermatitis, Asthma, Irritable Bowel Syndrome (IBS), Hashimoto Thyroiditis, Pernicious Anemia,
 213 Sjogren Syndrome, Multiple Sclerosis, Aplastic Anemia, Hepatitis, Graves' Disease, Dermatomyositis, Diabetes,
 214 Parkinson's Disease, Myasthenia Gravis, Atherosclerosis, Systemic Lupus Erythematosus (SLE), stress, etc. with
 a safe therapeutic index to improve overall health and Quality of Life.

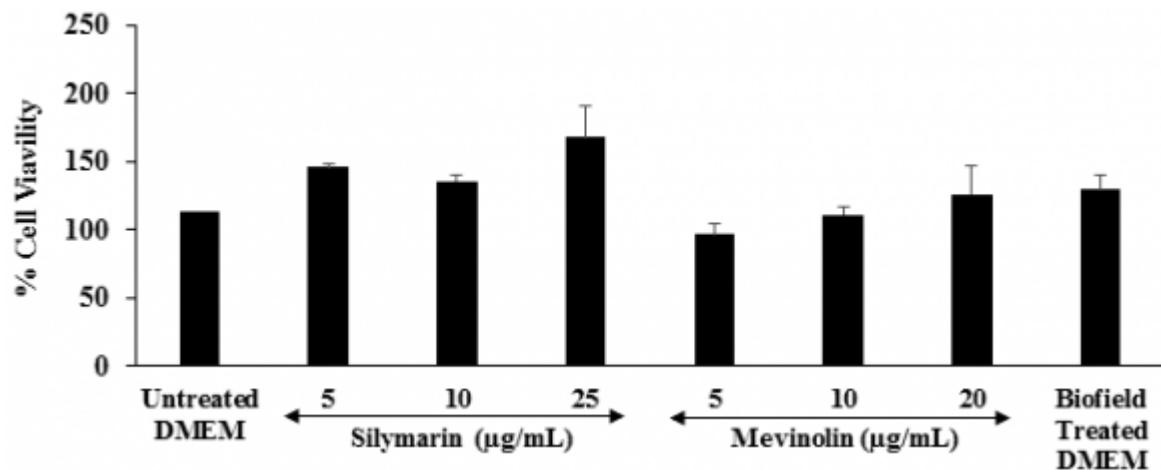


Figure 1:

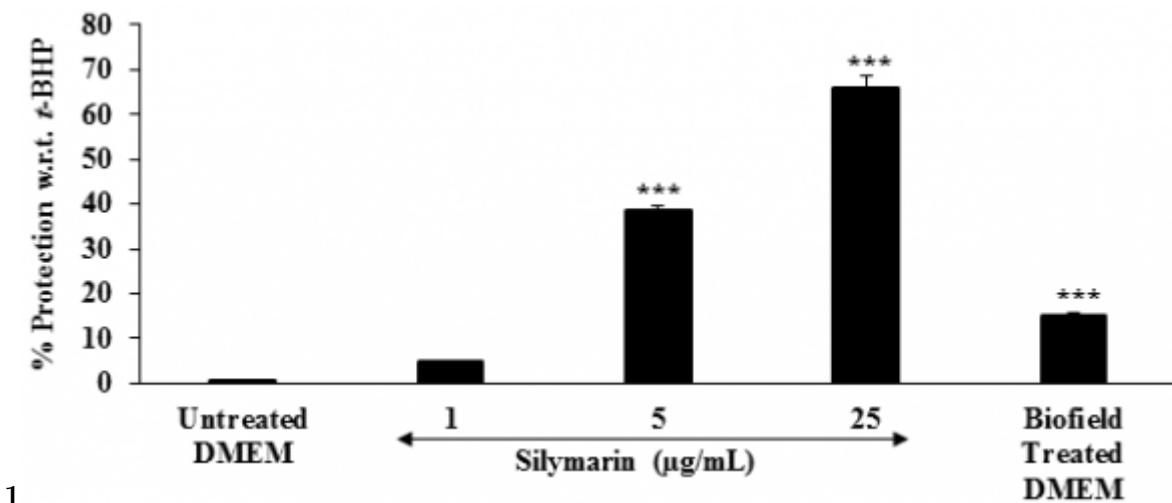


Figure 2: Figure 1 :

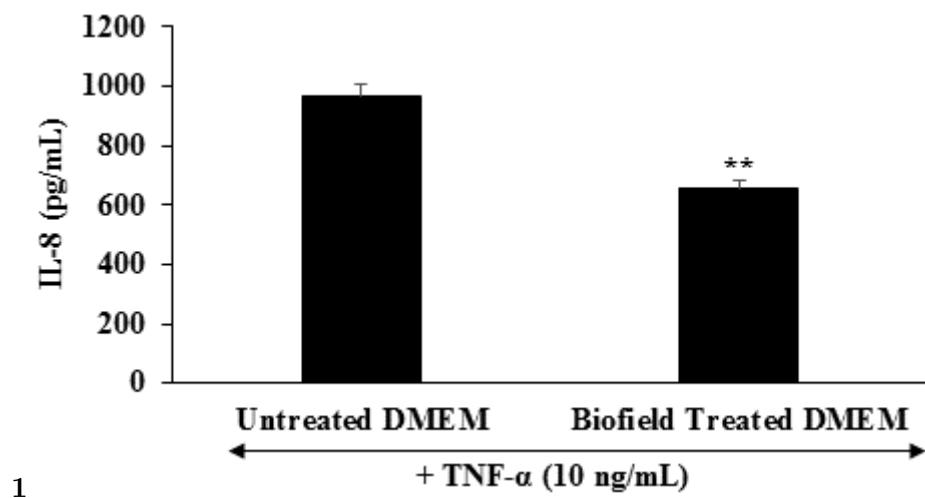


Figure 3: 1 B

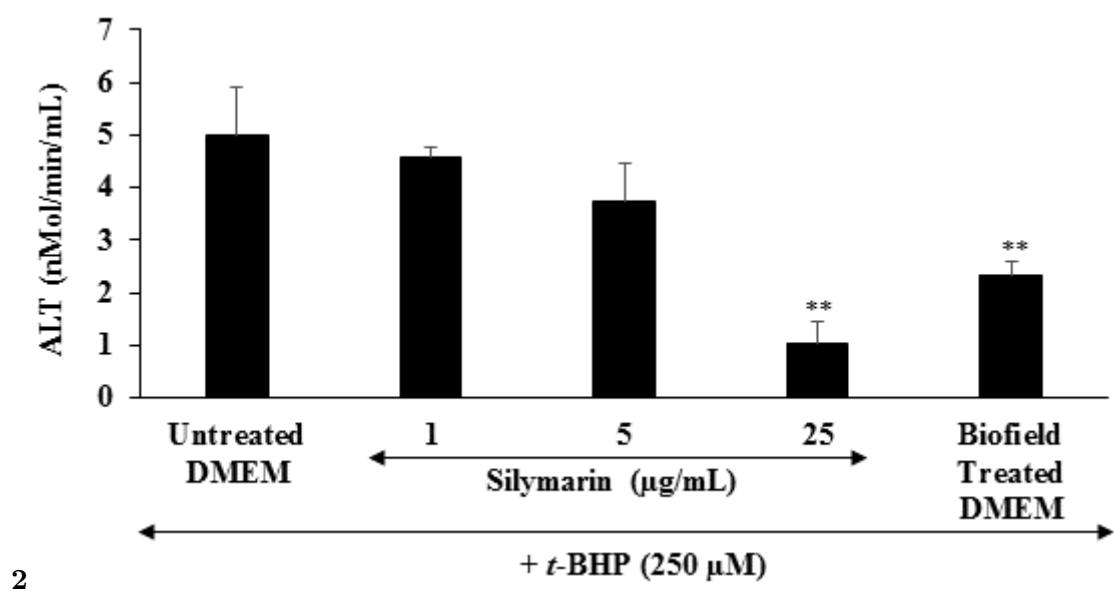


Figure 4: Figure 2 :

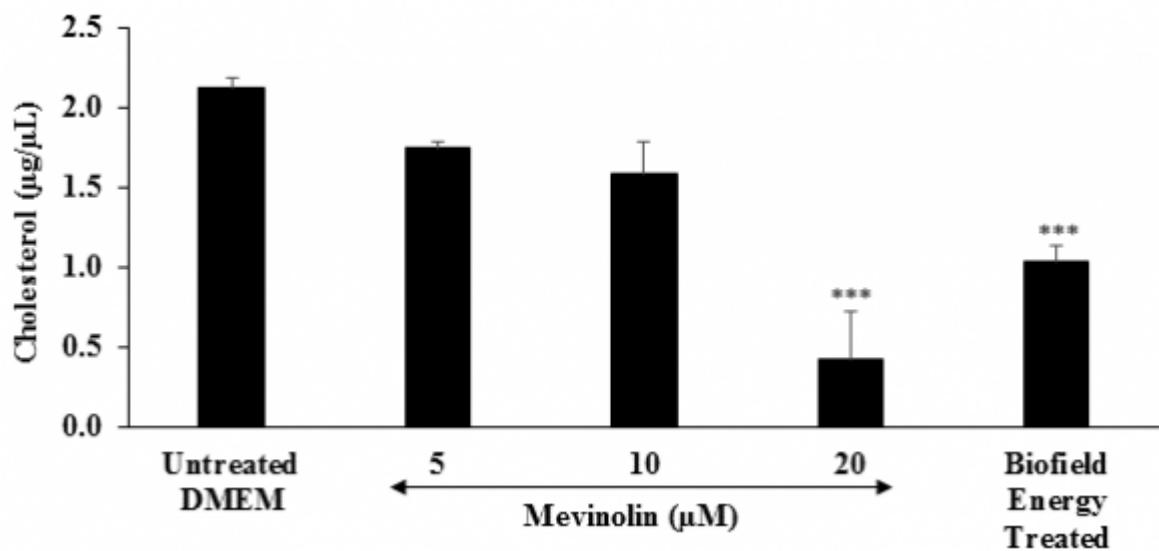
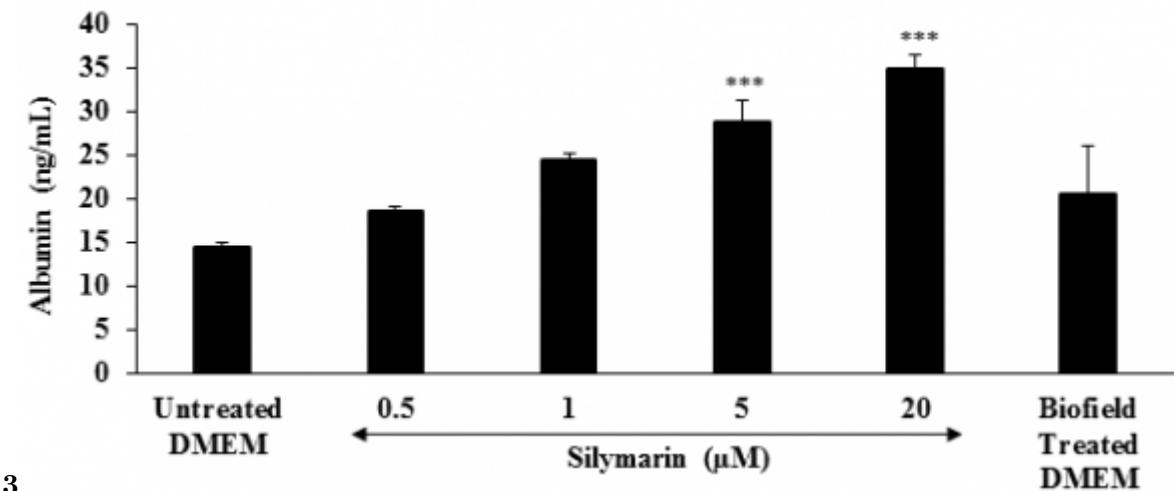



Figure 5: B

3

Figure 6: Figure 3 :

216 .1 Acknowledgements

217 Authors gratefully acknowledged to Trivedi Global, Inc., Trivedi Science, Trivedi testimonials and Trivedi master
218 wellness for their support. In addition, authors are thankful for the support of Dabur Research Foundation for
219 conducting this study.

220 [Trivedi et al. ()] 'A Systematic study of the biofield energy healing treatment on physicochemical, thermal,
221 structural, and behavioral properties of magnesium gluconate'. M K Trivedi , A Branton , D Trivedi , G
222 Nayak , W D Plikerd . *International Journal of Bioorganic Chemistry* 2017. 2 p. .

223 [Trivedi and Tallapragada ()] 'A transcendental to changing metal powder characteristics'. M K Trivedi , R
224 Tallapragada . *Met Powder Rep* 2008. 63 p. 31.

225 [Quinlan et al. ()] 'Administration of albumin to patients with sepsis syndrome: A possible beneficial role in
226 plasma thiol repletion'. G J Quinlan , Margarson M P Mumby , S Evans , TW , GutteridgeJ . *Clin Sci* 1998.
227 95 p. .

228 [Spinella et al. ()] 'Albumin in chronic liver disease: Structure, functions and therapeutic implications'. R
229 Spinella , R Sawhney , R Jalan . *Hepatol Int* 2016. 10 (1) p. .

230 [Trivedi et al. ()] 'An impact of biofield treatment: Antimy cobacterial susceptibility potential using BACTEC
231 460 / MGIT-TB System'. M K Trivedi , S Patil , H Shettigar , MondalS C , JanaS . *Mycobact Dis* 2015. 5 p.
232 189.

233 [Jessen et al. ()] 'Assessment of hepatocytes and liver slices as in vitro test systems to predict in vivo gene
234 expression'. B A Jessen , J S Mullins , A De Peyster , G Stevens . *Toxicol Sci* 2003. 75 p. .

235 [Stutheit et al. ()] 'Biofield energy treated vitamin D3: Therapeutic implication on bone health using osteoblasts
236 cells'. M E Stutheit , K Trivedi , A Branton , D Trivedi , G Nayak . *American Journal of Life Sciences* 2018.
237 6 p. .

238 [Duthie ()] 'Bromobenzene detoxification in the human liverderived HepG2 cell line'. S J Duthie , MelvinW T ,
239 BurkeM . *Xenobiotica* 1994. 24 p. .

240 [Simons and Ehehalt ()] 'Cholesterol, lipid rafts, and disease'. K Simons , R Ehehalt . *J Clin Invest* 2002. 110 p.
241 .

242 [Garcovich et al. ()] 'Clinical use of albumin in hepatology'. M Garcovich , M A Zocco , A Gasbarrini . *Blood
243 Transfus* 2009. 7 (4) p. .

244 [Singh et al. ()] 'Consciousness energy healing treatment based herbomineral formulation: A safe and effective
245 approach for skin health'. J Singh , M K Trivedi , A Branton , D Trivedi , G Nayak . *American Journal of
246 Pharmacology and Phytotherapy* 2017. 2 p. .

247 [Aayadi et al. ()] 'Cytoprotective effect exerted by geraniin in HepG2 cells is through microRNA mediated
248 regulation of BACH-1 and HO-1'. H Aayadi , S P K Mittal , A Deshpande , M Gore , GhaskadbiS . *BMB
249 Rep* 2017. 50 p. .

250 [Seyfizadeh et al. ()] 'Cytoprotective effects of arbutin against tert-butyl hydroperoxid induced toxicity in Hep-
251 G2 cell Line'. N Seyfizadeh , S Mahjoub , E Zabihi , A Moghadamnia , M Pouramir . *World Appl Sci J* 2012.
252 19 p. .

253 [Sassa et al. ()] 'Drug metabolism by the human hepatoma cell, HepG2'. S Sassa , O Sugita , R A Galbraith , A
254 Kappas . *Biochem Biophys Res Commun* 1987. 143 p. .

255 [Trivedi et al. ()] 'Effect of biofield energy treatment on physical and structural properties of calcium carbide
256 and praseodymium oxide'. M K Trivedi , G Nayak , S Patil , R M Tallapragada , O Latiyal . *International
257 Journal of Materials Science and Applications* 2015. 4 p. .

258 [Nayak and Altekar ()] 'Effect of biofield treatment on plant growth and adaptation'. G Nayak , N Altekar . *J
259 Environ Health Sci* 2015. 1 p. .

260 [Branton and Jana ()] 'Effect of The biofield energy healing treatment on the pharmacokinetics of 25-
261 hydroxyvitamin D3 [25(OH)D 3] in rats after a single oral dose of vitamin D3'. A Branton , S Jana .
262 *American Journal of Pharmacology and Phytotherapy* 2017. 2 p. .

263 [Pratt and Kaplan ()] 'Evaluation of abnormal liver-enzyme results in asymptomatic patients'. D S Pratt , M
264 Kaplan . *N Engl J Med* 2000. 342 p. .

265 [Trivedi et al. ()] *Evaluation of biochemical*, M K Trivedi , A Branton , D Trivedi , G Nayak , MondalS C . 2015.

266 [Trivedi et al. ()] 'Evaluation of biofield modality on viral load of Hepatitis B and C viruses'. M K Trivedi , S
267 Patil , H Shettigar , MondalS C , JanaS . *J Antivir Antiretrovir* 2015. 7 p. .

268 [Kew ()] 'Hepatocellular carcinoma: Epidemiology and risk factors'. M C Kew . *J Hepatocell Carcinoma* 2014. 1
269 p. .

270 [Parulkar et al. ()] 'Improved metabolism of vitamin d3 in human osteoblasts cells after biofield energy healing
271 treatment'. V R Parulkar , M K Trivedi , A Branton , D Trivedi , G Nayak . *American Journal of Laboratory
272 Medicine* 2018. 3 p. .

17 IV. CONCLUSIONS

273 [Trivedi et al. ()] 'In vitro evaluation of biofield treatment on cancer biomarkers involved in endometrial and
274 prostate cancer cell lines'. M K Trivedi , S Patil , H Shettigar , M Gangwar , JanaS . *J Cancer Sci Ther* 2015.
275 7 p. .

276 [Anagnos et al. ()] 'Influence of biofield treated vitamin D3 on proliferation, differentiation, and maturation of
277 bone -related parameters in MG -63 cell -line'. D Anagnos , K Trivedi , A Branton , D Trivedi , G Nayak .
278 *International Journal of Biomedical Engineering and Clinical Science* 2018. 4 p. .

279 [Gómez-Quiroz et al. ()] 'Interleukin 8 response and oxidative stress in HepG2 cells treated with ethanol,
280 acetaldehyde or lipopolysaccharide'. L Gómez-Quiroz , L Bucio , V Souza , C Escobar , B Farfán . *Hepatol Res* 2003. 26 (2) p. .

282 [Zimmermann et al. ()] 'Interleukin-8 is activated in patients with chronic liver diseases and associated with
283 hepatic macrophage accumulation in human liver fibrosis'. H W Zimmermann , S Seidler , N Gassler , J
284 Nattermann , T Luedde . *PLoS One* 2011. 6 (6) p. e21381.

285 [Vidyashankar ()] 'Liv.52 protects HepG2 cells from oxidative damage induced by tert-butyl hydroperoxide'. S
286 K M Vidyashankar . *Mol Cell Biochem* 2010. 333 p. .

287 [Ironson et al. ()] 'Massage therapy is associated with enhancement of the immune system's cytotoxic capacity'.
288 G Ironson , T Field , F Scafidi , M Hashimoto , M Kumar . *Int J Neurosci* 1996. 84 p. .

289 [Trivedi et al. ()] 'Morphological characterization, quality, yield and DNA fingerprinting of biofield energy treated
290 alphonso mango (Mangifera indica L.)'. M K Trivedi , A Branton , D Trivedi , G Nayak , MondalS C . *Journal
291 of Food and Nutrition Sciences* 2015. 3 p. .

292 [Baggiolini et al. ()] 'Neutrophilactivating peptide-1/interleukin 8, a novel cytokine that activates neutrophils'.
293 M Baggiolini , A Walz , S L Kunkel . *J Clin Invest* 1989. 84 p. .

294 [Vlahopoulos et al. ()] 'Nuclear factor-kappaB-dependent induction of interleukin-8 gene expression by tumor
295 necrosis factor alpha: Evidence for an antioxidant sensitive activating pathway distinct from nuclear
296 translocation'. S Vlahopoulos , I Boldogh , A Casola , A R Brasier . *Blood* 1999. 94 p. .

297 [Enjoji et al. ()] 'Nutrition and nonalcoholic fatty liver disease: The significance of cholesterol'. M Enjoji , K
298 Yasutake , M Kohjima , M Nakamura . ID 925807. *Int J Hepatol* 2012. 2012. 2012. p. 6.

299 [Trivedi et al. ()] 'Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield
300 treatment'. M K Trivedi , S Patil , H Shettigar , K Bairwa , JanaS . *J Microb Biochem Technol* 2015. 7
301 p. .

302 [Trivedi et al. ()] 'Phenotyping and 16S rDNA analysis after biofield treatment on Citrobacter braakii: A urinary
303 pathogen'. M K Trivedi , A Branton , D Trivedi , G Nayak , S Charan . *J Clin Med Genom* 2015. 3 p. 129.

304 [Lutgendorf et al. ()] 'Preservation of immune function in cervical cancer patients during chemoradiation using
305 a novel integrative approach'. S K Lutgendorf , E Mullen-Houser , D Russell , K Degeest , G Jacobson . *Brain
306 Behav Immun* 2010. 24 p. .

307 [Kim and Won ()] 'Protective effect of aqueous extract of Perilla frutescens on tert-butyl hydroperoxideinduced
308 oxidative hepatotoxicity in rats'. M K Kim , LeeH S , Kim E J Won , NH , ChiY . *Food Chem Toxicol* 2007.
309 45 p. .

310 [Vincent ()] 'Relevance of albumin in modern critical care medicine'. J Vincent . *Best Pract Res Clin Anaesthesiol*
311 2009. 23 p. .

312 [Evans ()] 'Review article: Albumin as a drug-biological effects of albumin unrelated to oncotic pressure'. T
313 Evans . *Aliment Pharmacol Ther* 2002. 5 p. .

314 [Trivedi et al. ()] 'Studies of the atomic and crystalline characteristics of ceramic oxide nano powders after bio
315 field treatment'. M K Trivedi , G Nayak , S Patil , R M Tallapragada , O Latiyal . *Ind Eng Manage* 2015. 4
316 p. 161.

317 [Mathiesen et al. ()] 'The clinical significance of slightly to moderately increased liver transaminase values in
318 asymptomatic patients'. U Mathiesen , L Franzen , A Fryden , U Foberg , G Bodemar . *Scand J Gastroenterol*
319 1999. 34 p. .

320 [Branton and Jana ()] 'The influence of energy of consciousness healing treatment on low bioavailable resveratrol
321 in male Sprague Dawley rats'. A Branton , S Jana . *International Journal of Clinical and Developmental
322 Anatomy* 2017. 3 p. .

323 [Trivedi et al. ()] 'The potential benefits of biofield energy treated vitamin D3 on bone mineralization in human
324 bone osteosarcoma cells (MG-63)'. Lee A C Trivedi , K Branton , A Trivedi , D Nayak , G . *International
325 Journal of Nutrition and Food Sciences* 2018. 7 p. .

326 [Trivedi et al. ()] 'The potential impact of biofield treatment on human brain tumor cells: A time-lapse video
327 microscopy'. M K Trivedi , S Patil , H Shettigar , MondalS C , JanaS . *J Integr Oncol* 2015. 4 p. 141.

.1 Acknowledgements

328 [Parulkar et al. ()] 'The use of consciousness energy healing based herbomineral formulation for skin anti-aging
329 strategies' V R Parulkar , M K Trivedi , A Branton , D Trivedi , G Nayak . *Journal of Food and Nutrition
330 Sciences* 2017. 5 p. .

331 [Branton and Jana ()] 'The use of novel and unique biofield energy healing treatment for the improvement of
332 poorly bioavailable compound, berberine in male Sprague Dawley rats' A Branton , S Jana . *American
333 Journal of Clinical and Experimental Medicine* 2017. 5 p. .